A Complementary Design Theory for Doubling

Ching-Shui Cheng

Tianjin, July 11, 2006

Based on

Chen, H. and Cheng, C.S. (2006) Annals of Statistics,

ongoing work with Hongquan Xu,

and some results from the literature of finite projective geometry (Davydov & Tombak, 1990; Bruen, Haddad and Wehlau, 1998; Bruen & Wehlau, 1999) Objective: construction of two-level minimum aberration (*regular*) fractional factorial designs

 $X: N \times n$ matrix with entries 1 and -1N : run size n: # of factors

 $N = 2^{n-p}$

 2^{n-p} fractional factorial design

 2^{5-2} :

Defining relation:

I = ABD = ABCE = CDE

Resolution: length of the shortest word in the defining relation

Resolution III: no aliasing among main effects

Resolution IV: no aliasing of main effects with other main effects and two-factor interactions

Minimum aberration (Fries & Hunter, 1980): Sequentially minimize A_3, A_4, \cdots , where A_k = number of words of length k in the defining relation.

Only resolution III+ (resolution III or higher) designs are considered: $A_1 = A_2 = 0$.

• Minimize the aliasing among lower order effects

 (A_3, A_4, \cdots) : Word length pattern

Doubling

$$D(\boldsymbol{X}) = \begin{bmatrix} \boldsymbol{X} & \boldsymbol{X} \\ \boldsymbol{X} & -\boldsymbol{X} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \otimes \boldsymbol{X}$$

Two facts:

(i) ∃ a two-level design of resolution III+
⇒ n ≤ N - 1.
(ii) ∃ a two-level design of resolution IV+
⇒ n ≤ N/2.

A two-level design of resolution III is called *saturated* if n = N - 1.

 $\leftarrow \text{Max. resolution} = 3 \rightarrow$

n: N-1 N/2

 \rightarrow Max resolution ≥ 4

Saturated regular designs of resolution III are unique (up to isomorphism).

For $N = 2^k$, a saturated design of resolution III can be obtained by deleting the first column of

$$\underbrace{\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \otimes \cdots \otimes \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}}_{k}.$$
repeated double of
$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}.$$

A

Resolution IV designs with n = N/2 are also unique (up to isomorphism), and can be obtained by *folding over* saturated designs of resolution III.

If X is a 2^{n-p} design of resolution III, then

$$\begin{bmatrix} \mathbf{1} & \mathbf{X} \\ -\mathbf{1} & -\mathbf{X} \end{bmatrix}$$
 is a $2^{(n+1)-p}$ design of resolution IV.

Resolution IV designs with n = N/2 can also be obtained by *repeatedly doubling the* 2^1 *design*. Saturated designs of resolution III are *maximal* (the resolution is reduced to two whenever a factor is added), and they are the *only* maximal designs of resolution III.

Every fractional factorial design of resolution III+ can be obtained by choosing columns from a saturated design of resolution III (or we say that it's a *projection* of the saturated design of resolution III.) Resolution IV designs with n = N/2 are *maximal* designs of resolution IV (the resolution is reduced to three whenever a factor is added). Unlike saturated designs of resolution III, they are *not* the only maximal designs of resolution IV.

Resolution IV designs with n = N/2 are even designs in the sense that $A_i = 0$ for all odd *i* (a consequence of foldover). They are the only even designs that are maximal. We shall call them the maximal even designs. There is *exactly one* maximal design of resolution IV with n = 5N/16, and there is no maximal design of resolution IV with 5N/16 < n < N/2.

The maximal design of resolution IV with n = 5N/16 can be constructed by repeatedly doubling the 2_V^{5-1} design defined by I = ABCDE.

There is *exactly one* maximal design of resolution IV with n = 9N/32, and there is no maximal design of resolution IV with 9N/32 < n < 5N/16.

The maximal design of resolution IV with $n = \frac{9N}{32}$ can be constructed by repeatedly doubling a 2^{9-4} design.

There are *five* maximal designs of resolution IV with n = 17N/64, and there is no maximal design of resolution IV with 17N/64 < n < 9N/32.

Each maximal design of resolution IV with $n = \frac{17N}{64}$ can be constructed by repeatedly doubling a 2^{17-11} design.

Block and Mee (2003)'s computer search found *five* 2^{17-11} maximal designs of resolution IV.

If $N = 2^k$, $k \ge 4$, then for $\frac{N}{4} + 1 \le n \le \frac{N}{2}$, a maximal regular design of resolution IV or higher exists *if and only if* n is an integer of the forms $\frac{N}{2}, \frac{5}{16}N, \frac{9}{32}N, \frac{17}{64}N, \frac{33}{128}N, \cdots$

Such a design with $n = \frac{2^{i}+1}{2^{i+2}}N$ can be constructed by *repeatedly doubling* a maximal 2^{i+2} -run design with $2^{i} + 1$ factors.

 2^{1-0}

The maximal 2^{5-1} , 2^{9-4} and 2^{17-11} designs of resolution IV are *partial* foldovers of the 2^{4-1} , 2^{8-4} and 2^{16-11} maximal even designs.

Let X be a maximal even design with N/2 runs and N/4 factors. Partition X so that $X = [B \ C]$, and create the N-run design

$$S = egin{bmatrix} 1 & B & C \ -1 & -B & C \end{bmatrix}$$

with N/4 + 1 factors. Then S has resolution IV. It is maximal if B contains an *odd* number of columns. When B contains an *even* number of columns, Smay or may not be maximal. Complementary design theory

Every regular design D of resolution III+ is a *projection* of the saturated regular design of resolution III.

The factors that are not chosen form another design \overline{D} , called the *complementary* design of D.

Chen and Hedayat (1996 *AS*) and Tang and Wu (1996 *AS*) found a relationship between the wordlength patterns of D and \overline{D} . The construction of D can be done via selecting \overline{D} . This is useful when d is *nearly saturated*.

 $A_k(\boldsymbol{D})$ can be determined by $\{A_i(\boldsymbol{\overline{D}})\}_{i \leq k}$. MA \Leftrightarrow sequentially minimizing $(-1)^k A_k(\boldsymbol{\overline{D}})$.

Not useful when n < N/2.

For 5N/16 < n < N/2, a minimum aberration design is of resolution IV, and must be a projection of the maximal even design.

A complementary design theory was developed by Butler (2003).

Hegang Chen's talk tomorrow.

For an $N_0 \times n_0$ design X_0 , let X be obtained by doubling X_0 t times.

Suppose D and \overline{D} are a pair of complementary subdesigns of X.

There are identities relating the word length pattern of D to that of \overline{D} , covering the results of Chen and Hedayat (1996), Tang & Wu (1996) and Butler (2003) as special cases.

$$A_k(\boldsymbol{D}) = (-1)^k A_k(\overline{\boldsymbol{D}}) + c_{k-1} A_{k-1}(\overline{\boldsymbol{D}}) + \dots + c_1 A_1(\overline{\boldsymbol{D}}) + c_0 + d_k \Delta_k(\boldsymbol{D}, \overline{\boldsymbol{D}}) + \dots + d_1 \Delta_1(\boldsymbol{D}, \overline{\boldsymbol{D}})$$

where

$$\Delta_k(\boldsymbol{D}, \, \overline{\boldsymbol{D}}) = \sum_{i=1}^{N_0} [W_i(\boldsymbol{D})^k - (n/2 - W_i(\overline{\boldsymbol{D}}))^k], n = n_0 2^t$$

 $W_i(\boldsymbol{D})$ is the Hamming weight of the *i*th row of \boldsymbol{D}

Technical tool: Pless power moment identities

Each column of X_0 generates 2^t columns of X. Suppose D contains f_i columns that are generated by the *i*th column of X_0 . Then $\Delta_k(D, \overline{D})$ depends on X_0 and f_1, \dots, f_{n_0} .

When applied to saturated designs of resolution III and maximal even designs, $\Delta_k(\boldsymbol{D}, \boldsymbol{\overline{D}})$ does not depend on f_1, \dots, f_{n_0} . **Theorem** (Chen & Hedayat, 1996; Tang and Wu, 1996). Let X be the saturated design of resolution III. If D consists of u columns of X, then D has minimum aberration among all possible u-factor designs if $-A_3(\overline{D})$, $A_4(\overline{D})$, $-A_5(\overline{D})$, $A_6(\overline{D})$, $-A_7(\overline{D})$, \cdots are sequentially minimized.

Theorem (Butler, 2003). Let X be a maximal even design. If D consists of u columns of X and \overline{D} is the complement of D in X, then D has minimum aberration among all possible u-factor projections of X (and hence has minimum aberration among all u-factor designs) if $A_4(\overline{D})$, $A_6(\overline{D})$, $A_8(\overline{D})$, \cdots are sequentially minimized.

All projections of the maximal even design are even designs.

Theorem. Let X be the maximal design obtained by doubling the 2_V^{5-1} design t times. If D consists of certain u columns of X and \overline{D} is the complement of \overline{D} in X, then for $u \leq 15 \cdot 2^{t-3}$, D has minimum aberration among all possible u-factor projections of X if

(i) $A_4(\overline{D}), -A_5(\overline{D}), A_6(\overline{D}), -A_7(\overline{D}), \cdots$ are sequentially minimized.

(ii) $|f_i - f_j| \le 1$ for all $1 \le i < j \le 5$.

 2^{1-0}

For $N/4 + 1 \le n \le 5N/16$, all projections of the maximal even design are worse than some projections of the maximal design with n = 5N/16.

For $N/4 + 1 \le n \le 5N/16$, all projections of the maximal design with 9N/32 are also worse than some projections of the maximal design with n = 5N/16.

Theorem. For $17N/64 \le n \le 5N/16$, minimum aberration designs are projections of the maximal design obtained by repeatedly doubling the 2_V^{5-1} design.

Conjecture. The above theorem holds for $N/4 + 1 \le n \le 5N/16$.

Supported by Block and Mee's computer search of 128-run designs