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1. INTRODUCTION

The experiment considered is a one-way analy-
sis with k£ treatments and a control.

){ij:“i—l_eij?i:O?l?"'?k?j:17"'7n’l:

where ¢;; “ N(0,02) ,

e 1. the control mean

® [i1,...,ur. the treatment means.
® lpest = MaXj<;<k ;i the best treatment
mean.

¢ 52 =Yk o S, (Yi; — ¥i)?/v to estimate
02, vS?%/0% ~ x2 and v = Zf:o n;,—k—1 > 0.
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How to construct lower confidence bounds for
Hpest — MO?

e With prior knowledge that treatments are
at least as good as the control. Q2 = {pu
e RFTL o <y, i =1,...,k}, which is
called simple tree ordering. Hp : pg = pu1 =
T = WL VS Hi = — Hp.

e without any prior knowledge of the effec-
tiveness of treatments. Hj : p; — pg <

O (¢4 =1,...,k) vs H} : at least one p; —
po > 0.

Interval estimation provides a visual perspec-
tive unmatched by a point estimate or a test
statistic.



Literature Survey

e Testing Hg vs Hq
— Bartholomew (1959) Biometrika

— Mukerjee, Robertson & Wright (1987)
JASA

— Tang and Lin (1997) JASA

e Testing Hg vs Hq with Interval Estimation

Marcus (1978) developed one-sided simul-
taneous lower confidence bounds (SLCB)
for Zéﬂzo n;c; i, where E,Ifzo n;c; = 0 and
co<c¢ (i=1,...,k) in the case of known
variance.

— Dunnett (1955) JASA



— Marcus (1978), Communication Stats

(A)

— Marcus and Talpetz (1992) Communi-
cation Stats (A)

— Berk & Marcus (1996) JASA

e Testing Hy vs Hj
— Dunnett (1955) JASA
For treatments versus control problems, the

size of the lower bound of upest — o May be of
importance.



The Idea

e When the null hypothesis is rejected in favour
of the alternative hypothesis, there exists
at least one treatment better than the con-
trol. Since ppe.st — 1o IS the largest differ-
ence between any treatment mean and the
control mean, the lower confidence bound
for pupest — o 1S bounded below by those for
w; — o (1 =1,...,k) or their non-negative
linear combinations.

e If this optimized lower confidence bound
for ppest — po 1S positive, then pup.q IS Sig-
nificantly larger than pug.

e Suitable test statistics are chosen so that
the rejection of the null hypothesis is equiv-
alent to the positiveness of the lower con-
fidence bound for pp.q; — Ho-



2. TREATMENTS AT LEAST AS GOOD
AS A CONTROL



2.1 The Likelihood Ratio Test

Ho: po = p1 = -+ = pg VS H3 = 2 — Ho.

where Q = {pue RF L1 g < p;i=1,...,k}
e MLE under Hy: i=Y =Yk _ n¥;/>k o n;.

e MLE under Q2: p* = (g, 13- 1L).

Relabel the treatments so that Y7 < Y5 <

. < Y. Let !l be the smallest non-negative
integer such that 4; = Zi—o n;Y;/ Sl _gn; <
Yl—|—1, then ,LLO = A;, and Mz = max(A4,Y;),i =
1,. chfYO>A,~C 1>Yk,thenu—ufor
1= O 1,...,k.

e The LRT:
k

k
Sor = Y ni(pi—)2/ (Y ni(Vi—ui)? /v+52).
i=0

1=0



2.2 The Multiple Contrast Test Statistic T

= max Z nzczY/S(Z n;c 2)1 /2

C:{C:(Co,cl,...,ck)Z E nici =0, co<¢, 1=1,...

1=0

T2 =" ni(uf — [@)?/S°.
i=0

(1)

(2)



LRT So1 and The Multiple Contrast Statistic T

e The LRT Sp1 can’t be used to construct
CI but statistic T' can.

k k k
Pp,{ Z n;Cil; > Z niciﬁ—tk,yvaS(Z TLZ'CZ-Q)l/Q,VC € C} =1—qa.
1=0 1=0 =0
(3)

e The statistic T2 is asymptotically equiva-
lent to Sp1.

e T he null distribution of T under Hg is given

by
k+1 t2
PIT >t =) P(j,k+1,wW)P[Fj_1, > 1 @
j=2
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2.3 The Lower Confidence Bound for pp.s: — o

o K = {C . C & C7 Zf:onici,u’i S MHbest — M())v IS Q}

e The lower confidence bound for ppest — o is given
by

k k
L(ppest — o) = max nic;Y; — tk,y,as(z nicz'Q)l/Q-
1=0

cek
1=0
(5)
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Optimal Solution

e Theorem 2.1 When p € €2, we have that T' > ¢,
if and only if L(pupest — po) > 0.

e Theorem 2.2 Suppose that T' > t;,, and Y1 < Y2 <
...<Y,. The vector ¢ € K is an optimal solution to
(5) if and only if there exist non-negative integers
pandq, [ <p<q<k, suchthat ¥V, < i<,

Ei — _No_pl_l_b_l(lu“:_?bp)7 i:Oa"'apa
Ei — Nq_].gl_l_b_l(Y;_Y—qk})a izQ7°'°7k7

and
max { Nop(us — Yop), Nt (Ve — ¥o) } - <
b < min {No(p+1)(u;§+1 — You+1)), Neg—1)s(Yg—1)k — 17(1_1)}, (7)
where

b2 — (t%,u,aSQ o S(%p T S(?]{:)/(No_pl + Nq_kl)a (8)

a_nd Nab — Z?Za Ty S_/ab - Z?:a niﬁ/N@b’ Sc%b - Zi'):a ni(/l;k_
Ya)?. When ¢ = p+41, the upper bound for b in (7)
is replaced by (Yo — ¥o,)/(Ng,  + N_.b).
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2.4 Iterative Algorithm I

(0) Set i = 0, po = max{0 < j < k : u; < fi} and
go=min{l <j<k:pl>pj}.

(i) Let Bix1 = max{Nop (15, —Yop.), Nk (Yor— i)} thva, =

1S3, + 52,4+ (No,t + N, D2 41Y2 /8. Ity < thvas
the optimal solution is ¢ with p = p; and q = g¢;.
Otherwise, go to (ii).

(i) If Nop,(u5, — Yop,) > Nyu(Ygr — pi), then set pip1 =
max{j 0 < 3 < piv,uj; < ,u;;z} and qdi+1 = ¢q;. If
NQik()/(]ik _ ,LLZZ) > NOPZ(M;Z o YOpi)v then set p2+1 — Di
and gi+1 =min{j : ¢ <j < k,u} > py}. Otherwise,
set pi+1 = max{j : 0 < j < pi,p; < pp} and gi41 =
min{j : ¢ <j < k,p;>pg}. Seti=1i+1, goto
step (i).

13



3. NO PRIOR KNOWLEDGE OF TREATMENTS

e NoO prior knowledge of the effectiveness of
treatments. Some treatment means may
be larger than the control mean while other
treatment means may be smaller than the
control mean.

e Hy 1 pj —po <0 (4 =1,...,k). vs H] :
at least one p; — upgp >0

14




3.1 The Union-Intersection Method

o Hy: pi—po <0G =1,...,k).Hy = NecceHpe,
where Hj, : Zvlle n;ci(u; — pno) < 0 with
c € C° and

CO:{C:(CC))C]J"')Ck) :Z,]f:onicz-ZO, CiZ
0,i=1,... kY

o Hi = o Hi. where Hj :>F  nici(p; —

po) > 0.

e [ he union-intersection method: if any one
of Hp,. is rejected, then H{, which is true
only if H{,. is true for every c € C° must
also be rejected. Only if each of the hy-
potheses H()C is accepted as true will the
intersection of H(’) be accepted as true.

15



The Multiple Contrast Test Statistic 77

T° = max Z anZY/S(Z n;c 2)1/2 (9)
ECO i—0

o 192 = Zk an(ﬂz /j)Q/SQ-

e How to compute u?

Let » be the largest positive integer such
that B, = (n0?0+2§=r n‘]Yj)/(nO_l_N?“k) >
Y,_q1, then p? =p=Y fori=1,...,r — 1,

=Y, -B-+pfori=0,r,r+1,..., k. If
Yo > Y, then p¢ =p fori=0,1,...,k and
T° = 0.

16



The null hypothesis distribution of T° under
the least favorable configuration pg = pu; =
... = g IS given by

k 42

sup P[T° > t] = P(,k+ 1, Ww)P[Fry1_ i, >
sup PIT2 0= 3 PGk 1w PUkaio 2 g ]

for any ¢ > 0. The statistic 7°2 has the same
distribution as statistic Sqo in Robertson et al.
(1988).

17



3.3 The Lower Confidence Bound for p.s: — uo

e K= {c:ceC” Zz—O niCitl; < Hpest — HO}-

0 2 1/2
L (:ubest lJ“O) - rr;%zs —~ n’lC'L k VO{S(Z n’L )

(10)
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Optimal Solution

e Theorem 3.1
T° > t9 if and only if L°(ppest — po) > O.

e Theorem 3.2
Suppose T° > t2 and Y1 < Y> < ... <Y, Then

c’ € K° is an optimal solution to (10) if and only if
there exists a positive integer g, »r < g < k such that

- 1
Chb — ——,
no
@ = 0,1<i<q-—1 (11)

~0
G;

with
N (Yar — Yg) < b° < Negm1ye(Yg-1ye — Yg-1),  (12)
where b2 = (2 S?—52)/(no"* + N_'). When

k,v,a

q = r, the upper bound for b° in (12) is replaced
by (Yor — Y0)/(ng* + N1

Nq_k;l +b0_1(Y;_Y;]k:)7 1= Q7'°'7k7
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3.4 Iterative Algorithm II

(0) Set i =0 and gqg = .

(i) Let Bz‘—l—l — qu'k(?qq;k o ?Qi)’ tz,%az‘—m —
2 2 —1 —1y11/2
[Sqik—kﬁi_'_l(no —I—Nqik)] / /8. If tg%am <

t%,y,a, the optimal solution is ¢® with ¢ = g;.

Otherwise, go to (ii).

(i) Set g41 = min{j : ¢; < j < k,Y; > Yy}
and set i =74+ 1. Go to (i).
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4. SUBSET OF THE BEST TREATMENT

Let (1),(2),...,(k) denote the (unknown) in-
dices for which (1) < H(2) <... < (k) = Mbest-
Then treatment 7,y is the best treatment as-
sociated with the largest mean pgy = Upest-

Gupta and Huang (1976) proposed the follow-
ing procedure

G = {m:min (Y, =Y, +d'S(n;t+n;71H1/2) > 0}

el ' J

where d' = maxi<i<xdj,_,, and dj_;, . is
the one-sided Dunnett critical value regarding
treatment ¢ as the control. When sample sizes
are the same, d2—1 o does not depend on .

21



We have the following selection procedures:

o Go={m:minjz (c;—ci+di_;, b71S(n; 4n1)?) >
0}.
where ¢ = Nt + 07 (Vi = Yp), i = 1,.. k.

® GOC - {77'72 . mlnj#z (C;FO _ C;O + drli;—l,l/,abo_ls(ni_l +
n; %) > 0}, where ¢ = NP 4+ 07 1(Yi — V), i =
1.k

o Pu(mpy € Go) and Pu(m,y € G) are at least 1 — a.

e The two subset selection procedures G¢ and Gg
are at least as good as Gupta and Huang's (1976)
procedure.
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5. A NUMERICAL EXAMPLE

Consider the data taken from Arman, Toygar, and Abuhi-
jleh (2004). In this experiment, skeletal measurement
increases in total anterior face height (N-Me) of chin-
cup (CQ), chincup plus bite plate (CC+P), and reverse
headgear (RHg) therapies, labelled treatments 1, 2 and
3, respectively, with an untreated control group (C)
were compared.

L }_/o == 2.8,?1 == 2.9,}72 = 4.6,?3 == 4.7,??,0 == 20,’)11 ==
31,n0 =14 and n3 = 14. S = 2.43.

e In this study, N-Me increases in treated groups but
orthodontists do not want a treatment to result in a
very long face, as the final goal of any orthodontic
treatment should be not only to obtain good func-
tion but also to improve facial attractiveness. Here
the “best” treatment would be the treatment that
results in the largest N-Me increase. It is of interest
to know the difference between the “best” treat-
ment mean and the control mean. If it is too large,
a further study of these treatments is required.
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5.1 Treatments at Least as Good as the Control

Ho @ po = p1 = po = p3 Vs Hy T pg < py (1=
1,2,3) with at least one strict inequality has a
value of T'= 3.129 and a p-value of 0.012 with
t375.05 = 2.529. One concludes that ppeg IS
significantly larger than pug. The 100(1 — a)%
lower confidence bound L(upest — o) Can be
computed as follows.

Step 0: = 3.49,pg =1 = 1,90 = 2,1 =
2.0,753775,041 = 0.264 < 13,75,.05; stop.

The 95% lower confidence bound for up.q — 1o
IS L(ppest — o) = 0.35, where b = 26.062 and
the optimal coefficient in (6) is

¢ = (—0.0219,-0.0181,0.0338,0.0376).
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5.2 No Prior Knowledge

The test statistic T° for testing H|, : u; — po <
0 (¢ =1,2,3) versus H} : puj—pg > 0 for some i
has a value of T° = 2.603 and a p-value of
0.019 with t§775,.05 = 2.178, r =2 and

pu® = (2.41,3.49,4.21,4.31). One concludes
that ppest IS significantly larger than ug. The
100(1 — )% lower confidence bound L°(ppest —
(o) can be computed as follows.

Step O: go = r = 2,81 = 1'4’t%75a1 —
0.20 <13 75 o5, StOP.

The 95% lower confidence bound for ppes; — 1o
IS L°(ppest — o) = 0.30, where b° = 18.055 and
the optimal coefficient in (11) is

¢’ = (—0.0500,0.0000,0.0329,0.0385).

25



LLower confidence bound by Dunnett’s pro-
cedure L4 ppesr — po) = 0.12.

L(ttpest — po) = 0.35

LO(ptpest — Ho) = 0.30

T he statistic T provides the sharpest lower
confidence bound for pp.s — o With 79 a
close second for this example.

Go = G = G = {2,3} at the 95% con-
fidence level. For this data set, all three
subset selection procedures indicate that
either treatment 2 or treatment 3 is the
“best” treatment.

The new procedures have the advantage:
the lower confidence bounds L(upest — 10),

LO(ptpest — #0), and L (ppesr — po) apply to
the best treatment.
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6. MEASURES OF PERFORMANCE

e Power Comparisons

The behavior of the power functions of
So1, T, T°, and D are studied. The Monte
Carlo method is used with 10,000 itera-
tions. For simplicity, we consider equal
sample size case with v = 20.

e Expected Lower Confidence Bounds

Sizes of expected lower confidence bounds
at 95% level were computed by generating
10,000 normal sample of equal sample size
one and 02 = 1 with k = 2,4,6 and u; —
puo = 4.0.

27



e Treatments at Least as Good as the Con-
trol A? =n Yk (p;—pm)?/0? is the noncen-
trality parameter and @ = % o u;/(k + 1).

— Case 1, the boundary direction (—k/2,...,
—k/2,k/2+1,...,k/2+ 1) with k/2+ 1
terms of —k/2 and k/2 terms of k/241,
when one half of the treatments are ef-
fective while the remaining treatments
are ineffective.

— Case 2, the center direction (—k,1,...,1),
when all treatments are effective and
their effects are approximately the same.

— Case 3, pairwise direction (-1,0,...,0,1),
when all treatments are effective but
one treatment is more effective than the
other treatments.
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Test

Direction k A So1 T T° D
Case 1 Boundary
2 1 16.39 16.23 15.10 15.33
2 44 95 4496 38.85 39.75
3 78.42 78.77 69.85 70.97
4 95.73 95.78 90.92 91.52
4 1 12.78 12.57 12.05 12.32
2 33.09 32.41 29.01 29.18
3 64.19 64.04 52.61 52.59
4 88.49 88.47 7T77.00 76.40
6 1 10.93 10.71 11.23 10.92
2 26.24 2591 22.10 22.04
3 5426 53.65 42.13 41.05
4 82.28 81.93 66.26 64.33
Case 2 Center
2 1 19.75 19.23 22,96 22.28
2 50.83 49.96 56.62 55.14
3 80.74 80.07v 85.71 83.90
4 96.53 96.35 08.03 97.31
4 1 16.26 15.00 21.58 21.14
2 41.74 39.57 5558 53.07
3 71.13 68.60 83.59 81.09
4 91.53 90.36 96.89 95.64
6 1 14.69 13.08 21.34 19.96
2 35.14 31.70 52.73 49.79
3 63.28 59.54 82,96 79.25
4 86.29 83.69 96.48 95.01
Case 3 Pairwise
2 1 18.74 18.28 20.51 20.04
2 50.25 49.42 53.41 53.24
3 81.08 80.52 83.58 83.46
4 96.29 96.15 97.11 97.07
4 1 1497 14.32 18.11 17.76
2 40.80 38.82 48.31 47.62
3 70.86 68.64 7858 78.23
4 91.38 90.37 95.49 09541
6 1 13.19 11.98 17.15 16.86
2 33.13 30.17 43.76 42.29
3 62.27 58.64 75.06 74.66
4 85.86 83.56 93.92 94.02
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e The LRT Sp; has the highest power along
the boundary direction among these four
test statistics. Since statistic T' has com-
petitive power performance and it can pro-
vide lower confidence bound, statistic T is
recommended for Case 1.

e The test statistic 1779 is shown to be the
most powerful one-sided test along the cen-
ter direction when all treatments are better
than the control. Therefore, we recom-
mend T° for Case 2.

e Statistic T° or D is for Case 3, pending
depending on whether there are at least
two good treatments.
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e No Prior Ordering About Treatments and
the Control. Simulation study is also con-
ducted for Cases 1, 2, 3 with one extra in-
effective treatment, where the noncentral-
ity parameter A% = ny, >, (u; — 1)?/0?
and o =3, >,,1i/(k+1). It applies to T°
and D only. The results are similar to those
in Table 1. However, powers are some-
what lower than those in Table 1. This is
due to larger critical values t%+1,y,.05 and
dr+1,.,.05- | he statistic T is more power-
ful than D for Case 2. However, the sta-
tistic D is slightly more powerful than T°
in Case 1 at £k = 2 when there is only one
effective treatment.
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Table 2. Simulated Expected Lower
Bounds for Three Procedures

ClI
Direction k T T° D

Case 1 Boundary

2 1.577 1.385 1.427

4 1.850 1.563 1.573

6 2.011 1.654 1.649
Case 2 Center

2 1.707 1.919 1.883

4 1.490 2.046 1.983

6 1.265 2.092 2.015
Case 3 Pairwise

2 1.282 1.439 1.456

4 0.825 1.176 1.208

6 0.591 1.054 1.091
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e For Case 1, the expected lower bounds of
T are larger than those of T° and D.

e For Case 2, the expected lower bounds of
T° are larger than those of T" and D.

e For Case 3, D vields the largest expected
lower bounds and T° yields the second largest.
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7.DISCUSSION

e For Hp versus Hip, the efficiencies of T,7° and D
depend on the number of good treatments and the
number of ineffective treatments.

— When there is at least one ineffective treatment,
T is preferred.

— When there are no ineffective treatments, T° or
D is recommended, depending on whether there
are at least two good treatments.
e For H{ versus H}, only T° or D applies.

— When there are multiple candidates for the best
treatment, procedure T° is recommended.

— when there is only one good treatment, Dun-
nett’'s procedure D is preferred.
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e We focus on the duality of lower confi-
dence bounds and the test statistics. The
method can be applied to other optimiza-
tion problems such as umbrella restrictions.

e [ he evaluation of the simultaneous confi-
dence lower bound for the difference be-
tween the best treatment mean and the
control mean is a concave programming
problem subject to homogeneous linear in-
equality constraints. Utilizing the Kuhn-
Tucker equivalence theorem is the key to
the optimization problem.
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