A Complementary Design Theory for Doubling

Ching-Shui Cheng

Tianjin, July 11, 2006

Based on

Chen, H. and Cheng, C.S. (2006) Annals of Statistics, ongoing work with Hongquan Xu,
and some results from the literature of finite projective geometry (Davydov \& Tombak, 1990; Bruen, Haddad and Wehlau, 1998; Bruen \& Wehlau, 1999)

Objective: construction of two-level minimum aberration (regular) fractional factorial designs
$\boldsymbol{X}: N \times n$ matrix with entries 1 and -1
N : run size
n : \# of factors
$N=2^{n-p}$
2^{n-p} fractional factorial design
2^{5-2} :

$$
\begin{array}{rrrrr}
& & & \text { AB } & \text { ABC } \\
\mathrm{A} & \mathrm{~B} & \mathrm{C} & \mathrm{D} & \mathrm{E} \\
-1 & -1 & -1 & 1 & -1 \\
1 & -1 & -1 & -1 & 1 \\
-1 & 1 & -1 & -1 & 1 \\
1 & 1 & -1 & 1 & -1 \\
-1 & -1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & -1 \\
-1 & 1 & 1 & -1 & -1 \\
1 & 1 & 1 & 1 & 1
\end{array}
$$

Defining relation:

$$
I=A B D=A B C E=C D E
$$

Resolution: length of the shortest word in the defining relation

Resolution III: no aliasing among main effects
Resolution IV: no aliasing of main effects with other main effects and two-factor interactions

Minimum aberration (Fries \& Hunter, 1980):
Sequentially minimize A_{3}, A_{4}, \cdots, where $A_{k}=$ number of words of length k in the defining relation.

Only resolution III+ (resolution III or higher) designs are considered: $A_{1}=A_{2}=0$.

- Minimize the aliasing among lower order effects
$\left(A_{3}, A_{4}, \cdots\right)$: Word length pattern

Doubling

$$
D(\boldsymbol{X})=\left[\begin{array}{rr}
\boldsymbol{X} & \boldsymbol{X} \\
\boldsymbol{X} & -\boldsymbol{X}
\end{array}\right]=\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right] \otimes \boldsymbol{X}
$$

Two facts:
(i) \exists a two-level design of resolution III +
$\Rightarrow n \leq N-1$.
(ii) \exists a two-level design of resolution IV + $\Rightarrow n \leq N / 2$.

A two-level design of resolution III is called saturated if $n=N-1$.
\leftarrow Max. resolution $=3 \rightarrow$

$$
n: N-1 \quad N / 2
$$

\rightarrow Max resolution ≥ 4

Saturated regular designs of resolution III are unique (up to isomorphism).

For $N=2^{k}$, a saturated design of resolution III can be obtained by deleting the first column of

$$
\underbrace{\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right] \otimes\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right] \otimes \cdots \otimes\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]}_{k} .
$$

A repeated double of $\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$.

Resolution IV designs with $n=N / 2$ are also unique (up to isomorphism), and can be obtained by folding over saturated designs of resolution III.

If \boldsymbol{X} is a 2^{n-p} design of resolution III, then
$\left[\begin{array}{rr}1 & \boldsymbol{X} \\ -\mathbf{1} & -\boldsymbol{X}\end{array}\right]$ is a $2^{(n+1)-p}$ design of resolution IV.
Resolution IV designs with $n=N / 2$ can also be obtained by repeatedly doubling the 2^{1} design.

Saturated designs of resolution III are maximal (the resolution is reduced to two whenever a factor is added), and they are the only maximal designs of resolution III.

Every fractional factorial design of resolution III+ can be obtained by choosing columns from a saturated design of resolution III (or we say that it's a projection of the saturated design of resolution III.)

Resolution IV designs with $n=N / 2$ are maximal designs of resolution IV (the resolution is reduced to three whenever a factor is added). Unlike saturated designs of resolution III, they are not the only maximal designs of resolution IV.

Resolution IV designs with $n=N / 2$ are even designs in the sense that $A_{i}=0$ for all odd i (a consequence of foldover). They are the only even designs that are maximal. We shall call them the maximal even designs.

There is exactly one maximal design of resolution IV with $n=5 N / 16$, and there is no maximal design of resolution IV with $5 N / 16<n<N / 2$.

The maximal design of resolution IV with $n=$ $5 N / 16$ can be constructed by repeatedly doubling the 2_{V}^{5-1} design defined by $I=A B C D E$.

There is exactly one maximal design of resolution IV with $n=9 N / 32$, and there is no maximal design of resolution IV with $9 N / 32<n<5 N / 16$.

The maximal design of resolution IV with $n=$ $9 \mathrm{~N} / 32$ can be constructed by repeatedly doubling a 2^{9-4} design.

There are five maximal designs of resolution IV with $n=17 N / 64$, and there is no maximal design of resolution IV with $17 N / 64<n<9 N / 32$.

Each maximal design of resolution IV with $n=$
$17 N$ /64 can be constructed by repeatedly doubling a 2^{17-11} design.

Block and Mee (2003)'s computer search found five 2^{17-11} maximal designs of resolution IV.

If $N=2^{k}, k \geq 4$, then for $\frac{N}{4}+1 \leq n \leq \frac{N}{2}$, a maximal regular design of resolution IV or higher exists if and only if n is an integer of the forms $\frac{N}{2}, \frac{5}{16} N, \frac{9}{32} N, \frac{17}{64} N, \frac{33}{128} N, \cdots$.

Such a design with $n=\frac{2^{i}+1}{2^{i+2}} N$ can be constructed by repeatedly doubling a maximal 2^{i+2}-run design with $2^{i}+1$ factors.

$$
\begin{array}{ccc}
N-1 & \frac{5 N}{16} & \frac{9 N}{32} \\
& & 2^{9-4} \\
& 2^{5-1} & \\
& (I=A B C D E)
\end{array}
$$

$$
2^{1-0}
$$

The maximal $2^{5-1}, 2^{9-4}$ and 2^{17-11} designs of resolution IV are partial foldovers of the $2^{4-1}, 2^{8-4}$ and 2^{16-11} maximal even designs.

Let \boldsymbol{X} be a maximal even design with $N / 2$ runs and $N / 4$ factors. Partition \boldsymbol{X} so that $\boldsymbol{X}=[\boldsymbol{B} \boldsymbol{C}]$, and create the N-run design

$$
S=\left[\begin{array}{rrr}
1 & B & C \\
-1 & -B & C
\end{array}\right]
$$

with $N / 4+1$ factors. Then \boldsymbol{S} has resolution IV. It is maximal if \boldsymbol{B} contains an odd number of columns. When B contains an even number of columns, \boldsymbol{S} may or may not be maximal.

Complementary design theory

Every regular design \boldsymbol{D} of resolution III+ is a projection of the saturated regular design of resolution III.

The factors that are not chosen form another design \bar{D}, called the complementary design of \boldsymbol{D}.

Chen and Hedayat (1996 AS) and Tang and Wu (1996 AS) found a relationship between the wordlength patterns of \boldsymbol{D} and \bar{D}. The construction of D can be done via selecting \bar{D}. This is useful when d is nearly saturated.
$A_{k}(\boldsymbol{D})$ can be determined by $\left\{A_{i}(\overline{\boldsymbol{D}})\right\}_{i \leq k}$. MA \Leftrightarrow sequentially minimizing $(-1)^{k} A_{k}(\overline{\boldsymbol{D}})$.

Not useful when $n<N / 2$.

For $5 N / 16<n<N / 2$, a minimum aberration design is of resolution IV, and must be a projection of the maximal even design.

A complementary design theory was developed by Butler (2003).

Hegang Chen's talk tomorrow.

For an $N_{0} \times n_{0}$ design \boldsymbol{X}_{0}, let \boldsymbol{X} be obtained by doubling $\boldsymbol{X}_{0} \quad t$ times.

Suppose \boldsymbol{D} and $\overline{\boldsymbol{D}}$ are a pair of complementary subdesigns of \boldsymbol{X}.

There are identities relating the word length pattern of \boldsymbol{D} to that of $\overline{\boldsymbol{D}}$, covering the results of Chen and Hedayat (1996), Tang \& Wu (1996) and Butler
(2003) as special cases.

$$
\begin{gathered}
A_{k}(\boldsymbol{D})=(-1)^{k} A_{k}(\overline{\boldsymbol{D}})+c_{k-1} A_{k-1}(\overline{\boldsymbol{D}})+\cdots+ \\
c_{1} A_{1}(\overline{\boldsymbol{D}})+c_{0}+d_{k} \Delta_{k}(\boldsymbol{D}, \overline{\boldsymbol{D}})+\cdots+d_{1} \Delta_{1}(\boldsymbol{D}, \overline{\boldsymbol{D}})
\end{gathered}
$$

where

$$
\Delta_{k}(\boldsymbol{D}, \overline{\boldsymbol{D}})=\sum_{i=1}^{N_{0}}\left[W_{i}(\boldsymbol{D})^{k}-\left(n / 2-W_{i}(\overline{\boldsymbol{D}})\right)^{k}\right], n=n_{0} 2^{t}
$$

$W_{i}(\boldsymbol{D})$ is the Hamming weight of the i th row of \boldsymbol{D}

Technical tool: Pless power moment identities

Each column of \boldsymbol{X}_{0} generates 2^{t} columns of \boldsymbol{X}. Suppose \boldsymbol{D} contains f_{i} columns that are generated by the i th column of \boldsymbol{X}_{0}. Then $\Delta_{k}(\boldsymbol{D}, \overline{\boldsymbol{D}})$ depends on \boldsymbol{X}_{0} and $f_{1}, \cdots, f_{n_{0}}$.

When applied to saturated designs of resolution III and maximal even designs, $\Delta_{k}(\boldsymbol{D}, \overline{\boldsymbol{D}})$ does not depend on $f_{1}, \cdots, f_{n_{0}}$.

Theorem (Chen \& Hedayat, 1996; Tang and Wu, 1996). Let \boldsymbol{X} be the saturated design of resolution III. If \boldsymbol{D} consists of u columns of \boldsymbol{X}, then \boldsymbol{D} has minimum aberration among all possible u-factor designs if $-A_{3}(\overline{\boldsymbol{D}}), \quad A_{4}(\overline{\boldsymbol{D}}),-A_{5}(\overline{\boldsymbol{D}}), A_{6}(\overline{\boldsymbol{D}}),-A_{7}(\overline{\boldsymbol{D}}), \cdots$ are sequentially minimized.

Theorem (Butler, 2003). Let \boldsymbol{X} be a maximal even design. If \boldsymbol{D} consists of u columns of \boldsymbol{X} and \bar{D} is the complement of \boldsymbol{D} in \boldsymbol{X}, then \boldsymbol{D} has minimum aberration among all possible u-factor projections of \boldsymbol{X} (and hence has minimum aberration among all u factor designs) if $A_{4}(\overline{\boldsymbol{D}}), A_{6}(\overline{\boldsymbol{D}}), A_{8}(\overline{\boldsymbol{D}}), \cdots$ are sequentially minimized.

All projections of the maximal even design are even designs.

Theorem. Let \boldsymbol{X} be the maximal design obtained by doubling the 2_{V}^{5-1} design t times. If \boldsymbol{D} consists of certain u columns of \boldsymbol{X} and $\overline{\boldsymbol{D}}$ is the complement of $\overline{\boldsymbol{D}}$ in \boldsymbol{X}, then for $u \leq 15 \cdot 2^{t-3}, \boldsymbol{D}$ has minimum aberration among all possible u-factor projections of X if
(i) $A_{4}(\overline{\boldsymbol{D}}),-A_{5}(\overline{\boldsymbol{D}}), A_{6}(\overline{\boldsymbol{D}}),-A_{7}(\overline{\boldsymbol{D}}), \cdots$ are sequentially minimized.
(ii) $\left|f_{i}-f_{j}\right| \leq 1$ for all $1 \leq i<j \leq 5$.

$$
\begin{array}{ccc}
N-1 & \frac{5 N}{16} & \frac{9 N}{32} \\
& & 2^{9-4} \\
& 2^{5-1} & \\
& (I=A B C D E)
\end{array}
$$

$$
2^{1-0}
$$

For $N / 4+1 \leq n \leq 5 N / 16$, all projections of the maximal even design are worse than some projections of the maximal design with $n=5 N / 16$.

For $N / 4+1 \leq n \leq 5 N / 16$, all projections of the maximal design with $9 N / 32$ are also worse than some projections of the maximal design with $n=5 N / 16$.

Theorem. For $17 N / 64 \leq n \leq 5 N / 16$, minimum aberration designs are projections of the maximal design obtained by repeatedly doubling the 2_{V}^{5-1} design.

Conjecture. The above theorem holds for $N / 4+1 \leq n \leq 5 N / 16$.

Supported by Block and Mee's computer search of 128-run designs

