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ABSTRACT  
Millions of dollars are wagered on the outcome of one day international (ODI) cricket matches, with a 
large percentage of bets occurring after the game has commenced. Using match information gathered 
from all 2200 ODI matches played prior to January 2005, a range of variables that could independently 
explain statistically significant proportions of variation associated with the predicted run totals and match 
outcomes were created. Such variables include home ground advantage, past performances, match 
experience, performance at the specific venue, performance against the specific opposition, experience at 
the specific venue and current form. Using a multiple linear regression model, prediction variables were 
numerically weighted according to statistical significance and used to predict the match outcome. With 
the use of the Duckworth-Lewis method to determine resources remaining, at the end of each completed 
over, the predicted run total of the batting team could be updated to provide a more accurate prediction of 
the match outcome. By applying this prediction approach to a holdout sample of matches, the efficiency 
of the “in the run” wagering market could be assessed. Preliminary results suggest that the market is 
prone to overreact to events occurring throughout the course of the match, thus creating brief 
inefficiencies in the wagering market. 
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INTRODUCTION 
 
The first official one day international (ODI) match 
was played in 1971 between Australia and England 
at the Melbourne Cricket Ground. Whilst ODI 
cricket has developed over the past 35 years (2300 
matches), the general principles have remained the 
same. Both sides bat once for a limited time 
(maximum 50 overs) with the aim in the first innings 
to score as many runs as possible, and in the second 

innings to score more than the target set in the first 
innings. The high scoring nature of ODI matches 
ensures that team totals and differences between 
scores can be well approximated by a normal 
distribution. As shown by (Bailey, 2005), this 
facilitates the use of multiple linear regression to 
predict a margin of victory (MOV) prior to the 
commencement of the match. Using a similar 
approach, a multiple linear regression is also used to 
predict   the   number   of   runs  scored  by  the team  
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  Table 1. Percentage of resources available for overs remaining and wickets lost. 
Wickets lost Overs 

remaining 0 1 2 3 4 5 6 7 8 9 
50 100.0 93.4 85.1 74.9 62.7 49.0 34.9 22.0 11.9 4.7 
40 89.3 84.2 77.8 69.6 59.5 47.6 34.6 22.0 11.9 4.7 
30 75.1 71.8 67.3 61.6 54.1 44.7 33.6 21.8 11.9 4.7 
25 66.5 63.9 60.5 56.0 50 42.2 32.6 21.6 11.9 4.7 
20 56.6 54.8 52.4 49.1 44.6 38.6 30.8 21.2 11.9 4.7 
15 45.2 44.1 42.6 40.5 37.6 33.5 27.8 20.2 11.8 4.7 
10 32.1 31.6 30.8 29.8 28.3 26.1 22.8 17.9 11.4 4.7 
5 17.2 17.0 16.8 16.5 16.1 15.4 14.3 12.5 9.4 4.6 
1 3.6 3.6 3.6 3.6 3.6 3.5 3.5 3.4 3.2 2.5 

 
batting first. With the use of (Duckworth and Lewis, 
1999) approach of converting resources available 
into runs, as each over is bowled, the current total 
and  the  predicted total for  the  remaining overs are 
combined to produce an updated predicted total for 
the batting team. The difference between the pre-
match predicted total and the updated predicted total 
provides a measure of how the batting team is 
performing through the course of their inning. This 
difference is then used to provide an updated 
prediction for the MOV. 
 
METHODS 
 
In ODI cricket the aim of the team batting first is to 
score as many runs as possible in the allotted time 
(usually 50 six ball overs). If the first team scores 
more runs than the second team, the MOV can 
readily be expressed in terms of runs difference 
between the two teams. The aim of the side batting 
second is to score more runs than the first team. 
Because the game is deemed to be finished if the 
team batting second achieves their target, the MOV 
is usually expressed in terms of resources (wickets 
and balls) remaining, rather than runs. In order to 
develop a predictive process for match outcomes, a 
consistent measure of the MOV is required.  This 
can be achieved by following the work of 
Duckworth and Lewis (1999) to convert resources 
available into runs. 

Frank Duckworth and Tony Lewis developed 
a now well-known system for resetting targets in 
ODI matches that were shortened due to rain. 
Although this system has undergone several 
refinements in recent years, the general way in 
which the Duckworth-Lewis (D-L) method is 
calculated has not changed, with wickets and balls 
remaining expressed as resources available and 
converted to runs. Table 1 shows an abbreviated 
version of the remained resources (R) for wickets 
lost and balls remaining. A complete tables and 
detailed   account  of  the  derivation  of  this table is  

given by Duckworth and Lewis (1999). 
Whilst the D-L approach was specifically 

designed to improve ‘fairness’ in interrupted one-
day matches,  (de Silva et al., 2001) found that when 
used to quantify the MOV, the D-L approach 
sometimes overestimated the available resources 
when the second team to bat won easily, and 
underestimated the available resources when the 
second team to bat only just won.  By minimizing 
the Cramer-von Mises statistic for the differences 
between actual and predicted runs, de Silva derived 
a formula to reduce bias by modifying the remaining 
resources. This is given by 

 
Rmod = (1.183 – 0.006R)R                        (1) 

 
where Rmod = modified resources and R = 
resources given using D-L (see Table 1). 

  
When an ODI match is won by the team 

batting first, the MOV is readily determined by the 
difference in runs scored. When the match is won by 
the team batting second, the MOV can be found by 
multiplying the first innings run total by the 
corresponding modified percentage of resources 
remaining as given by (1). By referencing the MOV 
so that a ‘home’ win has a positive value and an 
‘away’ win has a negative value, it can be seen from 
Figure 1, that the underlying distribution for MOV 
can be well approximated by a Normal distribution.  

 
Statistical analysis 
All analysis was performed using SAS version 8.2 
(SAS Institute Inc., Cary, NC, USA). Multiple 
linear regression models were constructed using a 
stepwise selection procedure and validated a 
backward elimination procedure. To increase the 
robustness of the prediction models a reduced level 
of statistical significance was incorporated with all 
variables achieving a level of significance below p = 
0.005. Comparisons between continuously normally 
distributed variables were made using student t-tests. 
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Figure 1. Histogram of MOV referenced against the home team in 2200 matches played prior to Jan 2005. 
 
Prediction models for MOV 
Using match and player information from 1800 
ODIs   played   prior   to   Jan   2002,  (Bailey, 2005) 
combined measures of recent form, experience, 
overall quality and home ground advantage (HA), to 
produce a prediction model that was successfully 
used to identify inefficiencies the betting market for 
ODI matches. Using 2200 matches played prior to 
January 2005 an updated version of this model was 
created and compared to the original. 

Prediction variables of experience, quality and 
form were derived by developing separate measures 
for both teams and then subtracting the away team 
values from the home team values. This effectively 
references the final result in term of the home team.   
Indicator variables were created to identify matches 
played at a neutral venue and matches where the two 
competing teams were clearly from different class 
structures (established nation versus developing 
nation). 

From Table 2 it can be seen that the results of 
ODI matches are becoming more predictable, with 
the updated model explaining 3.5% more of the 

variation in ODI outcomes (R-square: 23.4% vs. 
19.6% p < 0.0001).  
Because the MOV in the regression model is 
nominally structured in favour of the home team, the 
intercept term in the regression equation reflects 
HA. It can be seen from Table 2 that HA is 
equivalent to about 14 runs and is highly statistically 
significant (p < 0.0001).  Because one third of all 
ODI have been played at neutral venues, a binomial 
indicator variable was created to negate the HA for 
these games. As the regression process requires a 
‘Home’ and ‘Away’ team, when playing at neutral 
venue, the team with the most experience at the 
venue was assigned to be the ‘Home’ team. If all 
matches played at neutral venues were devoid of HA 
then the binomial variable for a neutral venue would 
be the exact negative of the intercept term. This was 
not the quite the case, with the neutral variable 
equivalent to about eight runs, suggesting a HA in 
neutral matches equivalent to about six runs. This 
six run difference could be thought of as a surrogate 
marker for the difference in familiarity between the 
competing teams.  

 
         Table 2. Multivariate models for MOV constructed with 1800 & 2200 ODI matches. 

Bailey model (n = 1800) Updated Model (n = 2200)  
Variable Estimate P-value Partial R2 Estimate P-value Partial R2 
Intercept / HA 13.4 ± 1.9 <.0001  13.9 ± 1.8 <.0001  
Average Ever .6 ± .1 <.0001 17.3% .6 ± .06 <.0001 20.7% 
Class -29.6 ± 6.7 <.0001 1.2% -25.1 ± 5.9 <.0001 1.0% 
Experience .2 ± .1 .002 0.4% .2 ± .07 .0003 0.4% 
Ave. last 10 .1 ± .04 .003 0.4% .2 ± .04 <.0001 0.7% 
Neutral Venue -8.6 ± 3.2 .007 0.3% -8.2 ± 3.2 .005 0.3% 
Total R2 19.6%  23.1% 
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Figure 2. Histogram of first inning scores in 2200 matches played prior to Jan 2005. 

 
The difference in quality, as measured by the 

difference in averages between the two teams for all 
past matches, was by far the strongest predictor, 
explaining 20.7% of the variation in the updated 
model. The best measure of current form was the 
difference in averages for the past 10 matches, 
whilst the difference in overall experience (games 
played by the country) between the home and away 
team was also statistically significant. Whilst no 
statistically significant difference could be found in 
parameter estimates, the difference in class (when a 
developing cricket nation played host to an 
established cricket nation) declined (29.6 runs vs. 
25.1 runs) as developing nations gain more 
experience. Similarly, the effect of HA rose slightly 
(13.4 runs vs. 13.9 runs) with more data, while the 
effect of a neutral venue was slightly lower (8.6 runs 
vs. 8.2 runs). Not surprisingly, all variables in the 
model achieved a higher level of statistical 
significant when additional data were used.  
 
Prediction model for team totals 
Figure 2  it  shows  that  the total of  the team batting  
first can be well approximated by a normal 
distribution (mean = 229.7, SD = ± 1.2). When the 
score of the team batting first was shortened due to 
rain, (about 13% of matches), the DL method was 

once again incorporated to determine a projected 
total. 

Using past averages and exponential 
smoothing, prediction variables relating to past 
performance were created. Using a multiple linear 
regression, a six variable model was constructed. 
The resulting parameter values are given in Table 3.  

Interestingly, when using a stepwise selection 
procedure, the strongest predictor of the total scored 
by the team batting first was in fact the average of 
the past MOV between the two teams.  The next 
strongest predictors in the model were derived from 
the past first innings scores achieved by the batting 
team as well as scores conceded by the bowling 
team. HA was the next predictor of importance, with 
a team playing in it home country scoring an 
additional 15 runs. A second surrogate marker for 
the quality of the batting team was given by the 
average past MOV for the batting team. The final 
variable that was found to be highly statistically 
significant (p = 0.0004) was derived from all past 
first innings played at the venue. This helped 
account for pitch conditions and venue size.  

Whilst over 23% of the variation in MOV 
could be explained by the multivariate model, the 
total of the team batting first was not as predictable, 
with an R-square statistic of 19.1%. 

           
          Table 3. Multivariate model predicting the total of the team batting first. 

Variable Estimate P-value Partial R2 
Ave. MOV against opposition .13 ± .04 <.0001 9.7% 
Exp. Smooth past totals 1st inning batting  team .25 ± .04 <.0001 3.6% 
Ave. total conceded in 1st inning by bowling team .53 ± .06 <.0001 2.6% 
Home Country 15.3 ± 2.3 <.0001 1.6% 
Ave. MOV ever .31 ± .05 <.0001 1.1% 
Exp. Smooth past totals 1st inning at venue .38 ± .05 .0004 .5% 
Total R2 19.1 % 
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                                  Figure 3. AAE for difference between predicted and actual total. 

Using a holdout sample of 100 completed 
matches played in the year 2005, the regression 
model successfully predicted the winning team 71% 
of the time and had an Absolute Average Error 
(AAE) between the predicted and actual margin of 
55.8 ± 4.1 runs. These results compare favourably 
against the original prediction model of (Bailey, 
2005), who accurately identified the winning team 
69.6% of the time, and had an AAE of 54.6 ± 0.9 
runs for a sample of 336 matches played between 
2002 and 2004. 

Using the same holdout sample of 100 
matches, the AAE for the difference between the 
predicted and actual totals of the team batting first 
was 42.5 ± 3.2 runs. By referencing the MOV in 
terms of the team batting first rather than the home 
team, a predicted total for the team batting second 
can be given by  

 
Predicted Total2 = (Predicted Total1) +     

(Predicted MOVordered)                       (2) 
 
From the chosen holdout sample of 100 

matches, the AAE for the difference between the 
predicted and actual totals of the team batting 
second was 47.1 ± 4.0 runs.  

 
RESULTS 
 
With the use of the D-L method to convert available 
resources into runs, at the completion of each over, 
an updated total for the team batting first is 
calculated by combining the actual total with the 
predicted total for the remainder of the innings. 
 
Updated Total = (existing score) + (projected total 
for remaining resources)                 (3) 

 
Using complete over by over information for 

the 100 match holdout sample, it can be seen from 

Figure 3 that the accuracy with which the total of the 
batting team can be predicted, progressively 
improves throughout the course of the innings, with 
first innings totals significantly more accurate that 
those of the second innings. 

By subtracting the pre-match predicted total 
from the updated prediction of the total, a 
performance indicator can be derived for whether 
each batting team is performing above or below 
expectation. 

 
  Performance indicator = (updated total) – 

(pre-match predicted total)                    (4) 
 
With the use the performance indicator, an 

updated prediction for the MOV can then be readily 
obtained 

 
Updated MOV = (Pre-match MOV) + 

(Performance indicators)                      (5) 
 
From Figure 4 it can be seen that during the 

course of the first innings, the AAE for the 
difference between the predicted and actual MOV 
reduces by about 10 runs. In the second innings the 
reduction in AAE is much greater as the game draws 
nearer to its conclusion.  

As shown by (Bailey, 2005), by dividing the 
predicted MOV by its standard error and comparing 
with a standard Normal distribution, the approximate 
probability that either side will win the match can be 
readily calculated. 

Example: On December 7 2005, Australia 
played New Zealand in a day/night match at 
Westpac Stadium in Wellington. After winning the 
toss and electing to bat Australia proceeded to score 
a very respectable total of 322. The betting exchange 
Betfair fielded a betting   market   for   this   match, 
with   just   over $1,000,000 AUD of matched bets 
occurring before the start of the game. As betting  on  
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                                  Figure 4. AAE for the difference between the predicted and actual MOV. 
 
this match remains open for the duration of the  
game, by the completion of the Australian innings, 
just over $4,000,000  AUD of  matched  bets had 
been placed. Figure 5 shows both the volume of bets 
placed and the price matched. From Figure 5 it can 
be seen that the opening price for Australia was 
about $1.38, with the price dropping to $1.30 after 
Australia won the toss. After losing 3 early wickets, 
the price drifted out to $1.70, but as Australia 
rallied, the price continued to drop and by the 
completion on the 50th over, the best price available 
for Australia to win was $1.08. 

Using prediction models for the team total and 
MOV, the predicted probability for Australia to win 
was  calculated  both  before  and  during  the match,  
and compared with the market price offered by   
Betfair (market probabilities included 5% for 
commission ). Where the predicted probability can 
be seen to exceed the market probability, the ‘in 
play’ market can be thought to be inefficient. From 
Figure  6  it  can  be  seen  that  while  Australia  was  

batting, the predicted probability for Australia to win 
was consistently below the market probability, with 
only one inefficiency occurring throughout the 
course of the Australian innings. 
Chasing 323 runs to win the match, New Zealand 
started slowly.  With some big hitting towards the 
end of the innings, the black caps clawed their way 
into contention and started the final over as 
favourites, only requiring six runs to win. 
Unfortunately, two wickets falling in the final over 
gave victory to Australia by 2 runs. Figure 7 shows 
that several inefficiencies were present in the betting 
market with the predicted probability of success 
often exceeding the market price. By the completion 
of the 100th over, more than $9,000,000 AUD had 
been wagered on the outcome of the match. 
 
DISCUSSION 
 
In July 2005 the International Cricket Council (ICC) 
announced a new set of rules to be applicable to ODI 

  
 

 
Figure 5. Betfair volume and price for Australia vs. New Zealand ODI 2302 (pre match until end over 50). 
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Figure 6. Predicted probability and market price for Australia to win against New 
Zealand ODI 2302 (pre match until end over 50). 

 
matches. An increase in fielding restrictions and the 
introduction of a substitute player (super-sub), 
significantly increased the total achieved by the team 
batting first by more than 20 runs. (252.7 ± 8.0 vs. 
229.7 ± 1.2 p = 0.002). As these changes occurred 
within the holdout sample of the data used, it is 
unsure how these modifications would impact upon 
the prediction process. 

Whilst the price and volume of bets traded are  
available through Betfair (see Figure 5), this 
information is not time coded by over, ensuring that 
if the efficiency of the market is to be accurately 
determined, information must be gathered manually 
at the completion of each over. This would 
undoubtedly prove time consuming should a 
definitive appraisal of the market inefficiency be 
required. 

In Australia, federal laws prevent Australian 
citizens from placing bets over the internet after a 
sporting event has commenced. Paradoxically, 
Australian citizen can place bets ‘in the run’ 
provided the bets are placed over the phone. This 
inconvenience causes a greater delay between 
observing an inefficient price and actually placing a 
bet. 

 
CONCLUSIONS 
 
Multiple linear regression provides a useful way to 
assign the winning probabilities to the competing 
teams in ODI matches. With the use of D-L 
approach, this process can be readily modified to 
produce ‘in the run’ predictions. Whilst a definitive 
analysis of the efficiency of the betting market is yet 
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Figure 7. Predicted probability and market price for Australia to win against New Zealand 
ODI 2302 while New Zealand batted (overs 51-100). 
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to be conducted, preliminary evidence suggest 
punters may be prone to over or under estimate the 
true probability of the competing teams as the game 
progresses. 
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KEY POINTS 
 
• In excess of 80% of monies wagered on the 

outcome of ODI matches are placed after the 
match has commenced. 

• Using all past data from ODI matches, multiple 
linear regression models are constructed to 
predict team totals and margin of victory. 

• By combining match information with 
prediction models, an ‘in the run’ prediction 
process is created for ODI matches.  
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