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ABSTRACT 
 
Building extraction in urban areas is one of the difficult problems in image understanding and photogrammetry. Building 
delineations are needed in cartographic analysis, urban area planning, and visualization. Although one pair of images is adequate to 
find the 3D position of two visibly corresponding image features it is not sufficient to extract the entire building due to hidden 
features that are not projected into the image pair. This paper presents a new technique to detect and delineate buildings with 
complex rooftops by extracting roof polygons and matching them using multiple images. 
 
The algorithm discussed in this paper starts by segmenting the images into regions. Regions are then classified into roof regions and 
non-roof regions using a two-layered Neural Network. A rule-based system is then used to convert the roof boundaries to polygons. 
Polygon correspondence is established geometrically, all possible polygon correspondent sets are considered and the optimal set is 
selected. Polygon vertices are then refined using the known geometric properties of urban buildings to generate the building wire-
frames. The algorithm is tested on a number of buildings and the results are evaluated. The RMS error for the extracted building 
vertices is 0.25m using 1:4000 scale aerial photographs. The results show the completeness and accuracy that this method can 
provide for extracting complex urban buildings. 
 
 

1. INTRODUCTION 
 

Recent research in the area of building extraction covers 
building extraction from aerial images, digital elevation 
models (DEM), thematic maps, and terrestrial images. Aerial 
images and digital elevation models are the primary data sets 
used in most building extraction systems. Some systems use 
only aerial images; some use DEM only; others use both data 
sets. In (Suveg and Vosselman, 2000) thematic maps and 
GIS databases are used to help resolving ambiguity in the 
extracted buildings or in generating building cues that can be 
refined by DEM, aerial images, or both. In (Chein and Hsu, 
2000) one pair of images is used to extract buildings. This is 
insufficient since parts of the buildings can be either 
obscured by other features or not projected into this specific 
pair. Although in (Kim and Nevatia, 1999) more than one 
pair of images is used to extract the buildings, the matching 
was carried out in a pairwise fashion.  
 
In (Brunn and Weidner, 1997) the DEM is used solely to 
extract the building models.  Researchers using only DEM in 
building extraction start by segmenting the DEM. This 
process is problematic with image-driven DEM and LIDAR-
driven DEM. Outliers often disturb the extracted regions. 
Some researchers compute the slope of the model surface in 
both directions to provide more information that can assist 
the building extraction. However slopes are not always 
accurate due to outliers in the digital elevation models. In 
(Wang, 2000) a building extraction system from LIDAR data 
is presented. His results suffer from some of the same 
problems that occur with image-driven DEM.  
 
In (Zhao and Trinder, 2000) and (Seresht and Azizi, 2000) 
aerial images and DEM are used for the building extraction 
process. They started with the DEM to provide building 
regions or building cues and then they used the images to 
refine the extracted building regions.  
 
In (Fischer et. al., 1999) and (Förstner, 1999) the building 
extraction problem was solved using a semi-automated 

approach. The user has to define the building model and find 
the building elements in one image by a number of mouse 
clicks. Then the algorithm finds the corresponding features in 
other images, and matches them to build the 3D wire-frame 
of the building. This approach supports the extraction of 
more complex buildings; however it requires the user to 
spend a great amount of time interacting with the system. 
 
In this article a new technique to extract urban area building 
wire-frames using more than one pair of images is presented. 
The input to the algorithm is a number of images for the 
building. The minimum number required is two; however 
this number is generally not enough for a complete 
extraction. In this research four aerial images per building are 
used in the extraction process.   
 
We start by segmenting the images using a split and merge 
image segmentation technique. The extracted regions are 
then classified into roof regions and non-roof regions using a 
two-layered Neural Network. Two attributes are used in the 
classification process. The first attribute measures the 
linearity of the building borders. The second attribute 
measures the average elevation of the region and it is driven 
from a digital elevation model. The borderlines for the 
building regions are then extracted from the border pixels 
using a modified version of the Hough transformation. A 
rule-based system is then employed to convert the extracted 
lines to polygons. The algorithm can extract either triangle or 
quadrilateral roof facets. Correspondence between roof 
polygons is established using the geometrical properties of 
the polygons. A least squares estimation model is 
implemented to find corresponding polygons. Geometric 
constrains between vertices in one polygon, symmetric 
planes, and horizontal planes are utilized in the least squares 
model to refine the extracted building vertices.   
 
The algorithm has been tested on a large sample of buildings 
selected quasi-randomly from the Purdue University campus. 
Four images are used for each building and the automatically 
extracted wire-frames for the extracted buildings are 



presented. The RMS error between manually extracted 
coordinates and the produced coordinates for six buildings is 
0.25 meter and only two vertices were missing. These results 
suggest the completeness and accuracy that this method 
provides for extracting complex urban buildings.  
 
Section 2 explains the split and merge image segmentation 
technique. In section 3 the region classification process is 
discussed. Section 4 presents the region to polygon 
conversion. The multi image 3D polygon extraction 
algorithm is explained in section 5. Results are given in 
section 6. Conclusions are discussed in section 7. 

 
 

2. IMAGE REGION EXTRACTION 
 
In this section the process of extracting image regions is 
presented. Image segmentation could be done using a wide 
range of techniques. The best technique we have found for 
segmenting aerial images is the split and merge image 
segmentation technique. The split and merge image 
segmentation technique has three main steps. First splitting 
the image: the image is recursively divided into smaller 
regions until a homogeneity condition is satisfied. Then 
adjacent regions are merged to form larger regions based on 
a similar criterion. In the last step, small regions are either 
eliminated or merged with larger regions. The criterion used 
in the split and merge image segmentation method is that the 
difference between the minimum and maximum intensities in 
any region is less than a certain threshold. More details can 
be found in (Horowitz and Pavlidis, 1974) and (Samet, 
1982). The results of the split and merge image segmentation 
technique for five sample buildings, are shown in Figure 1-a, 
b, c, and d.  
 

   
 

Figure1-a and b. Split and Merge Image Segmentation 
Results for 2 Buildings  

 

  
 

Figure1-c and d. Split and Merge Image Segmentation 
Results for 3 Buildings 

3. REGION CLASSIFICATION USING NEURAL 
NETWORKS 

 
A Neural Network is implemented to distinguish roof regions 
from non-roof regions. Each region is assigned two attributes 
for the classification process. The first attribute measures the 
linearity of the region boundaries, while the second attribute 
measures the percentage of the points in the region that are 
above a certain height.   
 
3.1. Region Border Linearity Measurement 
 
After segmenting the building images a modified version of 
the Hough transformation is employed to measure border 
linearity. The approach includes the following steps; 
extracting region border points, linking border points, finding 
local lines that fit groups of successive points, and filling a 
parameter space similar to the Hough parameter space for 
line extraction. The parameter space is then searched and 
analyzed to determine a measure for the border linearity, 
(BL), Equation 1. The border linearity is measured as the 
percentage of the sum of the number of points in the larger 
four cells in the parameter space to the total number of 
border points. Figure 2-a shows a parameter space for a roof 
region, while Figure 2-b shows a parameter space for a non-
roof region.  
 

 
 

Figure 2-a. The Modified Hough Parameter Space for 
the Border of a Roof Region 

 
 

 

PointsBorderofNumberTotal
Cells4LargerinPointsofNumber

=BL                     (1) 

 
 

 
 

Figure 2-b. The Modified Hough Parameter Space for the 
Border of a Non-Roof Region 

 



3.2. Region Elevation Measurement 
 
The second attribute assigned to the roof regions quantitizes 
the height of each region (RH), Equation 2. A digital 
elevation model is used for this task. First each point in the 
image is assigned an elevation value by projecting the DEM 
back to the image using the image registration information, 
the pixel location in the image, and the DEM. For each 
image point a ray is generated starting from the exposure 
station of the camera and is directed toward the point. The 
intersection between the ray and the DEM defines the 
elevation of the image point. The RH is measured as the 
percentage of the number of the roof region points that are 
above a certain elevation to the total number of points in the 
region.  
 

PointsRegionofNumberTotal
HAbovePointsRegionofNumber min=RH          (2) 

 
Where H

min
 = Min Building Elevation

 
 
3.3. Implementing the Neural Network  
 
Figure 3 shows a 2D plot for the two region attributes, the 
total number of regions is 2081 regions, 623 regions are roof 
regions and the rest are non-roof regions. A simple two-
layered Neural Network is used to discriminate between roof 
and non-roof regions, Figure 4.  The activation function for 
all nodes is the Sigmoid Function, (Principe et. al., 1999).  
 

 
Figure 3. Scatter Diagram of Border Linearity (BL) vs. 

Region Height (RH) 
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Figure 4. The Implemented Two-layered Neural Network 
 

To study the performance of the Neural Network a variety of 
training data sets were used with different sizes. The training 
data set sizes used are 20, 50, 100, 200, and 400 samples. For 
each training data set size the experiment was performed 10 
times using a non-overlapping randomly selected training 
data set. The average detection rate and false alarm rate for 
each training data set size is recorded and shown in Figures 
5-and b. 
 

 
Figur5-a. The Detection Rate vs. Training Data Set Size 

 

 
Figure 5-b. The False Alarm Rate vs. Training Data Set Size 

 



Increasing the training data set size doesn’t affect the 
detection rate significantly, we can see that the range of the 
detection rate is between 98.2% and 99.2%; we gain only 1% 
in the detection rate when we increase the size of the training 
data set from 20 samples to 400 samples. However 
increasing the size of the training data set has a significant 
effect on the false alarm rate. Increasing the size of the data 
set from 20 samples to 400 samples reduce the false alarm 
rate from 11.5% to 5.5%; we gain 6.0% improvement in the 
false alarm rate by increasing the size of the training data set 
from 20 samples to 400 samples. The results using 100 
training samples are used in the rest of this research.  
 

 
4. CONVERTING REGIONS TO POLYGONS 
 

The 2D modified Hough space discussed in the previous 
section is helpful in extracting the border lines for the roof 
regions. Given all points contributing to a certain cell, a 
nonlinear least squares estimation model is used to adjust the 
line parameters given the cell locations in the parameter 
space as approximate values for the line represented by this 
cell. Lines are then grouped recursively until no more lines 
with similar parameters are left. Short lines are then rejected. 
Figure 6 shows the extracted border lines for two buildings. 
 

 
 

Figure 6.  Extracted Border Lines for 2 Buildings 
 
The next step is to convert the extracted lines to polygons 
using a rule-based system. The rules are designed as complex 
as possible to cover a wide range of polygons. Figure 6 
shows the challenging in converting the extracted border 
lines to polygons. For some polygons they might be 
quadrilaterals, however only three borderlines are detected. 
Some quadrilateral regions might have more than four 
borderlines detected. The mechanism that is developed in 
this research works in three steps. The first step is to find all 
the possible intersections between the borderlines. However 
if the two lines are almost parallel the intersection point is 
not considered. If the distance between the end point of the 
line and the intersection point is large the intersection point is 
rejected. The next step is to generate a number of polygons 
from all the recorded intersections. Each combination of four 
or three intersection points is considered to be a polygon 
hypothesis.  Some hypotheses are ignored if the difference in 
area between the region and the hypothesized polygon is 
more than 50%. If the internal angles between the intersected 

lines is out of the range [30o-150o] the hypothesis is 
discarded. The third step is to find the optimal polygon that 
represents the region borders. The best polygon that 
represents the region is chosen from the remaining polygons. 
A template matching technique is used to find the best 

polygon that represents the region. Figure 7 shows the 
extracted polygons for two buildings. 
 

 
 

Figure 7.  Extracted Image Polygons for 2 Buildings 
 
 

5. 3D POLYGON EXTRACTION 
 

In this section the process of finding the correspondence 
polygons among all images and matching them is discussed.  
 
5.1. Polygon Correspondence 
 
After finding the building roof polygons in the images, we 
start finding the correspondence polygons. We designed a 
new technique to find correspondence polygons based on 
their geometrical properties. All possible polygon 
correspondence combinations are considered and for each 
combination the vertices of the correspondent polygons are 
matched across all available views, since we have more than 
one pair of images we can calculate the residuals of the 
matched 3D polygon vertices. The matching residuals are 
summed for each combination set, and the combination set 
with the minimum residual is selected as the best 
combination set. Figure 8 describes the process of finding the 
correspondence polygons in four images. In order to 
minimize the running time, some subsets are rejected before 
the matching process using the epipolar geometry and the 
minimum and maximum building heights. 
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Figure 8. The Multi Image Polygon Matching Process 
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5.2.  3D Polygon Coordinates Refinement 

 
After finding the corresponding polygons from the previous 
step, the 3D coordinates for each roof polygon is computed, 
however the building topology is not yet reconstructed. We 
implement a geometrically constrained least squares model 
in order to refine the locations of the polygon vertices and to 
reconstruct the building topology. The input observations are 
the image coordinates of the polygon vertices, the unknowns 
are the object space coordinates for the 3D polygons, 
however we have to take into consideration the following 
constraints: 
1-The polygon vertices should be in the same plane. 
2-Symmetric polygons should be constrained to have 
symmetric parameters.  
3-Points that are almost in a horizontal plane are constrained 
to have the same elevation. 
4-Nearby vertices should be grouped into one vertex. 
 
The aim of the refining step is to convert groups of 
neighboring vertices into one vertex, adjust the elevations of 
horizontal points, and reconstruct the correct relativity 
relation between adjacent facets. 
 
 

6. RESULTS 
 
In the following section the results of extracting the 3D 
building wire-frames are shown. Figure 9 shows a sample of 
17 buildings extracted using the presented algorithm. The 
results show the completeness and accuracy of the 3D roofs 
that can be extracted using this system.  
 
In order to evaluate the accuracy of the extracted buildings, 
the 3D coordinates of 6 building vertices were extracted 
manually and compared with the automatically extracted 
ones. The RMS error for the vertices in all six buildings is 
0.25m. Table 1 shows the detailed analysis for the evaluated 
6 buildings. Seventy-eight vertices were detected out of 80 in 
the 6 buildings.  
 

Building (X,Y) RMS  (Z) RMS  Missing Vertices 
BLD 1 0.22 0.12 0 
BLD 2 0.32 0.24 1 
BLD 3 0.22 0.37 1 
BLD 4 0.42 0.24 0 
BLD 5 0.22 0.25 0 
BLD 6 0.22 0.27 0 

 
Table 1. Results for Extracting Six Buildings Roofs, RMS in 

meters 
 
 

7. CONCLUSIONS  
 
The results presented in this paper show the great 
improvement that this algorithm adds to the current building 
extraction techniques. The algorithm succeeds in extracting a 
wide range of urban building. The tested data set includes 
simple buildings with one rectangular roof, gabled roof 
buildings, multi store buildings with large relief, and a 
variety of complex buildings.  
 
The RMS error is about 0.25m. The false regions that were 
wrongly classified in the Neural Network were automatically 
eliminated since they didn’t have any correspondence. The 

overall detection rate for both the Neural Network 
classification and the 3D reconstruction is 97.5%. The 
algorithm succeeded in matching the image polygons 
simultaneously across more than two images, this reduced 
the false alarm matches and increased the result accuracy. 
The method can be implemented using any number of 
images. More work is necessary and will be carried out in the 
future to improve the building delineations even further. 

 
 

 

 

 

 
Figure 9.  The Wire-Frames of a Sample of the Extracted 

Buildings 
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