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1. INTRODUCTION

The experiment considered is a one-way analy-
sis with k treatments and a control.

Yij = µi + εij, i = 0,1, . . . , k, j = 1, . . . , ni

where εij
iid∼ N(0, σ2) ,

• µ0: the control mean

• µ1, . . . , µk: the treatment means.

• µbest = max1≤i≤k µi: the best treatment
mean.

• S2 =
∑k

i=0
∑ni

j=1(Yij − Ȳi)
2/ν to estimate

σ2, νS2/σ2 ∼ χ2
ν and ν =

∑k
i=0 ni−k−1 > 0.
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How to construct lower confidence bounds for

µbest − µ0?

• with prior knowledge that treatments are

at least as good as the control. Ω = {µ
∈ Rk+1 : µ0 ≤ µi, i = 1, . . . , k}, which is

called simple tree ordering. H0 : µ0 = µ1 =

· · · = µk vs H1 = Ω−H0.

• without any prior knowledge of the effec-

tiveness of treatments. H ′
0 : µi − µ0 ≤

0 (i = 1, . . . , k) vs H ′
1 : at least one µi −

µ0 > 0.

Interval estimation provides a visual perspec-

tive unmatched by a point estimate or a test

statistic.
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Literature Survey

• Testing H0 vs H1

– Bartholomew (1959) Biometrika

– Mukerjee, Robertson & Wright (1987)

JASA

– Tang and Lin (1997) JASA

• Testing H0 vs H1 with Interval Estimation

Marcus (1978) developed one-sided simul-

taneous lower confidence bounds (SLCB)

for
∑k

i=0 niciµi, where
∑k

i=0 nici = 0 and

c0 ≤ ci (i = 1, . . . , k) in the case of known

variance.

– Dunnett (1955) JASA
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– Marcus (1978), Communication Stats

(A)

– Marcus and Talpetz (1992) Communi-

cation Stats (A)

– Berk & Marcus (1996) JASA

• Testing H ′
0 vs H ′

1

– Dunnett (1955) JASA

For treatments versus control problems, the

size of the lower bound of µbest−µ0 may be of

importance.



The Idea

• When the null hypothesis is rejected in favour
of the alternative hypothesis, there exists
at least one treatment better than the con-
trol. Since µbest − µ0 is the largest differ-
ence between any treatment mean and the
control mean, the lower confidence bound
for µbest−µ0 is bounded below by those for
µi − µ0 (i = 1, . . . , k) or their non-negative
linear combinations.

• If this optimized lower confidence bound
for µbest − µ0 is positive, then µbest is sig-
nificantly larger than µ0.

• Suitable test statistics are chosen so that
the rejection of the null hypothesis is equiv-
alent to the positiveness of the lower con-
fidence bound for µbest − µ0.
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2.TREATMENTS AT LEAST AS GOOD

AS A CONTROL
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2.1 The Likelihood Ratio Test

H0: µ0 = µ1 = · · · = µk vs H1 = Ω−H0.

where Ω = {µ∈ Rk+1 : µ0 ≤ µi, i = 1, . . . , k}

• MLE under H0: µ̂ = ¯̄Y =
∑k

i=0 niȲi/
∑k

i=0 ni.

• MLE under Ω: µ∗ = (µ∗0, µ∗1, . . . , µ∗k).

Relabel the treatments so that Ȳ1 ≤ Ȳ2 ≤
. . . ≤ Ȳk. Let l be the smallest non-negative
integer such that Al =

∑l
i=0 niȲi/

∑l
i=0 ni <

Ȳl+1, then µ∗0 = Al, and µ∗i = max(Al, Ȳi), i =
1, . . . , k. If Ȳ0 ≥ Ak−1 ≥ Ȳk, then µ∗i = µ̂ for
i = 0,1, . . . , k.

• The LRT:

S01 =
k∑

i=0

ni(µ
∗
i−µ̂)2/(

k∑
i=0

ni(Ȳi−µ∗i )
2/ν+S2).
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2.2 The Multiple Contrast Test Statistic T

•

T = max
c∈C

k∑
i=0

niciȲi/S(
k∑

i=0

nic
2
i )

1/2, (1)

C =
{
c = (c0, c1, . . . , ck) :

k∑
i=0

nici = 0, c0 ≤ ci, i = 1, . . . , k
}

•

T2 =
k∑

i=0

ni(µ
∗
i − µ̂)2/S2. (2)
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LRT S01 and The Multiple Contrast Statistic T

• The LRT S01 can’t be used to construct
CI but statistic T can.

Pµ
{ k∑

i=0

niciµi ≥
k∑

i=0

niciȲi−tk,ν,αS(

k∑
i=0

nic
2
i )

1/2, ∀c ∈ C
}

= 1−α.

(3)

• The statistic T2 is asymptotically equiva-

lent to S01.

• The null distribution of T under H0 is given

by

P [T ≥ t] =
k+1∑
j=2

P (j, k + 1;w)P [Fj−1,ν ≥
t2

j − 1
] (4)
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2.3 The Lower Confidence Bound for µbest − µ0

• K = {c : c ∈ C, Σk
i=0niciµi ≤ µbest − µ0, ∀ µ ∈ Ω}.

• The lower confidence bound for µbest − µ0 is given
by

L(µbest − µ0) = max
c∈K

k∑
i=0

niciȲi − tk,ν,αS(
k∑

i=0

nic
2
i )

1/2.

(5)
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Optimal Solution

• Theorem 2.1 When µ ∈ Ω, we have that T > tk,ν,α

if and only if L(µbest − µ0) > 0.

• Theorem 2.2 Suppose that T > tk,ν,α and Ȳ1 ≤ Ȳ2 ≤
. . . ≤ Ȳk. The vector c̃ ∈ K is an optimal solution to
(5) if and only if there exist non-negative integers
p and q, l ≤ p < q ≤ k, such that Ȳp < µ̂ < Ȳq,

c̃i = −N−1
0p + b−1(µ∗i − Ȳ0p), i = 0, . . . , p,

c̃i = 0, p + 1 ≤ i ≤ q − 1, (6)
c̃i = N−1

qk + b−1(Ȳi − Ȳqk), i = q, . . . , k,

and

max
{

N0p(µ
∗
p − Ȳ0p), Nqk(Ȳqk − Ȳq)

}
<

b ≤ min
{

N0(p+1)(µ
∗
p+1 − Ȳ0(p+1)), N(q−1)k(Ȳ(q−1)k − Ȳq−1)

}
, (7)

where

b2 = (t2k,ν,αS2 − S2
0p − S2

qk)/(N
−1
0p + N−1

qk ), (8)

and Nab =
∑b

i=a ni, Ȳab =
∑b

i=a niȲi/Nab, S2
ab =

∑b
i=a ni(µ∗i−

Ȳab)2. When q = p+1, the upper bound for b in (7)
is replaced by (Ȳqk − Ȳ0p)/(N

−1
0p + N−1

qk ).
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2.4 Iterative Algorithm I

(0) Set i = 0, p0 = max {0 ≤ j < k : µ∗j < µ̂} and
q0 = min {1 ≤ j ≤ k : µ∗j > µ̂}.

(i) Let βi+1 = max {N0pi
(µ∗pi

−Ȳ0pi
), Nqik(Ȳqik−µ∗qi

)}, tk,ν,αi+1
=

[S2
0pi

+S2
qik

+(N−1
0pi

+N−1
qik

)β2
i+1]

1/2/S. If tk,ν,αi+1
< tk,ν,α,

the optimal solution is c̃ with p = pi and q = qi.
Otherwise, go to (ii).

(ii) If N0pi
(µ∗pi

− Ȳ0pi
) > Nqik(Ȳqik − µ∗qi

), then set pi+1 =
max {j : 0 ≤ j < pi, µ∗j < µ∗pi

} and qi+1 = qi. If

Nqik(Ȳqik − µ∗qi
) > N0pi

(µ∗pi
− Ȳ0pi

), then set pi+1 = pi

and qi+1 = min {j : qi < j ≤ k, µ∗j > µ∗qi
}. Otherwise,

set pi+1 = max {j : 0 ≤ j < pi, µ∗j < µ∗pi
} and qi+1 =

min {j : qi < j ≤ k, µ∗j > µ∗qi
}. Set i = i + 1, go to

step (i).
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3. NO PRIOR KNOWLEDGE OF TREATMENTS

• No prior knowledge of the effectiveness of

treatments. Some treatment means may

be larger than the control mean while other

treatment means may be smaller than the

control mean.

• H ′
0 : µi − µ0 ≤ 0 (i = 1, . . . , k). vs H ′

1 :

at least one µi − µ0 > 0
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3.1 The Union-Intersection Method

• H ′
0 : µi−µ0 ≤ 0 (i = 1, . . . , k).H ′

0 = ∩c∈CoH ′
0c,

where H ′
0c :

∑k
i=1 nici(µi − µ0) ≤ 0 with

c ∈ Co and

Co = {c = (c0, c1, . . . , ck) :
∑k

i=0 nici = 0, ci ≥
0, i = 1, . . . , k}.

• H ′
1 = ∪o

c∈CH ′
1c, where H ′

1c :
∑k

i=1 nici(µi −
µ0) > 0.

• The union-intersection method: if any one

of H ′
0c is rejected, then H ′

0, which is true

only if H ′
0c is true for every c ∈ Co, must

also be rejected. Only if each of the hy-

potheses H ′
0c is accepted as true will the

intersection of H ′
0 be accepted as true.
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The Multiple Contrast Test Statistic T o

•

T o = max
c∈Co

k∑
i=0

niciȲi/S(
k∑

i=0

nic
2
i )

1/2. (9)

• T o2 =
∑k

i=0 ni(µ
o
i − µ̂)2/S2.

• How to compute µo
i

Let r be the largest positive integer such

that Br = (n0Ȳ0+
∑k

j=r njȲj)/(n0+Nrk) >

Ȳr−1, then µo
i = µ̂ = ¯̄Y for i = 1, . . . , r − 1,

µo
i = Ȳi − Br + µ̂ for i = 0, r, r + 1, . . . , k. If

Ȳ0 ≥ Ȳk, then µo
i = µ̂ for i = 0,1, . . . , k and

T o = 0.
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The null hypothesis distribution of T o under
the least favorable configuration µ0 = µ1 =
. . . = µk is given by

sup
µ∈H ′

0

P [T o ≥ t] =
k∑

j=1

P (j, k + 1;w)P [Fk+1−j,ν ≥
t2

k + 1− j
]

for any t > 0. The statistic T o2 has the same

distribution as statistic S12 in Robertson et al.

(1988).
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3.3 The Lower Confidence Bound for µbest − µ0

• Ko = {c : c ∈ Co,
∑k

i=0 niciµi ≤ µbest − µ0}.

•

Lo(µbest − µ0) = max
c∈Ko

k∑
i=0

niciȲi − tok,ν,αS(
k∑

i=0

nic
2
i )

1/2.

(10)
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Optimal Solution

• Theorem 3.1

T o > tok,ν,α if and only if Lo(µbest − µ0) > 0.

• Theorem 3.2

Suppose T o > tok,ν,α and Ȳ1 ≤ Ȳ2 ≤ . . . ≤ Ȳk. Then

c̃o ∈ Ko is an optimal solution to (10) if and only if
there exists a positive integer q, r ≤ q ≤ k such that

c̃o
0 = −

1

n0
,

c̃o
i = 0,1 ≤ i ≤ q − 1 (11)

c̃o
i = N−1

qk + bo−1(Ȳi − Ȳqk), i = q, . . . , k,

with

Nqk(Ȳqk − Ȳq) < bo ≤ N(q−1)k(Ȳ(q−1)k − Ȳq−1), (12)

where bo2 = (to2k,ν,αS2 − S2
qk)/(n0

−1 + N−1
qk ). When

q = r, the upper bound for bo in (12) is replaced
by (Ȳqk − Ȳ0)/(n

−1
0 + N−1

qk ).
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3.4 Iterative Algorithm II

(0) Set i = 0 and q0 = r.

(i) Let βi+1 = Nqik(Ȳqik − Ȳqi), tok,ν,αi+1
=

[S2
qik

+β2
i+1(n

−1
0 +N−1

qik
)]1/2/S. If tok,ν,αi+1

≤
tok,ν,α, the optimal solution is c̃o with q = qi.

Otherwise, go to (ii).

(ii) Set qi+1 = min {j : qi < j ≤ k, Ȳj > Ȳqi}
and set i = i + 1. Go to (i).
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4. SUBSET OF THE BEST TREATMENT

Let (1), (2), . . . , (k) denote the (unknown) in-

dices for which µ(1) ≤ µ(2) ≤ · · · ≤ µ(k) = µbest.

Then treatment π(k) is the best treatment as-

sociated with the largest mean µ(k) = µbest.

Gupta and Huang (1976) proposed the follow-

ing procedure

G = {πi : min
j 6=i

(Ȳi− Ȳj +d′S(n−1
i +n−1

j )1/2) ≥ 0}

where d′ = max1≤i≤k di
k−1,ν,α and di

k−1,ν,α is

the one-sided Dunnett critical value regarding

treatment i as the control. When sample sizes

are the same, di
k−1,ν,α does not depend on i.
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We have the following selection procedures:

• GC = {πi : minj 6=i (c∗i−c∗j+di
k−1,ν,αb−1S(n−1

i +n−1
j )1/2) ≥

0}.

where c∗i = N−1
qk + b−1(Ȳi − Ȳqk), i = 1, . . . , k.

• Go
C = {πi : minj 6=i (c∗oi − c∗oj + di

k−1,ν,αbo−1S(n−1
i +

n−1
j )1/2) ≥ 0}, where c∗oi = N−1

qk + bo−1(Ȳi − Ȳqk), i =
1, . . . , k.

• Pµ(π(k) ∈ GC) and Pµ(π(k) ∈ Go
C) are at least 1− α.

• The two subset selection procedures GC and Go
C

are at least as good as Gupta and Huang’s (1976)
procedure.
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5. A NUMERICAL EXAMPLE

Consider the data taken from Arman, Toygar, and Abuhi-
jleh (2004). In this experiment, skeletal measurement
increases in total anterior face height (N-Me) of chin-
cup (CC), chincup plus bite plate (CC+P), and reverse
headgear (RHg) therapies, labelled treatments 1, 2 and
3, respectively, with an untreated control group (C)
were compared.

• Ȳ0 = 2.8, Ȳ1 = 2.9, Ȳ2 = 4.6, Ȳ3 = 4.7,n0 = 20, n1 =
31, n2 = 14 and n3 = 14. S = 2.43.

• In this study, N-Me increases in treated groups but
orthodontists do not want a treatment to result in a
very long face, as the final goal of any orthodontic
treatment should be not only to obtain good func-
tion but also to improve facial attractiveness. Here
the “best” treatment would be the treatment that
results in the largest N-Me increase. It is of interest
to know the difference between the “best” treat-
ment mean and the control mean. If it is too large,
a further study of these treatments is required.
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5.1 Treatments at Least as Good as the Control

H0 : µ0 = µ1 = µ2 = µ3 vs H1 : µ0 ≤ µi (i =

1,2,3) with at least one strict inequality has a

value of T = 3.129 and a p-value of 0.012 with

t3,75,.05 = 2.529. One concludes that µbest is

significantly larger than µ0. The 100(1− α)%

lower confidence bound L(µbest − µ0) can be

computed as follows.

Step 0: µ̂ = 3.49, p0 = l = 1, q0 = 2, β1 =

2.0, t3,75,α1
= 0.264 < t3,75,.05; stop.

The 95% lower confidence bound for µbest−µ0

is L(µbest − µ0) = 0.35, where b = 26.062 and

the optimal coefficient in (6) is

c̃ = (−0.0219,−0.0181,0.0338,0.0376).
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5.2 No Prior Knowledge

The test statistic T o for testing H ′
0 : µi − µ0 ≤

0 (i = 1,2,3) versus H ′
1 : µi−µ0 > 0 for some i

has a value of T o = 2.603 and a p-value of

0.019 with to3,75,.05 = 2.178, r = 2 and

µo = (2.41,3.49,4.21,4.31). One concludes

that µbest is significantly larger than µ0. The

100(1−α)% lower confidence bound Lo(µbest−
µ0) can be computed as follows.

Step 0: q0 = r = 2, β1 = 1.4, to3,75,α1
=

0.20 < to3,75,.05, stop.

The 95% lower confidence bound for µbest−µ0

is Lo(µbest−µ0) = 0.30, where bo = 18.055 and

the optimal coefficient in (11) is

c̃o = (−0.0500,0.0000,0.0329,0.0385).
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• Lower confidence bound by Dunnett’s pro-
cedure Ld(µbest − µ0) = 0.12.

• L(µbest − µ0) = 0.35

• Lo(µbest − µ0) = 0.30

• The statistic T provides the sharpest lower
confidence bound for µbest − µ0 with T o a
close second for this example.

• GC = Go
C = G = {2,3} at the 95% con-

fidence level. For this data set, all three
subset selection procedures indicate that
either treatment 2 or treatment 3 is the
“best” treatment.

• The new procedures have the advantage:
the lower confidence bounds L(µbest − µ0),
Lo(µbest − µ0), and Ld(µbest − µ0) apply to
the best treatment.
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6. MEASURES OF PERFORMANCE

• Power Comparisons

The behavior of the power functions of

S01, T , T o, and D are studied. The Monte

Carlo method is used with 10,000 itera-

tions. For simplicity, we consider equal

sample size case with ν = 20.

• Expected Lower Confidence Bounds

Sizes of expected lower confidence bounds

at 95% level were computed by generating

10,000 normal sample of equal sample size

one and σ2 = 1 with k = 2,4,6 and µk −
µ0 = 4.0.
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• Treatments at Least as Good as the Con-

trol ∆2 = n
∑k

i=0(µi−µ̄)2/σ2 is the noncen-

trality parameter and µ̄ =
∑k

i=0 µi/(k + 1).

– Case 1, the boundary direction (−k/2, . . . ,

−k/2, k/2 + 1, . . . , k/2 + 1) with k/2 + 1

terms of −k/2 and k/2 terms of k/2+1,

when one half of the treatments are ef-

fective while the remaining treatments

are ineffective.

– Case 2, the center direction (−k,1, . . . ,1),

when all treatments are effective and

their effects are approximately the same.

– Case 3, pairwise direction (−1,0, . . . ,0,1),

when all treatments are effective but

one treatment is more effective than the

other treatments.
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Test
Direction k ∆ S01 T T o D
Case 1 Boundary

2 1 16.39 16.23 15.10 15.33
2 44.95 44.96 38.85 39.75
3 78.42 78.77 69.85 70.97
4 95.73 95.78 90.92 91.52

4 1 12.78 12.57 12.05 12.32
2 33.09 32.41 29.01 29.18
3 64.19 64.04 52.61 52.59
4 88.49 88.47 77.00 76.40

6 1 10.93 10.71 11.23 10.92
2 26.24 25.91 22.10 22.04
3 54.26 53.65 42.13 41.05
4 82.28 81.93 66.26 64.33

Case 2 Center
2 1 19.75 19.23 22.96 22.28

2 50.83 49.96 56.62 55.14
3 80.74 80.07 85.71 83.90
4 96.53 96.35 98.03 97.31

4 1 16.26 15.00 21.58 21.14
2 41.74 39.57 55.58 53.07
3 71.13 68.60 83.59 81.09
4 91.53 90.36 96.89 95.64

6 1 14.69 13.08 21.34 19.96
2 35.14 31.70 52.73 49.79
3 63.28 59.54 82.96 79.25
4 86.29 83.69 96.48 95.01

Case 3 Pairwise
2 1 18.74 18.28 20.51 20.04

2 50.25 49.42 53.41 53.24
3 81.08 80.52 83.58 83.46
4 96.29 96.15 97.11 97.07

4 1 14.97 14.32 18.11 17.76
2 40.80 38.82 48.31 47.62
3 70.86 68.64 78.58 78.23
4 91.38 90.37 95.49 95.41

6 1 13.19 11.98 17.15 16.86
2 33.13 30.17 43.76 42.29
3 62.27 58.64 75.06 74.66
4 85.86 83.56 93.92 94.02
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• The LRT S01 has the highest power along

the boundary direction among these four

test statistics. Since statistic T has com-

petitive power performance and it can pro-

vide lower confidence bound, statistic T is

recommended for Case 1.

• The test statistic T o is shown to be the

most powerful one-sided test along the cen-

ter direction when all treatments are better

than the control. Therefore, we recom-

mend T o for Case 2.

• Statistic T o or D is for Case 3, pending

depending on whether there are at least

two good treatments.
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• No Prior Ordering About Treatments and

the Control. Simulation study is also con-

ducted for Cases 1, 2, 3 with one extra in-

effective treatment, where the noncentral-

ity parameter ∆2 = n
∑

µi≥µ0
(µi − µ̄)2/σ2

and µ̄ =
∑

µi≥µ0
µi/(k +1). It applies to T o

and D only. The results are similar to those

in Table 1. However, powers are some-

what lower than those in Table 1. This is

due to larger critical values tok+1,ν,.05 and

dk+1,ν,.05. The statistic T o is more power-

ful than D for Case 2. However, the sta-

tistic D is slightly more powerful than T o

in Case 1 at k = 2 when there is only one

effective treatment.
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Table 2. Simulated Expected Lower

Bounds for Three Procedures

CI
Direction k T T o D
Case 1 Boundary

2 1.577 1.385 1.427
4 1.850 1.563 1.573
6 2.011 1.654 1.649

Case 2 Center
2 1.707 1.919 1.883
4 1.490 2.046 1.983
6 1.265 2.092 2.015

Case 3 Pairwise
2 1.282 1.439 1.456
4 0.825 1.176 1.208
6 0.591 1.054 1.091
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• For Case 1, the expected lower bounds of

T are larger than those of T o and D.

• For Case 2, the expected lower bounds of

T o are larger than those of T and D.

• For Case 3, D yields the largest expected

lower bounds and T o yields the second largest.
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7.DISCUSSION

• For H0 versus H1, the efficiencies of T, T o and D
depend on the number of good treatments and the
number of ineffective treatments.

– When there is at least one ineffective treatment,
T is preferred.

– When there are no ineffective treatments, T o or
D is recommended, depending on whether there
are at least two good treatments.

• For H ′
0 versus H ′

1, only T o or D applies.

– When there are multiple candidates for the best
treatment, procedure T o is recommended.

– when there is only one good treatment, Dun-
nett’s procedure D is preferred.
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• We focus on the duality of lower confi-

dence bounds and the test statistics. The

method can be applied to other optimiza-

tion problems such as umbrella restrictions.

• The evaluation of the simultaneous confi-

dence lower bound for the difference be-

tween the best treatment mean and the

control mean is a concave programming

problem subject to homogeneous linear in-

equality constraints. Utilizing the Kuhn-

Tucker equivalence theorem is the key to

the optimization problem.
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