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e INntroduction

Partially balance incomplete block (PBIB) design is based on as-
sociation scheme. There are many kinds of association schemes
and the structure of association scheme itself is an important ob-
ject in combinatorics as well. Antipodal distance-regular graph
leads a kind of association schemes, which is equivalent to a
kind of association schemes, we still call it antipodal association
scheme. It has some algebraic properties, the paper will discuss
them. Based on the scheme, a lot of PBIB designs with some
special properties can be constructed.



e Association Scheme

Let X be a finite set. An association scheme with m classes is
a pair (X, R) such that

(i) R= Rg,R1, -, Rm is a partition of X x X,

(i) R={(z,x)|x € X},

(i) R; = Rl (i.e.,(z,y) € R; = (y,z) € R;) for all i € {0,1,---,m};
(iv) there are numbers p;k (the intersection numbers of the
scheme) such that for any pair (z,y) € R; the number of z € X
with (z,z) € R; and (z,y) € Ry, is a constant and it equals pé-k.

e Antipodal Graph

antipodal graph [': '; is an equivalence relation. where d is the
diameter of the graph.



e Antipodal Association Schemes We begin with C5,,, a cir-

cle with 2m vertices on it, the simplest antipodal association

scheme. The parameters of the association scheme are:
ny=mno=-="Nyy_1 = 2,nm = 1.

the intersection matrices are defined by:

1 =74+ k
| 1 ifq =17 — k|
ply, = m=i+;j+k
2 7+k=1=m
\O otherwsise




x Example Let v = 10,(m = 5), we have a 5-associate-class

association scheme with parameters:

(1)

= no =n3 =ng =2,n5 = 1,
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The association scheme table :

1st asso. | 2nd asso. | 3rd asso. | 4th asso. | 5th asso.
1 2 10 39 4 8 57 6
2 13 4 10 59 6 8 4
3 15 6 10 8
4 35 26 17 8 10 )
5 4 6 37 2 8 19 10
6 57 4 8 39 2 10 1
7 6 8 59 4 10 13 2
8 6 10 15 3
) 8 10 17 26 35 4
10 109 2 8 37 4 6 5




x Example (Cont.) The association scheme table of Cig can be

cut by half:

— 1st asso. | 2nd asso. | 3rd asso. | 4th asso. | 5th asso.

1 2 10 39 4 8 57 6)

2 13 4 10 509 6 8 7

3 2 4 15 6 10 79 8

4 35 26 17 8 10 9

5 4 6 37 2 8 19 10
5th asso. | 4th asso. | 3rd asso. | 2nd asso. | 1st asso. —

Theorem Let there be an m-class antipodal association scheme,
if the symbols x and y are mth associates, then for each i (i =

1727"'7m)1

m

Pilm—i) = i = Mm—i




Algebraic Properties of Antipodal Association Schemes
e About the intersection matrices

T heorem Let there be an m-class antipodal association scheme,

P, P>, ---, Py are intersection matrices, then
pi. — pm_i pi. — m—1
, Jk (m—j)k" Tk j(m—k)’
(] — 1727"'7m_ 1)

Corollary Let there be an m-class antipodal association scheme
with intersection matrices Py, P>, ---, Py, thenfor:=1,2,---m—
1,
(i) If m=2t+ 1,
Prn—i = By (m-1)F2,(m-2) "+ Et,t+1PiF{,(m—1)F§,(m—2) e Ft,,t—i—l'
(ii) if m = 2t,

Pn—i = E1 (m-1)F2,(m—2) "+ EtytPiFi,(m—l)Fé,(m—m P B
IS unchanged.



e Adjacency Matrices of Association Schemes

x For an m-class association scheme on v vertices, the rela-
tions R; are described by v x v (0, 1)-adjacency matrices A;(i =
1,2,---,m).

- . 1 if (:I:,y) € R;,
(Ai)zy = { 0, otherwise.

x T he properties of Aj;:
m m
(i) > Ay =J, (ii)Ag =1, (iii)A; = AL, (iv)4;A; = kgopfjAk-

1=0

x A;'s are linearly independent and they form a base of a vector
space. ( Bailey, 2004; Godsil, 1993; Bannai and Ito, 1984)
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e For antipodal association scheme, A; have more properties:

. — 1 if (:an) S Rm—z’v
(Am—i)ay = { 0, otherwise.

* (x,y) € R,,,_; IS equivalent to
(z,0(y)) € Ry,

so the rows in A,,_; are transformed from the rows in A,.

x T he map o. x — m-th asso. of x

x [ he mapping defines a permutation:
o = (21,0(21))(22,0(22)) (22,0 (2,,2))



Theorem Let there be an m-class antipodal association scheme
on a finite set {1,2,---,v}, A1, Ao, -+, Ay are m v x v adjacency
matrices, then
Am—i — PA,L', (’L — 1,2, T ,m),

where P is a primary transformation matrix formed by the per-
mutation:

(21,0(21))(@2,0(22)) -+ - (242, 0 (2 12)):
In which o(z;) is just the mth associate of z;,(j = 1,2,---,v).

x [ he primary transformation matrix P is defined by o, it is just
Am, SO:

Theorem Let there be an m-class antipodal association scheme,
the adjacency matrices are Aq, Ao, -, Am, then for each 2, 0 <
1 < m,

Ap—i = AmA,;
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Corollary For an m-class antipodal association scheme with ad-
jacency matrices Aq, Ao, -, Am,

N ifm=2t4+1,J=UT4+ An)(Ag+ A1 + -+ Ap).
(iifm=2t, =T+ An)(Ao+ A1+ -+ A4_1) + As.

Theorem Let there be an m-class association scheme with ad-
jacency matrices Ag, A1, Ao, -+, Am, the association scheme is
antipodal if and only if AmA;, = A,,,—;.

Corollary If an m-class association scheme is antipodal with adja-
cency matrices A1, Ao,---, Am, then A; and A,,_; have the same
eigenvalues.
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This theorem generalized the method to check whether an as-
sociation scheme derived is antipodal by its adjacency matrices
even though the graph is not embeddable onto sphere.
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Example: The Association Scheme Derived from Torus with 16
points. the parameters of the association scheme.

v=16,n1 =4,np =6,n3 =4,n4 = 1. (2)
0300 2020
[ 3030 | o 0 1
PP=1l9g301 2T 2020
0010 0100
0 301 00 40
3030 06 00
FBs=1lo9g300 "™ 42000
1 000 0000
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The adjacency matrices are too large, we ignore them, but they
satisfy:

Az = AyAyq,

Ar = A4 A>.
By the theorem we have , we can see that this association scheme
IS antipodal.

By the way, it can be shown,
J=Ag+ A1 +A>+ A3+ A3 =1+ Ay)(I + A1) + Ao
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The eigenvalues of A, are:
(-1,-1,-1,-1,-1,-1,—-1,—-1,1,1,1,1,1,1,1,1)/,
the eigenvalues of A, are:
(-4,-2,-2,-2,-2,0,0,0,0,0,0,2,2,2,2,4),
by the Corollary ?7? the eigenvalues of A3 are also
(-4,-2,-2,—-2,-2,0,0,0,0,0,0,2,2,2,2,4).
The eigenvalues of A, are:
(-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,6,6)".
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Because it is antipodal, we need only to give half of the associ-
ation scheme table, it is:

The association scheme derived from torus

— 1st asso. 2nd asso. 3rd asso. | 4th asso.
1 2459 |[368101213 |7 11 14 16 15
2 13610 457911 14 |8 12 13 15 16
3 24711 11681012 15| 59 14 16 13
4 13812 | 25791116 |6 10 13 15 14
5 16813 | 247914 16 |3 10 12 15 11
6 25714 11381013 15| 49 11 16 12
7 36815 245111416 |1 10 12 13 9
8 45716 1136121315 2911 14 10
4th asso. | 3rd asso. 2nd asso. 1st asso. —
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Besides the property of P-polynomial, the antipodal association
schemes have the property that among Aq,:--, Am, the last ma-
trix Ay, is a permutation matrix such that half of A;'s can be
expressed by the other half under the given permutation A,,.

By the special properties of antipodal association schemes, we
can construct many PBIB designs.
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For the scheme from torus, we have some PBIB designs:
v=b=16, r=k=5, A\ =1, Mo =2, A3 =0, A\g =0.

The plan is:
12459 516813 91101213 157 11 14 16
213610 625714 10291114 168 12 13 15
324711 736815 11 3101215 1359 14 16
413812 845716 124911 16 14 6 10 13 15
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Another: v =16, b=8, r=4, k=8, A\ =0, \o =4, \3 =0, \g = 4.

The plan is:
136810 12 13 15 5247914 16 11
2457911 14 16 6138101315 12
31681012 13 15 724511 14 16 9
4257911 14 16 813612131510

and so on.
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THANK YOU
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