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ABSTRACT

This paper focuses on internal quality measures for automatic road extraction from aerial images taken over urban areas. The motivation
of this work is twofold: Firstly, any automatic system should provide the user with a small number of values indicating the reliability
of the obtained results. This is often referred to as ”self-diagnosis” and is in particular a crucial part of automatic image understanding
systems. Secondly, and more important in the scope of our research, a system designed for the extraction of man-made objects in
complex environments (like roads in urban areas) inherently implies many decisions during the extraction process. Such decisions are
highly facilitated when both low level features and high level objects are attached with confidence values indicating their relevance for
further processing. The basic idea for defining evaluation criteria from which the confidence values can be calculated is to split the
components of a semantic object model into two different types. The model components of the first type are used for extracting features,
i.e., parts of the object, and the components of the other type serve as criteria for evaluating the quality of the extracted features. For
guaranteeing an unbiased evaluation one has to ensure that model components belonging to different types are independent from each
other (at least theoretically). We illustrate this concept by our system for road extraction in urban areas. Examples are given for both
low level features like lines and ribbons as well as higher level features like lanes and road segments.

1 INTRODUCTION

From a practical point of view, research on automatic road extrac-
tion in urban areas is mainly motivated by the importance of geo-
graphic information systems (GIS) and the need for data acquisi-
tion and update for GIS. This demand is strikingly documented in
the survey on 3D city models initiated by the European Organiza-
tion for Experimental Photogrammetric Research (OEEPE) a few
years ago (Fuchs et al., 1998). Applications of road extraction in
urban areas include analyses and simulations of traffic flow, esti-
mation of air and noise pollution, street maintenance, etc.

From the scientific perspective, the extraction of roads in com-
plex environments is one of the challenging issues in photogram-
metry and computer vision, since many tasks related to automatic
scene interpretation are involved. In order to cope with the high
complexity of urban scenes, our extraction system integrates de-
tailed knowledge about roads and their context using explicitly
formulated models. The road model includes, for instance, small
sub-structures such as markings but also knowledge about the
global network characteristics of roads, while the context model
describes relations between roads and other objects, e.g., build-
ings casting shadows on the road or cars occluding parts of a lane.
This makes it possible to extract roads even if their appearance is
heavily affected by other objects.

The work presented in this paper focuses on the development of
internal quality measures for automatic road extraction. The mo-
tivation of this specific aspect within an object extraction sys-
tem is twofold: Firstly, any automatic system should provide the
user with some values indicating the reliability of the obtained re-
sults. This is often referred to as ”self-diagnosis” (Förstner, 1996)
which is a crucial part of automatic image understanding systems,
in particular, when designed for practical applications. Secondly,
and more important in the scope of our research, confidence val-
ues also play an important role for the reliability of the extraction
itself, since they highly facilitate inevitable decisions which have
to be made during the extraction process. Consider, for instance,
competing road hypotheses extracted from multiple overlapping
images which must be combined into an unique road network.

The correct selection becomes much easier when the hypothe-
ses are attached with confidence values indicating their quality
and relevance for further processing. Such situations often occur
within image understanding systems designed for the extraction
of cartographic objects from natural scenes. Hence, the develop-
ment of methodologies for internal quality control was identified
as a major research issue by the scientific community (see the
editors’ note in (Baltsavias et al., 2001)).

In the next section, we briefly review work on automatic road
extraction with emphasis on approaches dealing with urban en-
vironments and approaches employing internal quality measures.
In Sect. 3, we continue with a short overview of our extraction
system before describing details of the incorporated extraction
and evaluation methods in Sect. 4. Finally, the achieved results
are analyzed and discussed (Sect. 5).

2 RELATED WORK

Besides many user- or map-guided approaches, also numerous
automatic approaches have been developed (see articles in (Gruen
et al., 1995, Gruen et al., 1997, Baltsavias et al., 2001)). Most of
these efforts are directed towards the extraction of roads in rural
areas. Approaches designed to process satellite or low resolu-
tion aerial images generally describe roads as curvilinear struc-
tures (Heller et al., 1998, Wang and Trinder, 2000, Wiedemann
and Ebner, 2000) while those using large scale imagery (i.e., a
ground resolution less than 1 m) model roads mostly as rela-
tively homogeneous areas satisfying certain shape and size con-
straints (Ruskońe, 1996, Zhang and Baltsavias, 1999, Baumgart-
ner et al., 1999, Laptev et al., 2000).

Compared to the relatively high number of research groups fo-
cussing their activities on rural areas, only few groups work on
the automatic extraction of roads in urban environments. Here,
the road network is often modelled as a combination of grids with
a rather regular mesh size, i.e., the size of one building block.
(Faber and F̈orstner, 2000), for instance, rely on directional in-
formation of lines extracted from scanned maps or low resolu-



tion images. They use local directional histograms to segment
regions showing similar grid orientation. In (Price, 2000) mul-
tiple high resolution images and Digital Surface Models (DSM)
are combined to extract the urban road grid in complex, though
stereotypical, residential areas. After manual initialization of two
intersecting road segments defining the first mesh, the grid is it-
eratively expanded by hypothesizing new meshes and matching
them to image edges. During final verification, the contextual
knowledge is exploited that streets are elongated structures whose
sides may be defined by high objects like buildings or trees. Thus,
so-called extended streets (few consecutive road segments) are
simultaneously adjusted by moving them to local minima of the
DSM while isolated and badly rated segments are removed. The
internal evaluation of a road segment mainly depends on the edge
support found during hypothesis matching. However, ratings of
single segments may be altered during verification of extended
streets, which seems justified since this verification is carried out
from a more global perspective on the object ”road”.

An interesting approach regarding the role of internal evalua-
tion is employed in the system of (Tupin et al., 1999) for find-
ing consistent interpretations of SAR scenes (Synthetic Aperture
RADAR). In a first step, different low level operators with spe-
cific strengths are applied to extract image primitives, i.e., cues
for roads, rivers, urban/industrial areas, relief characteristics, etc.
Since a particular operator may vote for more than one object
class (e.g. roadand river), a so-called focal and non-focal el-
ement is defined for each operator (usually the union of real-
world object classes). The operator response is transformed into
a confidence value characterizing the match with its focal ele-
ment. Then, all confidence values are combined in an evidence-
theoretical framework to assign unique semantics to each prim-
itive attached with a certain probability. Finally, a feature adja-
cency graph is constructed in which global knowledge about ob-
jects (road segments form a network, industrial areas are close to
cities, ...) is introduced in form of object adjacency probabilities.
Based on the probabilities of objects and their relations the final
scene interpretation is formulated as a graph labelling problem
that is solved by energy minimization. In (Tönjes et al., 1999),
scene interpretation is based on a priori knowledge stored in a se-
mantic net and rules for controlling the extraction. Each instance
of an object, e.g., a road axis, is hypothesized top-down and inter-
nally evaluated by comparing the expected attribute values of the
object with the actual values measured in the image. Competing
alternative hypotheses are stored in a search tree as long as no
further hypotheses can be formed. Finally, the best interpretation
is selected from the tree by an optimum path search.

In summary, many approaches derive confidence values from low
level features such as lines or edges. In the following steps the
values are propagated and aggregated providing eventually a ba-
sis for the final decision about the presence of the desired ob-
ject. This procedure may cause problems since the evaluation
is purely based on local features while global object properties
are neglected. Therefore, some approaches introduce additional
knowledge (e.g., roads forming a network or fitting to ”valleys”
of a DSM) at a later stage when more evidence for an object has
been acquired. All mentioned approaches have in common that
they use one predefined model for simultaneously extractingand
evaluating roads. Due to the complexity of urban areas, however,
it is appropriate to use a flexible model for extraction and evalu-
ation, which can easily adapt to specific situations occurring dur-
ing the extraction, e.g., lower intensities and weaker contrast in
shadow areas. Before describing our evaluation methodology in
more detail we give a brief summary of the extraction system.

3 SYSTEM OVERVIEW

Our system tries to accommodate aspects having proved to be of
great importance for road extraction: By integrating aflexible,
detailed road and context modelone can capture the varying ap-
pearance of roads and the influence of background objects such

as trees, buildings, and cars in complex scenes. Thefusion of dif-
ferent scaleshelps to eliminate isolated disturbances on the road
while the fundamental structures are emphasized (Mayer and Ste-
ger, 1998). This can be supported by considering the function
of roads connecting different sites and thereby forming a fairly
dense and sometimes even regular network. Hence, exploiting
the network characteristicsadds global information and, thus,
the selection of the correct hypotheses becomes easier. As basic
data, our system expects high resolution aerial images (resolution
< 15 cm) and a reasonably accurate DSM with a ground resolu-
tion of about 1 m. In the following, we sketch our road model and
extraction strategy. For a comprehensive description we refer the
reader to (Hinz et al., 2001a, Hinz et al., 2001b).

3.1 Road and Context Model:

The road model illustrated in Fig. 1 a) compiles knowledge about
radiometric, geometric, and topological characteristics of urban
roads in form of a hierarchical semantic net. The model rep-
resents thestandard case, i.e., the appearance of roads is not
affected by relations to other objects. It describes objects by
means of ”concepts”, and is split into three levels defining dif-
ferent points of view. Thereal world level comprises the objects
to be extracted: The road network, its junctions and road links,
as well as their parts and specializations (road segments, lanes,
markings,...). These concepts are connected to the concepts of
thegeometry and materiallevel viaconcreterelations (T̈onjes et
al., 1999). The geometry and material level is an intermediate
level which represents the 3D-shape of an object as well as its
material describing objects independently of sensor characteris-
tics and viewpoint (Cĺement et al., 1993). In contrast, theimage
level which is subdivided into coarse and fine scale comprises the
features to detect in the image: Lines, edges, homogeneous re-
gions, etc. Whereas the fine scale gives detailed information, the
coarse scale adds global information. Because of the abstraction
in coarse scale, additional correct hypotheses for roads can be
found and sometimes also false ones can be eliminated based on
topological criteria, while details, like exact width and position
of the lanes and markings, are integrated from fine scale. In this
way the extraction benefits from both scales.

The road model is extended by knowledge about context: So-
called context objects, i.e., background objects like buildings or
vehicles, may hinder road extraction if they are not modelled ap-
propriately but they substantially support the extraction if they
are part of the road model. We define global and local context:

Global context: The motivation for employing global context
stems from the observation that it is possible to find semantically
meaningful image regions – so-calledcontext regions– where
roads show typical prominent features and where certain rela-
tions between roads and background objects have a similar im-
portance. Consequently, the relevance of different components
of the road model and the importance of differentcontext rela-
tions(described below) must be adapted to the respective context
region. In urban areas, for instance, relations between vehicles
and roads are more important since traffic is usually much denser
inside of settlements than in rural areas. As (Baumgartner et al.,
1999), we distinguishurban, forest, andrural context regions.

Local context: We model the local context with so-calledcon-
text relations, i.e., certain relations between a small number of
road and context objects. In dense settlements, for instance, the
footprints of buildings are almost parallel to roads and they give
therefore strong hints for road sides. Vice-versa, buildings or
other high objects potentially occlude larger parts of a road or cast
shadows on it. A context relation ”occlusion” gives rise to the se-
lection of another image providing a better view on this particular
part of the scene, whereas a context relation ”shadow” can tell an
extraction algorithm to choose modified parameter settings. Also
vehicles occlude the pavement of a lane segment. Hence, vehicle
outlines as, e.g., detected by the algorithm of (Hinz and Baum-
gartner, 2001) can be directly treated as parts of a lane. In a very
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Figure 1: (a) Road model (left). (b) Context model (right).

similar way, we model the integration of GIS-axes and relations
to sub-structures. Figure 1 b) summarizes the relations between
road objects, context objects, and sub-structures by using the con-
cepts ”Lane segment” and ”Junction” as the basic entities of a
road network.

3.2 Extraction Strategy:

In a very general sense, the extraction strategy inheres knowledge
about how and when certain parts of the road and context model
are optimally exploited, thereby being the basic control mecha-
nism of the extraction process. It is subdivided into three levels
(see also Fig. 2): Context-based data analysis (Level 1) comprises
the segmentation of the scene into the urban, rural, and forest area
and the analysis of context relations. While road extraction in for-
est areas seems hardly possible without using additional sensors,
e.g., infrared or LIDAR sensors, the extraction in rural areas may
be performed with the system of (Baumgartner et al., 1999). In
urban areas, extraction of salient roads (Level 2) includes the de-
tection of homogeneous ribbons in coarse scale, collinear group-
ing thin bright lines, i.e. road markings, and the construction of
lane segments from groups of road markings, road sides, and
detected vehicles. The lane segments are further grouped into
lanes, road segments, and roads. During road network comple-
tion (Level 3), finally, gaps in the extraction are iteratively closed
by hypothesizing and verifying connections between previously
extracted roads. Similar to (Wiedemann and Ebner, 2000), local
as well as global criteria exploiting the network characteristics are
used. Figure 3 illustrates some intermediate steps and Figs. 11, 12
show typical results. In the next section, we turn our focus on the
integrated models for extraction and internal evaluation.

4 EXTRACTION AND EVALUATION MODELS

As (Tönjes et al., 1999) our approach utilizes a semantic net for
modeling. However, our methodology of internal evaluation dur-
ing extraction complements other work as we split the model of
an object into components used for extraction and components
used for internal evaluation. The model components used for ex-
traction typically consist of quite generic geometric criteria which
are more robust against illumination changes, shadows, noise,
etc., whereas those used for evaluation are mostly object specific.
In so doing, both extraction and evaluation may be performed in
a flexible rather than monolithic fashion and can adapt to the re-
spective contextual situation. The extraction of markings, for in-
stance, is based on line detection while their evaluation relies on
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(a) Detected shadow areas (b) Markings outside of shadow area (c) Markings inside of shadow area (d) Verified lanes (top), detected car (bottom)

Figure 3: Examples of intermediate steps during road extraction

the knowledge that markings are very bright and have symmetric
contrast on both sides because of the unicolored pavement (see
Fig. 4). However, in case of shadow regions as detected during
context-based data analysis, the system automatically retrieves a
different parameter set for internal evaluation and, thus, accom-
modates the different situation.

In order to attain an unbiased evaluation, model components be-
longing to different types should be independent from each other.
This is, of course, not always the case in practise. On one hand,
we use the orientation difference between two markings as crite-
rion for the extraction of groups of markings. On the other hand,
the curvature of a group is part of the evaluation which is doubt-
less correlated with the orientation difference (see also Fig. 5).
However, what makes a difference is the point of view on the
object: In the first case only pairs of markings are considered.
Therefore, the group may ”wiggle” although yielding pairwise
small orientation differences. In the second case the group is con-
sidered as a whole. Hence, notable wiggling would lead to a bad
rating.

At each step of processing, internal evaluation is performed by
not only aggregating previously derived values but also exploit-
ing knowledgenot used in prior steps. This point has especially
high relevance for bottom-up driven image understanding sys-
tems (as ours), since essential global object properties making
different objects distinctive can be exploited only at later stages
of processing. Lanes segments, for instance, are constructed from
grouped markings and optional road sides (Fig. 5, 7, 8), but they
still have high similarity to, e.g., illuminated parts of gable roofs.
Only their collinear and parallel concatenation resulting in lanes,
road segments, and roads makes them distinctive and gives in turn
new hints for missing lane segments (cf. Fig. 9, 10). Consider the
two-lane road segment in Fig. 10a). The continuity of the upper
lane provides a strong hint for bridging the gaps of the lower lane
in spite of high intensity variation therein. Hence, at this stage,
the system can base its decision on more knowledge than purely
the homogeneity within the gaps.

Figures 4–10 summarize the employed extraction and evalua-
tion models. Tables below the figures give detailed information
about the respective model components and the expected values
to measure (qualitatively). Linear features are denoted as smooth,
unit-speed curves = s(l) neglecting the parameterl. Ribbons
s(w) = s(l, w) have an additional variablew parameterizing the
ribbon profiles in direction of the unit normal vectorṡ⊥ (bold
letters for vectors).I stands for grayvalue intensities andH are
heights given by a Raster-DSM.

In the implementation, fuzzy-set theory is used for transform-
ing knowledge as represented by the model into a mathematical
framework. The internal evaluation of each object is based on
fuzzy-functions which approximate the values to be extracted as
they are expected by the model (illustrated by graphs in Figs. 4–
10). Resulting confidence values are then combined by fuzzy-
aggregation operations.
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. Asymmetry ∆I of parabolic
profile alongṡ⊥: small
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ṡ⊥: ”half-pipe”

. Height variation ofs(w): low

. Width of ribbonw: bounded . Intensity ofs(w): high

. Length ofs(w): lower bound . Homogeneity ofs(w): distinct

ṡ⊥
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Figure 7:Model for road sides:
Components used forextraction Components used forevaluation
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Figure 8:Model for lane segments:
Components used forextraction Components used forevaluation
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Figure 9:Model for grouping lane segments into lanes:
Components used forextraction Components used forevaluation

. Orientation difference between
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. Gap analysis: see evaluation of
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Figure 10:Model for road segments and road links:
Components used forextraction
of road segments
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. Widths of lanes across road
segments: similar

. Gap analysiswithin road seg-
ment: see evaluation of lanes

. Heights of neighboring lanes:
similar
. Fragmentation (missing lane
segments): low

Components used forextraction
of road links

Components used forevaluation
of road links

. Orientation difference between
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5 RESULTS AND DISCUSSION

Figures 11 and 12 show the final result of road extraction. The re-
sults have been evaluated by matching the extracted road axes to
manually plotted reference data (Wiedemann and Ebner, 2000).
As can be seen, major parts of the road networks have been ex-
tracted (white lines indicate extracted road axes). Expressed in
numerical values, we achieve a completeness of almost 70%
and a correctness of about 95%. The system is able to detect
shadowed road sections or road sections with rather dense traffic.
However, it must be noted that some of the axes’ underlying lane
segments have been missed. This is most evident at the complex
road junctions in both scenes, where only spurious features for
the construction of lanes could be extracted. Thus, not enough



Figure 11: Extracted road network of Scene I

evidence was given to accept connections between the individual
branches of the junction. Another obvious failure can be seen
at the right branch of the junction in the central part of Scene
II (Fig. 12). The tram and trucks in the center of the road have
been missed since our vehicle detection module is only able to
extract vehicles similar to passenger cars. Thus, this particular
road axis has been shifted to the lower part of the road where the
implemented parts of the model fit much better.

In summary, the results indicate that the presented system ex-
tracts roads even in complex environments. The robustness is last
but not least a result of the detailed modelling of both extrac-
tion and evaluation components accommodating the mandatory
flexibility of the extraction. An obvious deficiency exists in form
of the missing detection capability for vehicle types as busses and
trucks and the (still) weak model for complex junctions. The next
extension of our system, however, is the incorporation of multi-
ple overlapping images in order to accumulate more evidence for
lanes and roads in such difficult cases. The internal evaluation
will greatly contribute to this because different – possibly com-
peting – extraction results have to be combined. Also for multiple
images, we plan to treat the processing steps up to the generation
of lanes purely as 2D-problem. The results for each image are
then projected onto the DSM and fused there to achieve a con-
sistent dataset. Then, new connections will be hypothesized and,
again, verified in each image separately.
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