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ABSTRACT: 
 
Automatic Single Photo Resection (SPR) remains to be one of the challenging problems in digital photogrammetry. Visibility and 
uniqueness of distinct control points in the input imagery limit robust automation of the pose estimation procedure. Recent advances 
in digital photogrammetry mandate adopting higher-level primitives such as free-form control linear features for replacing traditional 
control points. Linear features can be automatically extracted from the image space. On the other hand, object space control linear 
features can be obtained from an existing GIS layer containing 3-D vector data such as road network, or from terrestrial Mobile 
Mapping Systems (MMS). In this paper, we present a new approach for simultaneously determining the position and attitude of the 
involved imagery as well as the correspondence between image and object space features. This approach does not necessitate having 
one to one correspondences between image and object space primitives, which makes it robust against changes and/or discrepancies 
between them. This characteristic will be helpful in detecting changes between object and image space linear features (e.g. due to 
temporal effects). The parameter estimation and matching follow an optimal sequential procedure that depends on the magnitude and 
direction of image space displacements resulting from incremental changes to the Exterior Orientation Parameters (EOP). 
Experimental results using real data proved the feasibility and robustness of our approach, especially when compared to those 
obtained through traditional manual procedures. Changes and/or discrepancies between the data sets are detected and highlighted 
through consistency analysis of the resulting correspondences.  
 
 

1. INTRODUCTION 

The majority of traditional computational procedures in 
photogrammetry rely on the correspondence between point 
primitives. With the recent advances in digital photogrammetry, 
more emphasis should be oriented towards using higher-level 
primitives in photogrammetric orientation procedures. There 
has been a substantial body of work dealing with the use of 
analytical linear features (e.g. straight lines and conic curves) in 
photogrammetric orientation (Habib et al, 2000b),  (Habib, 
1999), (Mikhail, 1993), (Mulawa and Mikhail, 1988). On the 
other hand, very few papers addressed the use of free-form 
linear features (Zalmanson, 2000), (Habib and Novak, 1994). 
However, the suggested approaches by these authors assume the 
knowledge of the correspondence between the object and image 
space features. 
 
SPR is a photogrammetric procedure to determine the EOP of 
aerial images, which is a prerequisite task for variety of 
applications such as surface reconstruction, ortho-photo 
generation and object recognition. Traditionally, SPR is 
performed using signalised control points, which have to be 
established prior to the flight mission. Radiometric problems 
and small signal size in terms of number of pixels limit the 
robustness of the automation process (Gülch, 1994). Mikhail et 
al (1994) used radiometric models of the object space control 
points and tried to determine their instances in the image. Very 
good approximations of EOP are required in this approach to 
ensure small “pull-in” range. Other approaches (Haala and 
Vosselman, 1992; Drewniok and Rohr, 1997) employed 
relational matching of points. Relations between points are not 

as well-defined as those between linear or higher-level features. 
In this research, the SPR problem is solved using free-form 
linear features in the image and object space without knowing 
the correspondence between these entities. 
 
Presently, there is a great motivation for exploiting and 
integrating various types of spatial data. This motivation is 
fuelled by the availability of new acquisition systems such as 
aerial and terrestrial mobile mapping systems and airborne laser 
scanners. The suggested approach in this research, for automatic 
SPR, has the potential of incorporating object space information 
acquired from a terrestrial mobile mapping system, line maps, 
or a GIS database with aerial imagery. The fusion of these data 
will enable point-to-point correspondence between image and 
object space linear features. This type of correspondence 
facilitates change detection applications that are well suited for 
automation. The Modified Iterated Hough Transform (MIHT) 
for robust parameter estimation (Habib et al, 2000a) is used to 
estimate the EOP as well as matching image and object space 
points along the involved linear features. 
 
In the following section, a brief review of the traditional Hough 
transform, the newly developed MIHT for robust parameter 
estimation technique and its application in SPR are presented. 
In Section 3, the methodology of the suggested approach is 
outlined, including the optimum sequence for parameter 
estimation and change detection, followed by experimental 
results using real data. Finally, conclusions and 
recommendations for future research are presented. 
 



 

2. BACKGROUND 

2.1 The Hough Transform 

Hough (1962) introduced a method for parameters estimation 
by way of a voting scheme. The basic principle behind this 
approach was to switch the roles of parameters and spatial 
variables. Hough transform is usually implemented through an 
accumulator array, which is an n-dimensional, discrete space, 
where n is the number of parameters under consideration. In 
this array, the cell with the maximum number of hits yields the 
parameters we are looking for. The variables contributing to the 
peak in the accumulator array can be tracked and identified. For 
more details, the reader can refer to (Leavers, 1993). 
 
2.2 The Modified Iterated Hough Transform (MIHT) for 

Robust Parameter Estimation 

Hough transform can be modified and used to estimate the 
parameters of a mathematical model relating entities of two data 
sets. In this approach, we assume no knowledge of 
correspondence and do not require complete matching between 
entities. As a result of the parameter estimation, the 
correspondence is implicitly determined. The method is 
outlined as follows. 
 
First, a hypothesis is generated that an entity in the first data set 
corresponds to an entity in the second one. The correspondence 
between conjugate entities of the data sets is expressed by a 
mathematical function. Using the hypothesized match, this 
mathematical function yields an observation equation(s).  The 
parameters of the mathematical relation can be estimated 
simultaneously or sequentially, depending on the number of 
hypothesized matches simultaneously considered.  All possible 
entity matches are evaluated, and the results (parameter 
estimations) are represented in an accumulator array. The 
accumulator array will exhibit a peak at the location of the 
correct parameter solution. By tracking the matched entities that 
contributed to the peak, the correspondence is determined. 
 
The number of parameters being simultaneously solved for 
determines the dimension of the accumulator array. In order to 
solve n parameters simultaneously, one must utilize the number 
of hypothesized entity matches needed to generate the required 
n equations. However, this approach is not practical. 
Simultaneous evaluation of all permutations of entities leads to 
combinatorial explosion. For example, if there are x entities in 
data set one and y entities in data set two, solving n parameters 
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(assuming that each matching hypothesis yields one equation).  
In addition, the memory requirements of an n dimensional 
accumulator array create another problem. 
 
Random Sample Consensus (RANSAC) is another alternative 
for fitting a model to experimental data (Fischler and Bolles, 
1981). Rather than using large data set with high percentage of 
blunders and trying to eliminate invalid matched, RANSAC 
starts by a and consistent data set whenever possible. This 
method is quite similar to using the modified Hough transform 
discussed in the previous paragraph, to simultaneously solve for 
all the involved parameters.  
 
An alternative approach is to solve for the parameters 
sequentially in an iterative manner (starting from some 

initial/approximate values), updating the approximations at each 
step. Consequentially, the accumulator array becomes one-
dimensional and the memory problem disappears. Also, if there 
are x elements in data set one and y elements in data set two, the 
total number of evaluated entity matches becomes xy, reducing 
the computational complexity of the problem. After each 
iteration, the approximations are updated and the cell size of the 
accumulator array can be reduced to reflect the improvement in 
the quality of the approximate values of the unknown 
parameters. In this manner, the parameters can be estimated 
with high accuracy. The convergence of this approach depends 
on the correlation among the parameters and the non-linearity 
of the transformation function. Highly non-linear 
transformations have a slower convergence rate and would 
require more iterations. 
 
The basic steps for implementing the MIHT for parameter 
estimation are as follows: 1) A mathematical model is 
established that relates corresponding entities of two data sets. 
The relation between the data sets can be described as a 
function of its parameters: f(p1, p2,…pn). 2) An accumulator 
array is formed for the parameters. The accumulator array is a 
discrete tessellation of the range of expected parameter 
solutions. The dimension of the accumulator array depends on 
the number of parameters to be simultaneously solved, which is 
related to the number of entity pairings simultaneously 
considered as well as the number of equations provided by a 
single matching hypothesis. 3) Approximations are made for 
parameters which are not yet to be determined.  The cell size of 
the accumulator array depends on the quality of the initial 
approximations; poor approximations will require larger cell 
sizes. 4) Every possible match between individual entities of the 
two data sets is evaluated, incrementing the accumulator array 
at the location of the resulting solution. 5) After all possible 
matches have been considered, the maximum peak in the 
accumulator array will indicate the correct solution of the 
parameter(s). Only one peak is expected for a given 
accumulator array. 6) After each parameter is determined 
(usually in a sequential manner), the approximations are 
updated. For the next iteration, the accumulator array cell size is 
decreased, and steps 2-6 are repeated. Detailed explanation 
about the MIHT can be found in (Habib et al, 2000a) and  
(Habib et al, 2001). 
 
2.3 Single Photo Resection (SPR) 

In SPR, the collinearity model (Equation 1) is used to relate 
points in the image with corresponding points in the object 
space, and this relation is expressed as a function of the EOP. 
Traditionally, the parameters are estimated by way of a least 
squares adjustment involving measured control points in the 
image. At least three control points are required to estimate the 
six EOP. The introduction of more than three points increases 
the redundancy and strengthens the solution of the parameters. 
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where 
λ:  Scale 
xi, yi:  Image coordinates of ith point 
Xi, Yi, Zi:  Object coordinates of ith point 
xp, yp, c:  The camera interior orientation parameters. 
X0, Y0, Z0, ω, φ, κ: The EOP of the camera exposure station. 
 



 

3. METHODOLOGY 

3.1 Optimum Sequence for Parameter Estimation and 
Initial Correspondence Determination 

To execute the MIHT for SPR, we must first make a decision 
regarding the optimum sequence for parameter estimation that 
guarantees quick and robust convergence to the correct solution.  
 
Various image regions are affected differently by changes in the 
associated EOP. Some parameters have low influence on some 
regions while having larger influence on others. Therefore, a 
certain region in the image space would be useful for estimating 
some parameters if they have a large influence at that region 
while other parameters have minor or almost no influence at the 
same region. Moreover, optimum sequence should not affect 
previously considered regions/parameters. Conceptually, 
optimal sequential parameter estimation should follow the same 
rules of empirical relative orientation on analogue plotters 
(Slama, 1980). The following paragraph deals with how to 
determine the optimum sequence for parameter estimation 
together with the corresponding regions for their estimation.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Image partitioning. 
 

For such objective, we have divided the image into nine regions 
labelled from 1 to 9 as shown in Figure 1. Regions 2, 5 and 8 
have small x coordinate values (i.e. x2 §� x5 §� x8 §� ���� ZKLOH�
regions 4,5 and 6 have small y coordinate values (i.e. y4 §�y5 §�
y6 §� ���� 7KH� FROOLQHDULW\� HTXDWLRQV� �(TXDWLRQV� ��� KDYH� EHHQ�
linearized and reduced by assuming small rotation angles, 
which is the case of vertical aerial photographs (Equations 2).  
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In Equations 2, the terms ex and ey represent image space 
displacements in the x and y directions resulting from 
incremental changes in the EOP (dX0, dY0, dZ0, dω, dφ, dκ). It 
has to be mentioned that Equations 2 are not used for the 
parameter estimation. Instead, we will use them to identify the 
influence of the EOP on various regions in the image (Figure 
1). Table 1 summarises the effect of incremental changes in the 
EOP on the nine image regions (Figure 1). 
 
By analysing Table 1 and following the previously mentioned 
rules at the beginning of this section, the optimum sequence for 
parameter estimation is as follows: 
1. Use points in region 5, to estimate X0 and Y0. 
2. Use x-equations of points in regions 2 and 8, and y-

equations of points in regions 4 and 6, to estimate κ.  

3. Use x-equations of points in regions 4 and 6, and y-
equations of points in regions 2 and 8, to estimate Z0. 

4. Use points in regions 1, 3, 7 and 9 to estimate ω and ϕ. 
 
This sequence will be repeated, after updating the initial values 
for the parameters with the estimated ones. The procedure can 
be described in the following steps. 
 
Sweep 1: 
• Establish approximations for Z0, ω, φ and κ. 
• Determine the range and the cell size of the accumulator 

array for (X0, Y0), depending on the quality of the 
approximations of the other parameters. 

• Using the collinearity model, solve X0, Y0 for every 
combination of object point with one image point in region 
5. 

• At the location of each solution, increment the 
corresponding cell of the accumulator array. 

• After considering all possible combinations, locate the 
peak or maximum cell of the accumulator array. That cell 
has the most likely values of X0 and Y0. 

 
Sweep 2: 
Repeat sweep #1 for (κ), (Z0) and (ω, φ) updating the 
approximations of the parameters, while using the appropriate 
regions that was determined earlier. 
 
Sweep 3: 
Decrease the cell size of the accumulator arrays for (X0, Y0), (κ), 
(Z0) and (ω, φ) to reflect the improvement in the quality of the 
approximate EOP. Then, repeat sweeps 1–3 until the parameters 
converge to the desired precision. 
    
Table 1: The influence of different image regions on the 
parameters. 

dX0 dY0 dZ0 Region 

x eq. y eq. x eq. y eq. x eq. y eq. 
1 c/dZ 0 0 c/dZ -x/dZ y/dZ 
2 c/dZ 0 0 c/dZ 0 y/dZ 
3 c/dZ 0 0 c/dZ x/dZ y/dZ 
4 c/dZ 0 0 c/dZ -x/dZ 0 
5 c/dZ 0 0 c/dZ 0 0 
6 c/dZ 0 0 c/dZ x/dZ 0 
7 c/dZ 0 0 c/dZ -x/dZ -y/dZ 
8 c/dZ 0 0 c/dZ 0 -y/dZ 
9 c/dZ 0 0 c/dZ x/dZ -y/dZ 

 
dω dϕ dκ Region 

x eq. y eq. x eq. y eq. x eq. y eq. 
1 xy/c -c-y2/c c+x2/c -xy/c y x 
2 0 -c-y2/c c 0 y 0 
3 -xy/c -c-y2/c c+x2/c xy/c y -x 
4 0 -c c+x2/c 0 0 x 
5 0 -c c 0 0 0 
6 0 -c c+x2/c 0 0 -x 
7 -xy/c -c-y2/c c+x2/c xy/c -y x 
8 0 -c-y2/c c 0 -y 0 
9 xy/c -c-y2/c c+x2/c -xy/c -y -x 

 
One has to note that the lack of features in any of the nine 
regions may only slow the process. The reason is that all EOP 
affect all regions but with different magnitudes. Only the 
maximum influences/contributions are represented in Table1.  
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By tracking the paired image and object points that have 
contributed to the peak in the accumulator array for the final 
iteration, the correspondence problem is solved. The resulting 
matches between the object and image space features are used 
in a simultaneous least-squares adjustment to solve for the EOP. 
It has to be mentioned that the obtained correspondences are for 
low-level objects (i.e. between points). The following section 
explains the consistency check we implemented to identify the 
high level correspondence (i.e. between linear features) in 
addition to highlighting discrepancies (changes) between object 
and image space features. 
 
3.2 Feature to Feature Correspondence and Change 

Detection 

So far, we established the following: 
• EOP of the image under consideration, and 
• Point-to-point correspondences between object and image 

space linear features. 
Now, we will proceed by performing a consistency check 
between these features using the feature labels. The consistency 
check has four steps:  
 
Step1: Feature to feature correspondence 
We check the label of the features containing the matched 
object and image space points. Considering the frequency of the 
matched labels, one can establish the correspondence between 
the image and object space features. 
 
Step 2: Object to image space projection of non-matched 
object points 
Using the estimated EOP and the ground coordinates of non-
matched object points, one can compute the corresponding 
image coordinates. The standard deviation of the computed 
image coordinates can be estimated using error propagation. 
 
Step 3: Distance computation 
The closest distance, as well as the associated standard 
deviation, between the projected image points in step 2 and the 
closest points along the corresponding image space features is 
computed. One should note that the image to object feature 
correspondence is already established in step 1. 
 
Step 4: Blunder and change detection 
If the distance is greater than a predefined threshold (e.g. three 
times the associated standard deviation), we label these points 
as either blunders or changes between object and image space 
features. Single occurrences of non-matching points are 
identified as blunders while successive occurrences of the non-
matching points are labelled as change (discrepancies). 
 
Figure 2 is a schematic drawing for illustrating the concept of 
the consistency check. In this figure, points i1 to i10 are the 
projected data points along a linear feature from the object 
space into the image space, while points j1 to j17 are image data 
points along the corresponding linear feature in the image 
space. Consider points i1, i6, i7, i8 and i10 to be correctly 
matched with points j1, j11, j13, j15 and j17, respectively; while 
points i2, i3, i4, i5 and i9 do not have matching entities in the 
image space. Instead, their closest points in the second data set 
along the corresponding linear feature are points j3, j5, j7, j9 and 
j16, respectively. In order to distinguish between the consistent 
changes and blunders, non-matching points along the linear 
feature are segmented and labelled. From this analysis, the pair 
(i9, j16) will be considered as one label and the pairs (i2, j3) to 
(i5, j9) will be considered as another label. The former label will 

be considered as blunder because it has only one change pair, 
while the latter will be highlighted as a consistent change. For 
consistent changes, the longitudinal distance along the linear 
feature as well as the average lateral distance will be computed 
as the change attributes, Figure 2. 
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Figure 2: Consistency check between the object and image data 

points. The rectangular points with labels i1 to i10 are 
the projected object space points along a linear feature 
into the image space, while the crosses with labels j1 
to j17 are the points along the corresponding linear 
feature in the image space. 

 
 

4. EXPERIMENTS/RESULTS 

Experiments have been conducted using real data. To carry out 
the outlined methodology in the previous section, one should 
have: 

• A sequence of 3-D points along the ground control 
features. 

• A sequence of 2-D points along the image features. 
• The interior orientation parameters (IOP) of the 

camera. 
 
Once again, the suggested algorithm does not require full 
correspondence between the object and image space features. 
The main requirement is having enough common features 
between the two data sets. The input data and the results are 
presented in the following paragraphs. 
 
In the area covered by the aerial image, there exist a number of 
major and secondary roads. The object space roads, represented 
as a sequence of 3-D points, were extracted from a 
photogrammetric stereo model containing the image under 
consideration. Two data sets in the object space with different 
number of roads had been digitised.  A 2-D view of the 3-D 
road network can be seen in Figures 4-a and 4-b. To complete 
the data set, a 2-D point sequence along the image road network 
must be extracted. In a digital environment, the extraction 
process can be established by applying a dedicated operator 
(e.g. Canny or any other operator for road network extraction). 
In this work however, 2-D image features have been manually 
digitised, Figure 3-c. Another data set in the image space had 
been obtained by introducing digitisation errors (Figure 3-d) to 
check the ability of the suggested system to detect those 
changes. By combining different data sets from the object and 
image space, we conducted four experiments, Table 2. 
 
From Table 2, one can see that image space has much more data 
available than the object space. After carrying out the 
experiments, matched points were used to estimate the EOP in a 
simultaneous least-squares adjustment. The estimated EOP are 
listed in Table 3, together with the their initial (approximate) 
values. These values can be obtained from navigation data. 
However, very rough knowledge about the initial values of EOP 



 

is required in this approach as listed in Table (3). Results from 
manual SPR are also listed in the same table. One can see that 
the results from the traditional manual orientation and our 
approach (even in Experiment 4 where fewer object space roads 
were used and digitisation errors were introduced in the image 
space features) are comparable. In addition to the estimated 
parameters, we had obtained the correspondences between 
points in image and object space.  
 

Table 2: Experiments Summary. 
Object space data sets 

O1 (Fig. 4-a) O2 (Fig. 4-b) 
 

15 
roads 

1572 
points 
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roads 

799 
points 

15 
roads 

I1 
Fig. 4-c 

55178 
points 

Experiment 1 Experiment 2 

15 
roads 

Image 
space 
data 
sets 

I2  
Fig. 4-d 

63397 
points 

Experiment 3 Experiment 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Object space linear features O1 (a), and O2 (b), and 

image space linear feature without digitisation errors 
I1 (c) and with digitisation errors I2 (d). Roads are 
labelled for further references. 

 
The correspondence between the image and the object space 
linear features as well as the consistency check described in 
section 3.2 have been performed. All the roads were reliably 
matched (see Figure 3). In this figure, corresponding road 
segments were given the same label. One should notice that we 
had realised the correct correspondences between higher level 
entities (road segments). Even when there is no one to one 
correspondence between higher-level image and object space 
entities (as in experiment 4, where 10 out of 15 road segments 
in the image space are not present in the object space), 
correspondences are reliably obtained. Moreover, the quality of 
the estimated parameters did not deteriorate. The 10 roads in the 

image space that had no correspondences in the object space in 
experiment 4 will be considered changes, as they belong to the 
same boundary of the object space entities that had been 
examined. In the next paragraph, we are examining changes that 
occurred locally between object and image space entities. 
 
Table 3. Estimated EOP and their initial (approximate) values 

together with the results from manual SPR. 
 X0(m) Y0 (m) Z0 (m) 

Manual 600.00 -26.781 1014.894 
Appx. 450.0 100.0 900.0 
Exp. 1 599.762 -26.937 1014.842 
Exp. 2 599.797 -26.663 1014.699 
Exp. 3 599.722 -26.974 1014.818 
Exp. 4 599.245 -27.081 1014.754 

 ω° φ° κ° 
Manual 0.584667 -0.867300 1.191474 
Appx. 9.0 -9.0 10.0 
Exp. 1 0.590318 -0.872063 1.185914 
Exp. 2 0.572123 -0.871997 1.182790 
Exp. 3 0.589120 -0.870109 1.189792 
Exp. 4 0.594399 -0.895585 1.183058 

 
Non-matched points in the object space, after being projected 
into the image space, were significantly far from any of the 
points in the image space. Therefore all of them were 
considered as discrepancies. Among these non-matched points 
consecutive points were segmented and the longitudinal and the 
lateral distances from the corresponding road line were 
computed. Results from experiment 4 are listed in Table 4.  We 
can see that the changes had been reliably detected.     
 
Table 4. Changes (discrepancies) between image and object 
space linear features, experiment 4.  

Discrepancies (Changes) in the object space 
Location 
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2 3 -70.81 309.98 34.18 1.69 16.02 
2 17 56.71 290.27 37.23 56.49 211.53 
2 19 403.81 263.37 43.59 57.46 141.1 
2 25 855.49 248 53.05 67.6 291.22 
2 19 1227.19 222.05 60.53 40.61 148.97 
3 13 1238.2 -91.28 67.05 44.96 114.61 
3 4 910 -104.28 61.59 28.59 30.53 
3 7 527.42 -64.31 55.89 30.97 72.42 
3 13 199.75 32.54 47.81 41.62 81.51 
3 12 -16.3 74.74 42.04 65.7 149.53 
5 13 1167.07 -399.73 76.26 23.1 49.28 
5 4 1169.49 -444.77 76.8 1.04 13.29 
5 8 1199.87 -564.32 84.22 10.8 12.52 
5 10 1259 -592.19 94.94 6.84 16.94 
8 17 302.33 87.72 46.44 27.6 60.32 
8 31 274.23 -141.86 51.63 56.78 105.73 
8 27 240.81 -451.65 58.09 31.65 115.76 

15 8 590.49 351.71 46.08 14.74 28.01 
 
Examples of changes, which were detected, are shown in Figure 
4. It has to be noted that all the changes were reliably detected 
and their existence does not contribute to the estimated 
parameters. Therefore, we realised a robust estimator for the 
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EOP and for obtaining the correspondence between the two data 
sets in addition to reliably highlighting the changes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Example of detected changes between road segments 

in image and object space. 
 

 
5. CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE WORK 

The MIHT for robust parameter estimation technique has been 
used to perform SPR for real data using free-form control linear 
features without knowing the correspondence between image 
and object space primitives. The proposed technique robustly 
estimates the parameters. In other words, the parameters are 
estimated using common features in both data sets (object and 
image space features); while non-corresponding entities are 
filtered out prior to the parameter estimation. An optimum 
sequence for parameter estimation and the associated image 
regions had been established and implemented. The proposed 
method has successfully established the feature-to-feature 
correspondence between the image and object space. It has also 
highlighted discrepancies (changes) between the object and 
image space road network and provided a quantitative measure 
indicating the amount of the change. The proposed system has 
the capability of integrating aerial imagery with GIS data or 
terrestrial mobile mapping system for decision-making purposes 
(e.g. re-mapping of road network). In this way, newly acquired 
aerial imagery can undergo SPR using available control 
information from a terrestrial mobile mapping system, previous 
imagery, GIS database or line maps. Currently, we are analysing 
the optimum pixel size of the accumulator array corresponding 
to different parameters at various iterations. In addition, 
generating rectified ortho-images using matched control linear 
features will be investigated in future research. 
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