# On Topological String Theory 

Samson L. Shatashvili

## TCD \& IHES

Based on joint work with Anton Gerasimov hep-th/0409238, JHEP 0411:074, 2004

Related work: Dijkgraaf, Gukov, Neitzke, Vafa (hep-th/0411073)
Nekrasov (hep-th/0412021)

August 23, 2005
Nankai Institute of Mathematics

# Topological strings in Mathematics and Physics 

## Mathematics

- Gromov-Witten Theory (A-model)
- Deformation theory, complex structures, non-commutative geometry (B-model)
- Mirror Symmetry (relation between A and B models)
- Donaldson-Witten invariants (4d Mirror formula) etc.


## Physics

- Toy model for String Theory (most likely integrable)
- Gauge theories (brane construction in string theory)
- Black Holes
- Non-critical Strings
- Open/close correspondence (Gauge/Gravity relation)


## Physical picture

2d (SUSY) Sigma model - defined through classical action (and corresponding path integral): the functional on the space of maps $\Phi$ (and sections $\psi$ )

$$
\mathcal{S}=\frac{1}{f^{2}} \int_{\Sigma} \frac{1}{2} g_{I J}(\Phi) \partial_{z} \phi^{I} \partial_{\bar{z}} \phi^{J}++ \text { fermions }
$$

$\Sigma$ - Riemann surface; $z, \bar{z}$ - local coordinates
$V$-Riemannian manifold of metric $g ; \phi^{I}$ - local coordinates $\Phi$ - a map: $\Sigma \rightarrow V ; \phi^{I}(z, \bar{z})$ - in local coordinates
$K(\bar{K})$ - the canonical (anti-canonical) line bundles of $\Sigma$ (the bundle of one forms of types $(1,0)((0,1)))$
$T V$ - complexified tangent bundle of $V$.
to get supersymmetry $\Rightarrow$ add some set of Grassmann variables $\psi_{+}^{I}, \psi_{-}^{I}$ - sections of $K^{1 / 2} \otimes \Phi^{*}(T V)$ and $\bar{K}^{1 / 2} \otimes \Phi^{*}(T V)$.

Suppose $V$ - Kähler $\rightarrow N=2$ SUSY $\rightarrow$ extra term ( $T V=$ $T^{1,0} V+T^{0,1} V$ and $\left.\phi^{i}, \phi^{\bar{i}}=\bar{\phi}^{i}, \psi^{i}, \psi^{\bar{i}}\right):$

$$
\mathcal{S}^{\prime}=i \theta \int_{\Sigma} \frac{1}{2} g_{i \bar{j}}\left(\partial_{z} \phi^{i} \partial_{\bar{z}} \phi^{\bar{j}}-\partial_{\bar{z}} \phi^{i} \partial_{z} \phi^{\bar{j}}\right)
$$

Topological A and $\mathbf{B}$ models are two different topological twists of same physical sigma model.

## A-model

$\chi-$ section of $\Phi^{*}(T V)$
$\psi_{+}^{\bar{i}}-(1,0)$ form on $\Sigma$ with values in $\Phi^{*}\left(T^{0,1} V\right) ;$
$\psi_{+}^{\bar{i}}=\psi_{z}^{\bar{i}}$.
$\psi_{-}^{i}-(0,1)$ form with values in $\Phi^{*}\left(T^{1,0} V\right) ; \psi_{-}^{i}=\psi_{\bar{z}}^{i}$.

Topological transformation laws - one can define the action of certain operator $\delta$ acting on field space such that $\delta^{2}=0$.

Let $t=\theta+\frac{i}{f^{2}}$, where $\theta$ and $f$ are some real numbers (couplings).

Action:

$$
\begin{gathered}
\mathcal{S}=\frac{1}{f^{2}} \int_{\Sigma} d^{2} z \delta R+t \int_{\Sigma} \Phi^{*}(\omega) \\
R=g_{i \bar{j}}\left(\psi_{z}^{\bar{i}} \partial_{\bar{z}} \phi^{j}+\partial_{z} \phi^{\bar{i}} \psi_{\bar{z}}^{j}\right) \\
\int_{\Sigma} \Phi^{*}(\omega)=i \int_{\Sigma} d^{2} z\left(\partial_{z} \phi^{i} \partial_{\bar{z}} \phi^{\bar{j}} g_{i \bar{j}}-\partial_{\bar{z}} \phi^{i} \partial_{z} \phi^{\bar{j}} g_{i \bar{j}}\right)
\end{gathered}
$$

- the integral of the pullback of the Kähler form $\omega=-i g_{i \bar{j}} d z^{i} d z^{\bar{j}}$.
$\int \Phi^{*}(\omega)$ - depends only on the cohomology class of $\omega$ and the homology class $\beta \in \mathrm{H}_{2}(V)$ of the image of the map $\Phi$.

Definition. Observable $\left\{\mathcal{O}_{i}\right\}$ - a functional of the fields, s.t. $\delta \mathcal{O}_{i}=0$.

Definition. Physical observable $=\mathrm{a} \delta$ - cohomology class, $\mathcal{O}_{i} \sim \mathcal{O}_{i}+\delta \Psi_{i}$.

Definition. Correlator - path integral:

$$
\left\langle\prod_{a} \mathcal{O}_{a}\right\rangle_{\beta}=e^{-2 \pi t \int_{\beta} \omega} \int_{\mathcal{B}_{\beta}} D \phi D \chi D \psi e^{-\frac{1}{f^{2}} \delta \int R} \cdot \prod_{a} \mathcal{O}_{a}
$$

$\mathcal{B}_{\beta}$ - the component of the field space for maps of degree $\beta=[\Phi(\Sigma)] \in \mathrm{H}_{2}(V, \mathbf{Z})$, and $\left\rangle_{\beta}\right.$ - degree $\beta$ contribution to the expectation value.

Correlators of the observables depend only on their $\delta$-cohomology class, in particular - independent of the complex structure of $\Sigma$ and $V$, and depend only on the cohomology class of the Kähler form $\omega$.

Correlator is independent of $f^{2}$. If $f^{2} \rightarrow \infty$ - Gaussian model.

Bosonic part of the Action

$$
i t \int \Phi^{*}(\omega)+\frac{1}{f^{2}} \int_{\Sigma} g_{i \bar{j}}(\phi) \partial_{z} \phi^{\bar{j}} \partial_{\bar{z}} \phi^{i}
$$

for given $\beta$ is minimized by holomorphic map:

$$
\partial_{\bar{z}} \phi^{i}=\partial_{z} \phi^{\bar{i}}=0 .
$$

The entire path integral, for maps of degree $\beta$, reduces to an integral over the space of degree $\beta$ holomorphic maps $\mathcal{M}_{\beta}$.

Pick an $n$-form $W=W_{I_{1} I_{2} \ldots I_{n}}(\phi) d \phi^{I_{1}} \wedge d \phi^{I_{2}} \wedge \ldots \wedge d \phi^{I_{n}}$ on $V \Rightarrow$ a local functional

$$
\begin{gathered}
\mathcal{O}_{W}(P)=W_{I_{1} I_{2} \ldots I_{n}}(\Phi(P)) \chi^{I_{1}} \cdots \chi^{I_{n}}(P) \\
\delta \mathcal{O}_{W}=-\mathcal{O}_{d W}
\end{gathered}
$$

$d$ the exterior derivative on $V$.
$\Rightarrow W \mapsto \mathcal{O}_{W}$ - natural map from the de Rham cohomology of $V$ to the space of physical observables of quantum field theory $A(V)$. For local operators - isomorphism.

Let d - be the DeRham differential on $\Sigma$. We have descend equations:
$\mathrm{d} \mathcal{O}_{W}=\delta \mathcal{O}_{W}^{(1)}, \quad \oint_{C} \mathcal{O}_{W}^{(1)}$ - 1-observable. The physical observable depends on the homology class of $C$ in $\mathrm{H}_{1}(\Sigma)$.
$\mathrm{d} \mathcal{O}_{W}^{(1)}=\delta \mathcal{O}_{W}^{(2)}, \quad \int_{\Sigma} \mathcal{O}_{W}^{(2)}$ - 2-observable.
Deformations (preserving $\delta$ ): change the action as follows:

$$
\mathcal{S}_{T}=\mathcal{S}+T^{a} \int_{\Sigma} \mathcal{O}_{W_{a}}
$$

$T^{a}$ are the formal parameters (nilpotent). The path integral with the action $\mathcal{S}_{T}$ computes the generating function $\mathcal{F}_{A}(T)$ of the correlation functions of the two-observables:

$$
\begin{gathered}
\mathcal{F}_{A}(T)=\left\langle e^{-\int_{\Sigma} \mathcal{S}(T)}\right\rangle \\
\mathcal{S}(0)=\mathcal{S},\left.\quad \frac{\partial \mathcal{S}}{\partial T^{a}}\right|_{T=0}=\int_{\Sigma} \mathcal{O}_{W_{a}}
\end{gathered}
$$

## B - model

$\psi_{ \pm}^{\bar{i}}-\operatorname{sections~of~} \Phi^{*}\left(T^{0,1} \tilde{V}\right)$
$\psi_{+}^{i}-$ section of $K \otimes \Phi^{*}\left(T^{1,0} \tilde{V}\right)$
$\psi_{-}^{i}-$ section of $\bar{K} \otimes \Phi^{*}\left(T^{1,0} \tilde{V}\right)$.
$\rho$ - one form with values in $\Phi^{*}\left(T^{1,0} \tilde{V}\right) ; \rho_{z}^{i}=\psi_{+}^{i}, \rho_{\bar{z}}^{i}=\psi_{-}^{i}$
$\eta^{\bar{i}}=\psi_{+}^{\bar{i}}+\psi_{-}^{\bar{i}}$
$\theta_{i}=g_{i \bar{i}}\left(\psi_{+}^{\bar{i}}-\psi_{-}^{\bar{i}}\right)$

## all fields above are valued in Grassmann algebra

Action:

$$
\begin{array}{r}
\mathcal{S}=\frac{1}{f^{2}} \int_{\Sigma} d^{2} z\left(g_{I J} \partial_{z} \phi^{I} \partial_{\bar{z}} \phi^{J}+i \eta^{\bar{i}}\left(D_{z} \rho_{\bar{z}}^{i}+D_{\bar{z}} \rho_{z}^{i}\right) g_{i \bar{i}}\right. \\
\left.\quad+i \theta_{i}\left(D_{\bar{z}} \rho_{z}^{i}-D_{z} \rho_{\bar{z}}{ }^{i}\right)+R_{i \bar{i} j \bar{j}} \rho_{z}^{i} \rho_{\bar{z}}^{j} \eta^{\bar{i}} \theta_{k} g^{k \bar{j}}\right) .
\end{array}
$$

As in A model here also exists operation $\delta$ (which depends on complex structure) acting on fields such that $\delta^{2}=0$ and again one can rewrite the action using $\delta$ :

$$
\mathcal{S}=\frac{1}{f^{2}} \int \delta U+\mathcal{S}_{0}
$$

$$
\begin{gathered}
U=g_{i \bar{j}}\left(\rho_{z}^{i} \partial_{\bar{z}} \phi^{\bar{j}}+\rho_{\bar{z}}^{i} \partial_{z} \phi^{\bar{j}}\right) \\
\mathcal{S}_{0}=\int_{\Sigma}\left(-\theta_{i} D \rho^{i}-\frac{i}{2} R_{i \bar{j} \bar{j}} \rho^{i} \wedge \rho^{j} \eta^{\bar{i}} \theta_{k} g^{k \bar{j}}\right) .
\end{gathered}
$$

$B$ theory is independent of the complex structure of $\Sigma$ and the Kähler metric of $\tilde{V}$. Change of complex structure of $\Sigma$ or Kähler metric of $\tilde{V}$ - Action changes by irrelevant terms of the form $\delta(\ldots)$.

The theory depends on the complex structure of $\tilde{V}$, which enters $\delta$
$B$ model is independent of $f^{2}$; take limit $f^{2} \rightarrow \infty$; In this limit, one expands around minima of the bosonic part of the Action $=$ constant maps $\Phi: \Sigma \rightarrow \tilde{V}$ :

$$
\partial_{z} \phi^{i}=\partial_{\bar{z}} \phi^{i}=0
$$

The space of such constant maps is a copy of $\tilde{V}$; the path integral reduces to an integral over $\tilde{V}$.

## Observables:

Consider $(0, p)$ forms on $\tilde{V}$ with values in $\wedge^{q} T^{1,0} \tilde{V}$, the $q^{\text {th }}$ exterior power of the holomorphic tangent bundle of $\tilde{V}$.

$$
W=d \bar{z}^{i_{1}} d \bar{z}^{i_{2}} \ldots d \bar{z}^{i_{p}} W_{\bar{i}_{1} \bar{i}_{2} \ldots \bar{i}_{p}}^{j_{1} j_{2} \ldots j_{q}} \frac{\partial}{\partial z_{j_{1}}} \ldots \frac{\partial}{\partial z_{j_{q}}}
$$

$W$ is antisymmetric in the $j$ 's as well as in the $\bar{i}$ 's.
Form local operator:

$$
\begin{gathered}
\mathcal{O}_{W}=\eta^{\bar{i}_{1}} \ldots \eta^{\bar{i}_{p}} W_{\bar{i}_{1} \ldots \bar{i}_{p}}{ }^{j_{1} \ldots j_{q}} \theta_{j_{1}} \ldots \theta_{j_{q}} . \\
\delta \mathcal{O}_{W}=-\mathcal{O}_{\bar{\partial} W},
\end{gathered}
$$

$\mathcal{O}_{W}$ is $\delta$-invariant iff $\bar{\partial} W=0$ and $\delta$-exact if $W=\bar{\partial} S$ for some $S$.
$W \mapsto \mathcal{O}_{W}$ - natural map from $\oplus_{p, q} H^{p}\left(V, \wedge^{q} T^{1,0} V\right)$ to the $\delta$-cohomology of the $B$ model. It is isomorphism for local operators.

The story of Correlators in B model, Descend Equations, Deformation of the action by 2 -observables, Generating function $\mathcal{F}_{B}(T)$ is completely parallel.

$$
\begin{gathered}
S_{T}=S+T^{a} \int_{\Sigma} \mathcal{O}_{a}^{(2)} \\
\mathcal{F}_{B}(T)=<e^{-S(T)}>
\end{gathered}
$$

- Interesting examples of the deformations:
$W=\mu_{\bar{i}}^{j} \frac{\partial}{\partial z^{j}} d \bar{z}^{\bar{j}}$ - deformation of the complex structure of $\tilde{V}$ $W=W(z)$ - holomorphic function (for non-compact $\tilde{V}$ )- singularity (Landau-Ginzburg in physical terminology) theory $W=\frac{1}{2} \pi^{i j} \frac{\partial}{\partial z^{i}} \wedge \frac{\partial}{\partial z^{j}}$ - non-commutative deformation.


## Type A sigma models: Gromov-Witten theory

Given a set of submanifolds $C_{1}, \ldots, C_{k}, C_{i} \subset V$, compute the number $N_{C_{1}, \ldots, C_{k} ; \beta}$ of rigid genus $g$ holomorphic curves $\Sigma \subset V,[\Sigma]=\beta \in \mathrm{H}_{2}(V ; \mathbf{Z})$ passing through them

The cycles in $\mathrm{H}_{*}(V)$ represented by $C_{1}, \ldots, C_{k}$ are Poincare dual to some cohomology classes $\omega_{1}, \ldots, \omega_{k} \in \mathrm{H}^{*}(V)$.

## Type B sigma models: Kodaira-Spencer theory

$S$ - space of generalized (in the sense of Kontsevich-Witten) deformations of cmplx structures of variety $\tilde{V}$ (mirror to $V$ ).

The tangent space to $S$ at some point $s$ represented by a variety $\tilde{V}_{s}$ is given by:

$$
T_{s} S=\bigoplus_{p, q} \mathrm{H}^{p}\left(\tilde{V}_{s}, \Lambda^{q} \mathcal{T}_{\tilde{V}_{s}}\right) \equiv \bigoplus_{p, q} \mathrm{H}^{-q, p}\left(\tilde{V}_{s}\right)
$$

Let $T$ denote special coordinates on this space.

## Mirror formula

$\sum_{n ;\left\{k_{1}, \ldots, k_{n}\right\}} \frac{T^{k_{1}} \ldots T^{k_{n}}}{n!}\left\langle\mathcal{O}_{a}^{(0)} \mathcal{O}_{b}^{(0)} \mathcal{O}_{c}^{(0)} \int_{\Sigma} \mathcal{O}_{k_{1}}^{(2)} \cdots \int_{\Sigma} \mathcal{O}_{k_{n}}^{(2)}\right\rangle_{A}$

$$
=\frac{\partial^{3} \mathcal{F}_{B}(T)}{\partial T^{a} \partial T^{b} \partial T^{c}}
$$

Type A sigma model on $V=$ Type B sigma model on $\tilde{V}$
For Kähler manifolds:

$$
h^{p, q}(V)=h^{-p, q}(\tilde{V})
$$

The concept of mirror symmetry extends to $V$ symplectic and $\tilde{V}$ complex.

Mirror exchanges kähler (A) and complex (B) deformations.

## Space-Time description - String Field Theory

Here we discuss the case of CY target space (3-complex dimensional with $c_{1}=0 ;(3,0)$ form - uniquely defined up to the multiplication by the non-zero complex number)

A-model - world-sheet instantons $\rightarrow$ local field theory?
B-model - constant maps $\rightarrow$ one expects to have local theory.

- Let $M$ be a compact Calabi-Yau (CY) manifold.
- Calibrated CY manifold - a pair $\left(M, \Omega_{0}\right)$ where $M$ is a CY manifold supplied with a holomorphic $(3,0)$-form $\Omega_{0}$.

Moduli space $\widehat{\mathcal{M}}_{M}$ of the calibrated CY manifolds is a $\mathbf{C}^{*}$ bundle over moduli space $\mathcal{M}_{M}$ of complex structures on $M$.

Fixing particular holomorphic (3, 0)-form $\Omega_{0}$ defines, locally, a section of the bundle.

Choice of complex structure:

$$
D=D^{1,0}+D^{0,1}=\partial+\bar{\partial}
$$

$\Omega^{-p, q}(M) \equiv \Omega^{q}\left(M, \wedge^{p} T\right)$, where $T$ is a holomorphic tangent bundle.

- $\left(z^{i}, \bar{z}^{\bar{i}}\right)$ be local coordinates on $M$
- $\bar{A} \in \Omega^{-1,1}(M),(-1,1)$-differential written locally as:

$$
\bar{A}=\sum \bar{A}_{\bar{i}}^{j} d \bar{z}^{i} \frac{\partial}{\partial z^{j}}
$$

Deformation of the complex structure - deformation of the operator $D^{0,1}=\bar{\partial}$ :

$$
\bar{\partial} \rightarrow \bar{\partial}_{\bar{A}}=\bar{\partial}+\bar{A}=\sum d \bar{z}^{i}\left(\frac{\partial}{\partial \bar{z}^{i}}+\bar{A}_{\bar{i}}^{j} \frac{\partial}{\partial z^{j}}\right)
$$

subject to integrability condition - Kodaira-Spencer equation:

$$
\begin{gathered}
\bar{\partial}_{\bar{A}}^{2}=0 \\
\bar{\partial} \bar{A}+\frac{1}{2}[\bar{A}, \bar{A}]=0 \\
\left(\bar{\partial}_{\bar{i}} \bar{A}_{\bar{j}}^{k}+\bar{A}_{\bar{i}}^{l} \partial_{l} \bar{A}_{\bar{j}}^{k}\right) d \bar{z}^{i} \wedge d \bar{z}^{j} \frac{\partial}{\partial z^{k}}=0
\end{gathered}
$$

The moduli space of complex structures - space of the solutions of KS equation modulo the gauge transformations

$$
\delta \bar{A}=\bar{\partial}_{\bar{A}} \epsilon=\bar{\partial} \epsilon+[\bar{A}, \epsilon]
$$

where $\epsilon \in \Omega^{-1,0}(M)$.

Equivalently - solutions of the pair of the equations:

$$
\begin{gathered}
\bar{\partial} \bar{A}+\frac{1}{2}[\bar{A}, \bar{A}]=0 \\
\partial A=0
\end{gathered}
$$

modulo the subgroup of the gauge transformations which leave the holomorphic three-form $\Omega_{0}$ invariant.

Given a holomorphic (3, 0)-form $\Omega_{0}$ we could identify $\Omega^{-p, q}(M)$ with (3-q,p)-forms $\Omega^{3-p, q}(M)$ :

$$
\begin{gathered}
\Omega^{-p, q}(M) \rightarrow \Omega^{3-p, q}(M) \\
A \rightarrow A^{\vee}=A \vdash \Omega_{0}
\end{gathered}
$$

One can parametrise $(2,1)$ form $A^{\vee}$ as:

$$
\bar{A}^{\vee}=x+\partial b
$$

where $x$ is a $\partial$-closed $(2,1)$-form and $b \in \Omega^{1,1}(M)$.
Now the KS equation becomes the equation for $b$

$$
\bar{\partial} \partial b+\frac{1}{2} \partial((x+\partial b) \circ(x+\partial b))=0
$$

Operation $\circ$ is defined as:

$$
A^{\vee} \circ B^{\vee}=(A \wedge B) \vdash \Omega_{0}
$$

This equation has a meaning of anti-holomorphicity for following (1,2)-current:

$$
\bar{J}^{(1,2)}=\bar{\partial} b+\frac{1}{2}(x+\partial b) \circ(x+\partial b) ; \quad \partial \bar{J}^{(1,2)}=0
$$

The action functional, String Field Theory Action, leading to the above equations of motion is:
$S_{K S}(b \mid x)=\int_{M}\left(\frac{1}{2} \partial b \wedge \bar{\partial} b+\frac{1}{6}<(x+\partial b),(x+\partial b),(x+\partial b)>\right)$
Here we use another notation:

$$
<A^{\vee}, B^{\vee}, C^{\vee}>=A^{\vee} \wedge\left(B^{\vee} \circ C^{\vee}\right)
$$

where $A^{\vee}=A \vdash \Omega_{0}, B^{\vee}=B \vdash \Omega_{0}, C^{\vee}=C \vdash \Omega_{0}$.
This action is equivalent to the action introduced by BCOV (Bershadsky, Cecotti, Ooguri and Vafa, 1993) but is written in slightly different variables.

- $Z_{K S}(T)$ : Partition function of the space-time quantum field theory, KS theory

$$
Z_{K S}(x)=\int[d b] e^{-\frac{1}{\lambda} S_{K S}(b \mid x)}
$$

$\lambda$ - Plank constant in space-time field theory (coupling constant)

## BCOV conjecture:

$$
Z_{K S}(x)=\exp \sum_{g} \lambda^{2 g-2} \mathcal{F}_{g}(T)
$$

$\mathcal{F}_{g}(T)-\mathcal{F}_{B}(T)$ for genus $g$
$x$ - related to special coordinates $T$.

## KS theory in terms of 7d quadratic field theory

Functional integral with the action KS action:

$$
Z(x)=\int D b e^{-S_{K S}(b \mid x)}
$$

integral representation of some particular wave function in the 7 d field theory on $M \times \mathbf{R}$ with the action functional:

$$
S(C)=\int_{M \times \mathbf{R}} C d C
$$

$C$ - real 3-form.
This "space-time" quantum field - higher dimensional generalization of the 3d abelian Chern-Simons but for 3 -forms.

In $6+1$ notations for local coordinates $\left(x^{i}, t\right)$ on $M \times \mathbf{R}$ :

$$
S=\int_{M \times \mathbf{R}} d t d^{6} x\left(\Omega \frac{\partial}{\partial t} \Omega+\omega_{t} d \Omega\right)
$$

where $C=\Omega+\omega_{t} d t$;
$\Omega$ - a three-form component of $C$ along $M$
$\omega_{t} d t$ - a two-form along $M$ and one-form along $\mathbf{R}$.
We proceed in Hamiltonian formalism.

Consider the infinite-dimensional space of real 3 -forms on $M$ supplied with the symplectic structure:

$$
\omega^{\text {symp }}\left(\delta_{1} \Omega, \delta_{2} \Omega\right)=\int_{M} \delta_{1} \Omega \wedge \delta_{2} \Omega
$$

The phase space for 7d-theory is obtained - Hamiltonian reduction via first class constraint $\left(H^{3}(M, \mathbf{R})\right)$ :

$$
d \Omega=0
$$

One needs to choose the polarization (before Hamiltonian reduction) for symplectic form and impose the constraint on wave function in given polarization.

## Linear Polarization

Here we first intriduce the complex structure on CY which induces the complex structure on $H^{3}$.

If $\Omega_{C}$ denotes complex 3 -form we choose the complex structure on $M$ and:

$$
\Omega_{\mathbf{C}}=\Omega^{3,0} \oplus \Omega^{2,1} \oplus \Omega^{1,2} \oplus \Omega^{0,3}
$$

The real forms are singled out by the reality condition:

$$
\Omega^{0,3}=\overline{\Omega^{0,3}}, \quad \Omega^{1,2}=\overline{\Omega^{2,1}}
$$

The subspace:

$$
\Omega^{3,0} \oplus \Omega^{2,1}
$$

defines the complex Lagrangian (linear) sub-manifold in the space of complex 3 -forms $\rightarrow$ the complex polarization of the space of real three-forms. Parameterize this subspace as:

$$
\Omega_{c}=\rho\left(\Omega_{0}+\bar{A} \vdash \Omega_{0}\right)
$$

$\Omega_{0}$ - fixed normalized holomorphic (3,0)-form in a reference complex structure
$\rho$ - function on $M$
$\bar{A}-(-1,1)$-differential.

## Non-linear polarization (following Hitchin)

Here we first introduce the complex structure on $H^{3}$ which defines the complex structure on $\mathbf{C Y}$.

Special properties of 3-forms in six dimensions $\rightarrow$ possibility to decompose any generic real three-form as a sum of two (possibly complex conjugate) decomposable 3 -forms:

$$
\Omega=\Omega_{+}+\Omega_{-}=E^{1} \wedge E^{2} \wedge E^{3}+E^{4} \wedge E^{5} \wedge E^{6}
$$

$E^{i}$ 's - some 1-forms. Generically $\Omega_{-} \wedge \Omega_{+} \neq 0$ and $E^{i}$ 's produce the frame in the complexified cotangent bundle $T_{\mathbf{C}}^{*} M$ to $M$.

This representation follows from the existence of the open orbit of the group $G L(V)$ acting on $\wedge^{3} V^{*}$ where $V$ a 6 d vector space.

One could explicitly reconstruct the decomposable forms $\Omega_{ \pm}$ as follows:

Let $\mathcal{A}_{M}^{p}$ be the space of the real $p$-forms on $M$ and $V e c t_{M}$ be the space of vector fields. Given a three-form $\Omega$, consider the operator $K_{\Omega}$ :

$$
K_{\Omega}: \operatorname{Vect}_{M} \rightarrow \mathcal{A}_{M}^{5} \simeq \operatorname{Vect}_{M} \otimes \mathcal{A}_{M}^{6},
$$

defined as:

$$
v \rightarrow(v \vdash \Omega) \wedge \Omega .
$$

For instance, given the decomposition with real $E^{i}$ 's, the action of $K_{\Omega}$ on the dual real frame $E_{i}^{*}$ is:

$$
\begin{gathered}
K_{\Omega}: E_{i}^{*} \rightarrow E_{i}^{*}, \quad i=1,2,3, \\
K_{\Omega}: E_{i}^{*} \rightarrow-E_{i}^{*}, \quad i=4,5,6 .
\end{gathered}
$$

Let $K_{\Omega}^{*}$ be the group action of $K_{\Omega}$ on $\mathcal{A}^{p}(M)$. Then:

$$
\begin{aligned}
& 2 \Omega_{+}=\Omega+\lambda(\Omega)^{-3 / 2} K_{\Omega}^{*} \Omega, \\
& 2 \Omega_{-}=\Omega-\lambda(\Omega)^{-3 / 2} K_{\Omega}^{*} \Omega,
\end{aligned}
$$

where:

$$
\lambda(\Omega)=\frac{1}{6} \operatorname{tr} K_{\Omega}^{2} \in\left(\mathcal{A}_{M}^{6}\right)^{\otimes 2}
$$

Decomposition is non-degenerate (i.e $\Omega_{+} \wedge \Omega_{-}$has no zeros) if the form $\lambda(\Omega)$ has no zeros.

The sign of $\lambda(\Omega)$ defines whether $\Omega_{ \pm}$are real $(\lambda(\Omega)>0)$ or complex conjugate to each other $\Omega_{-}=\bar{\Omega}_{+}(\lambda(\Omega)<0)$. Denote the corresponding subspaces in the space of real threeforms by $U_{+}$and $U_{-}$.

In the case $\Omega \in U_{\text {- }}$ the operator $I$

$$
I_{\Omega}=(-\lambda(\Omega))^{-1 / 2} K_{\Omega},
$$

defines the (pseudo)complex structure. The condition of the integrability of this complex structure:

$$
d \Omega=d \widehat{\Omega}=0
$$

where $\widehat{\Omega} \equiv \Omega_{+}-\Omega_{-}$. Note that $\Omega+i \widehat{\Omega}$ is a holomorphic $(3,0)$-form without zeros in this complex structure.

Condition of integrability of this complex structure - condition for the critical points of the functional $\Phi(\Omega)$ written in terms of the closed three-form $\Omega, d \Omega=0$

$$
\Phi(\Omega)=\int_{M} \sqrt{|\lambda(\Omega)|}
$$

The variation of this functional is given by:

$$
\delta \Phi(\Omega)=-\int_{M} \widehat{\Omega} \wedge \delta \Omega
$$

The following relation holds

$$
\Omega_{+} \wedge \Omega_{-}=\frac{1}{2} \Omega \wedge \widehat{\Omega}=(\lambda(\Omega))^{1 / 2}
$$

Let us restrict the space of three-forms $\Omega$ by the condition: $d \Omega=0$, and fix the class of $\Omega$ in $H^{3}(M, \mathbf{R})$. Such three-forms may be parameterized by two-form $\phi$ as: $\Omega=x+d \phi$, where $x$ is some fixed closed three-form $[\Omega-x]=0$ in $H^{3}(M, \mathbf{R})$.

The critical points of the functional $\Phi(\Omega)$ under the variation $\delta \Omega=d \delta \varphi$ are given by the solutions of the equation $d \widehat{\Omega}=0$.

Given the cohomology class of the real closed 3-form on M, and using the critical point condition one could reconstruct unambiguously the holomorphic structure and the holomorphic non-degenerate $(3,0)$-form $\Omega+i \widehat{\Omega}$ on $M$; thus $M$ has a trivial canonical class.

One can show (Hitchin) that up to the action of the diffeomorphisms the critical point is isolated, so it defines the map of the subspace of $H^{3}(M, \mathbf{R})$ (such that the corresponding critical value $\Omega$ is in $U_{-}$) into the extended moduli space of complex structures $\widehat{\mathcal{M}}_{M}$.

Consider the 3 -forms in $U_{-}$:

$$
\Omega=\Omega_{+}+\Omega_{-}=E^{1} \wedge E^{2} \wedge E^{3}+\bar{E}^{1} \wedge \bar{E}^{2} \wedge \bar{E}^{3}
$$

with $E^{i}$ being complex one-forms.
The subspace of the decomposable forms defines the Lagrangian family:
$\omega^{\text {symp }}\left(\delta_{1} \Omega_{+}, \delta_{2} \Omega_{+}\right)=\int \delta_{1}\left(E^{1} \wedge E^{2} \wedge E^{3}\right) \wedge \delta_{2}\left(E^{1} \wedge E^{2} \wedge E^{3}\right)=0$
Locally the decomposable three-form $\Omega_{+}$may be parameterized as:

$$
\begin{aligned}
& \Omega_{+}=\frac{1}{6} \epsilon_{i j k} \varrho\left(d z^{i}+\mu_{\bar{i}}^{i} d \bar{z}^{\bar{i}}\right)\left(d z^{j}+\mu_{\bar{j}}^{j} d \bar{z}^{\bar{j}}\right)\left(d z^{k}+\mu \frac{i}{\bar{k}} d \bar{z}^{\bar{k}}\right)= \\
& \quad=\varrho\left(\Omega_{0}+\mu \vdash \Omega_{0}+\frac{1}{2} \mu^{2} \vdash \Omega_{0}+\frac{1}{6} \mu^{3} \vdash \Omega_{0}\right)=\varrho e^{\mu \vdash} \Omega_{0}
\end{aligned}
$$

here $\mu \in \Omega^{-1,1}(M)$ and $\varrho$ is a function on $M$ and we use the notations $\mu^{n} \vdash:=(\mu \vdash)^{n}$.

## Wave-function in linear polarization

Wave-functions - functions of $\Omega^{3,0}, \Omega^{2,1}$ subject to constraints (reduction). In this polarization the constraint equations $d \Omega=0$ :

$$
\begin{aligned}
& \bar{\partial} \Omega^{3,0}+\partial \Omega^{2,1}=0, \\
& \bar{\partial} \Omega^{2,1}+\partial \Omega^{1,2}=0, \\
& \bar{\partial} \Omega^{1,2}+\partial \Omega^{0,3}=0,
\end{aligned}
$$

Quantum mechanically take the form of the following equations on the wave function $\Psi\left(\Omega^{3,0}, \Omega^{2,1}\right)$

$$
\begin{aligned}
\left(\bar{\partial} \Omega^{3,0}+\partial \Omega^{2,1}\right) \Psi & =0 \\
\left(\bar{\partial} \Omega^{2,1}+\partial \frac{\delta}{\delta \Omega^{2,1}}\right) \Psi & =0 \\
\left(\bar{\partial} \frac{\delta}{\delta \Omega^{2,1}}+\partial \frac{\delta}{\delta \Omega^{3,0}}\right) \Psi & =0
\end{aligned}
$$

The formal solution can be written in terms of the path integral. Given an arbitrary function $\Psi_{0}\left(\Omega^{3,0}, \Omega^{2,1}\right)$, one can construct the formal solution representing it in the form:

$$
\Psi\left(\Omega^{3,0}, \Omega^{2,1}\right)=\left(\Pi \Psi_{0}\right)\left(\Omega^{3,0}, \Omega^{2,1}\right)
$$

where the projection operator $\Pi$ is given by:

$$
\begin{gathered}
\Pi=\int D \Lambda D \sigma D b e^{\int_{M} \Lambda\left(\bar{\partial} \Omega^{3,0}+\partial \Omega^{2,1}\right)} e^{\int_{M} \sigma\left(\bar{\partial} \frac{\delta}{\delta \Omega^{2,1}}+\partial \frac{\delta}{\delta \Omega^{3,0}}\right)} \times \\
\times e^{\int_{M} b\left(\bar{\partial} \Omega^{2,1}+\partial \frac{\delta}{\delta \Omega^{2,1}}\right)}
\end{gathered}
$$

The only restriction on $\Psi_{0}$ is the convergence of the integrals.

Use parametrization of 3 -forms in terms of function $\rho,(2,0)$ form $\chi$ and (1,1)-form $\lambda$ :

$$
\begin{aligned}
\Omega^{3,0} & =\rho_{0} \Omega_{0}+\partial \chi \\
\Omega^{2,1} & =x+\partial \lambda-\bar{\partial} \chi
\end{aligned}
$$

where $x$ is a $\partial$-closed $(2,1)$-form.
In these variables the projected wave-function is:

$$
\begin{gathered}
\Psi\left(\Omega^{3,0}, \Omega^{2,1}\right)=\Psi\left(\rho_{0}, \chi, x, \lambda\right)=e^{-\int_{M}\left(\frac{1}{2} \partial \lambda \bar{\partial} \lambda\right)} \times \\
\int D \sigma D b e^{-\int_{M}\left(\frac{1}{2} \partial b \bar{\partial} b+\bar{\partial} b \wedge \partial \lambda\right)} \Psi_{0}\left(\rho_{0} \Omega_{0}-\partial \sigma, x-\partial b-\bar{\partial} \sigma\right)
\end{gathered}
$$

The scalar product of the wave functions in given by:

$$
\begin{aligned}
<\Psi_{1} \mid \Psi_{2}>=\int & \left.D \Omega^{3,0} D \Omega^{2,1} D \Omega^{1,2} D \Omega^{0,3} e^{\int_{M}\left(\Omega^{3,0} \wedge \Omega^{0,3}+\Omega^{2,1} \wedge \Omega^{1,2}\right)}\right\rangle \\
& \times \bar{\Psi}_{1}\left(\Omega^{0,3}, \Omega^{1,2}\right) \Psi_{2}\left(\Omega^{3,0}, \Omega^{2,1}\right)
\end{aligned}
$$

where integration is over the real subspace $\overline{\Omega^{0,3}}=\Omega^{3,0}$, $\overline{\Omega^{1,2}}=\Omega^{2,1}$.

## Wave-functions in non-linear polarization

In this polarization wave-functions depend on subspace defined by $\Omega_{+}$.

$$
\begin{gathered}
\Omega_{+}=\varrho\left(\Omega_{0}+\mu \vdash \Omega_{0}+\frac{1}{2} \mu^{2} \vdash \Omega_{0}+\frac{1}{6} \mu^{3} \vdash \Omega_{0}\right) \\
\Omega_{-}=\bar{\Omega}_{+}=\bar{\varrho}\left(\bar{\Omega}_{0}+\bar{\mu} \vdash \bar{\Omega}_{0}+\frac{1}{2} \bar{\mu}^{2} \vdash \bar{\Omega}_{0}+\frac{1}{6} \bar{\mu}^{3} \vdash \bar{\Omega}_{0}\right)
\end{gathered}
$$

Scalar product - defined via canonical transformation from variables $\mu, \rho$ to $\bar{\mu}, \bar{\rho}$ :

$$
\sum_{i} P_{i} \delta Q^{i}-\sum_{i} p_{i} \delta q^{i}=\delta S(Q, q)
$$

We find:

$$
S(\rho, \mu ; \bar{\rho}, \bar{\mu})=\Omega_{-}(\bar{\varrho}, \bar{\mu}) \wedge \Omega_{+}(\varrho, \mu)
$$

and:

$$
<\Psi_{1} \mid \Psi_{2}>=\int \mathcal{D}(\mu, \bar{\mu}, \varrho, \bar{\varrho}) e^{\int_{M} \Omega_{-}(\bar{\varrho}, \bar{\mu}) \wedge \Omega_{+}(\varrho, \mu)} \bar{\Psi}_{1}(\bar{\varrho}, \bar{\mu}) \Psi_{2}(\varrho, \mu)
$$

Note - the exponential factor is Hitchin functional

$$
\Omega_{+}(\Omega) \wedge \Omega_{-}(\Omega)=-\sqrt{\lambda(\Omega)}
$$

Imposing the constraints in this polarization - quite trivial procedure.

The constraints generate the gauge transformations:

$$
\begin{gathered}
\Omega=\Omega_{+}+\Omega_{-} \rightarrow \Omega+d \phi= \\
=\left(\Omega_{+}+\delta \Omega_{+}\left(\Omega_{ \pm}, \phi\right)\right)+\left(\Omega_{-}+\delta \Omega_{-}\left(\Omega_{ \pm}, \phi\right)\right)
\end{gathered}
$$

and the transformations of $\Omega_{ \pm}$is highly non-linear in terms of the initial $\Omega_{ \pm}$- in this polarization the gauge transformation mixes "coordinates" and "momenta" in a complicated way and the constraints are given by rather complex differential operators acting on the wave function.

We use the following strategy:

1. start with the simple unconstrained wave-function in the non-linear polarization
2. transform this wave function into the corresponding wave function in the linear polarization
3 . impose the constraints.
This gives us the constraint wave function in the linear polarization whose particular form reflects the simplicity of the initial wave function in the non-linear polarization.

We construct the generating function $S(A, \bar{\rho} \mid \mu, \varrho)$ from the "old coordinates" $\bar{\rho}, A$ to new coordinates $\varrho, \mu$ using two definitions of $\Omega$ given above:

$$
\begin{aligned}
\rho \Omega_{0} & =\varrho \Omega_{0}+\frac{1}{6} \bar{\varrho} \bar{\mu}^{3} \vdash \bar{\Omega}_{0} \\
\rho \bar{A} \vdash \Omega_{0} & =\varrho \mu \vdash \Omega_{0}+\frac{1}{2} \bar{\varrho} \bar{\mu}^{2} \vdash \bar{\Omega}_{0} \\
\bar{\rho} A \vdash \bar{\Omega}_{0} & =\bar{\varrho} \bar{\mu} \vdash \bar{\Omega}_{0}+\varrho \frac{1}{2} \mu^{2} \vdash \Omega_{0} \\
\bar{\rho} \bar{\Omega}_{0} & =\bar{\varrho} \bar{\Omega}_{0}+\frac{1}{6} \varrho \mu^{3} \vdash \Omega_{0}
\end{aligned}
$$

Define:

$$
\begin{aligned}
<\bar{\mu}^{3}>\bar{\Omega}_{0} \wedge \Omega_{0} & =\frac{1}{6} \bar{\Omega}_{0} \wedge\left(\bar{\mu}^{3} \vdash \bar{\Omega}_{0}\right) \\
<\mu^{3}>\Omega_{0} \wedge \bar{\Omega}_{0} & =\frac{1}{6} \Omega_{0} \wedge\left(\mu^{3} \vdash \Omega_{0}\right), \\
\bar{\mu}^{\vee} \vdash \bar{\Omega}_{0} & =\frac{1}{2} \mu^{2} \vdash \Omega_{0} .
\end{aligned}
$$

Answer for $S$ is:

$$
\begin{gathered}
S(A, \bar{\rho} \mid \mu, \varrho)=\int_{M}\left(\left(\bar{\rho} \varrho+\varrho^{2}<\mu^{3}>+\frac{<\left(A \bar{\rho}-\varrho \bar{\mu}^{\vee}\right)^{3}>}{\left(\bar{\rho}-\varrho<\mu^{3}>\right)}\right) \Omega_{0} \wedge \bar{\Omega}_{0}+\right. \\
\left.+\bar{\rho} \varrho\left(\mu \vdash \Omega_{0}\right) \wedge\left(A \vdash \bar{\Omega}_{0}\right)\right)
\end{gathered}
$$

Semi-classical approximation (classical and one-loop) for quantummechanical wave function is given by path integral:

$$
\begin{aligned}
\Psi(\varrho, \mu) & =\int D \bar{\rho} D A e^{S(A, \bar{\rho}, \mu, \varrho)} \Psi(\bar{\rho}, A) \\
\Psi(\bar{\rho}, A) & =\int D \bar{\rho} D A e^{-S(A, \bar{\rho}, \mu, \varrho)} \Psi(\varrho, \mu)
\end{aligned}
$$

Beyond one-loop - see below.
Now we can project to physical state in linear polarization:

$$
\Psi\left(\Omega^{3,0}, \Omega^{2,1}\right)=<\Omega^{2,1}, \Omega^{3,0}|\Pi| \psi>,
$$

Claim: the following choice leads to desired result -

$$
\psi(\bar{\varrho}, \bar{\mu})=\delta(\bar{\mu}) \exp \int_{M} \bar{\varrho}
$$

The reasoning for such choice: this wave function in the $(\varrho, \mu)$-polarization is given by:

$$
\psi(\varrho, \mu)=\delta(\varrho-1)
$$

This corresponds to the fixing of the holomorphic volume form (stated differently - to the choice of the closed string coupling constant).

Thus we have:

$$
\begin{aligned}
& \Psi\left(\Omega^{3,0}, \Omega^{2,1}\right)=\int D \bar{\mu} D \bar{\varrho} e^{-S\left(\Omega^{3,0}, \Omega^{2,1}, \bar{\mu}, \bar{\varrho}\right)} \delta(\bar{\mu}) \exp \int_{M} \bar{\varrho}= \\
& \quad=\delta\left(\Omega^{3,0}-\Omega_{0}\right) \exp \left(-\int_{M} \frac{1}{6}<\Omega^{2,1}, \Omega^{2,1}, \Omega^{2,1}>\right)
\end{aligned}
$$

Final answer after the action of projector:

$$
\begin{gathered}
\Psi\left(\Omega^{3,0}, \Omega^{2,1}\right)=\Psi\left(\rho_{0}, \chi, x, \lambda, \widetilde{\lambda}\right)= \\
=\mathrm{const} \int D b e^{-\int\left(\frac{1}{2} \partial b \bar{\partial} b+\frac{1}{6}<(x+\partial b),(x+\partial b),(x+\partial b)>\right)}
\end{gathered}
$$

Consider the following formal path integral:

$$
Z=\int_{(x+d \phi) \in U_{-}} d \phi \int D k e^{\int_{M} \frac{1}{\sqrt{\frac{1}{6} t r k^{2}}}(x+d \phi) k(x+d \phi)}
$$

$x$ - some fixed element of $H^{3}(M, \mathbf{R})$,
$\phi$ - a two-form and $k \in \operatorname{End}\left(T^{*} M\right)$ acts on arbitrary differential form as an element of the Lie algebra.

The equations of motion for $k$ are algebraic and its solution is

$$
k=\rho K_{\Omega}
$$

for $\Omega=(x+d \phi)$ with $\rho$ being an arbitrary non-zero function. Substituting this solution into the action in action one finds that (in the classical approximation over $k$ ) the theory is equivalent to:

$$
Z=\int_{U_{-}} D \phi e^{\sqrt{-\lambda(x+d \phi)}}
$$

Note that latter does not depend on $\rho$.
This should be compared with well-known procedure in two dimensions. Mainly - start with Polyakov formulation of the string moving in $d$ dimension:

$$
Z=\int\left(\prod_{a=1}^{p} d \phi^{a}\right) D g_{i j} e^{\int_{M} \sqrt{g} g^{i j} \sum_{a=1}^{p} \partial_{i} \phi^{a} \partial_{j} \phi^{a}}
$$

In two dimensions the analog of $k$ can be explicitly described in terms of the metric as:

$$
k_{i}^{j}=|g| \epsilon_{i k} g^{k j}
$$

One has $\operatorname{tr} k^{2}=2|g|$.
Then the action in 2 d is given by

$$
S=\int_{M} \frac{1}{\sqrt{\frac{1}{2} \operatorname{trk}^{2}}} \sum_{a=1}^{p} d \phi^{a} \wedge\left(k d \phi^{a}\right) .
$$

One can get rid of $k$ using its equations of motion, so result is a Nambu-Goto action:

$$
S=\int_{M} \sqrt{\operatorname{det}_{i, j=1,2}\left(\sum_{a=1}^{p} \partial_{i} \phi^{a} \partial_{j} \phi^{a}\right)}
$$

Note that the proper generalization of the metric in two dimensions in this context is given by the non-normalized operator of the complex structure $k$.

In 2 d if one integrates out $\phi^{a}$ instead:

$$
\mathcal{S}=p \iint \sqrt{g} R \frac{1}{\Delta(g)} \sqrt{g} R=\Gamma(\mu)+\Gamma(\bar{\mu})+S_{\text {Liouv }}(\rho, \mu, \bar{\mu})
$$

where we parametrized the metric:

$$
d s^{2}=g_{i j} d \zeta^{i} d \zeta^{j}=e^{\rho}|d z+\mu d \bar{z}|^{2}
$$

Here we explained that KS action is analog of $\Gamma(\mu)$ and Hitchin action is analog of Liouville action.

7d CS theory of 3-forms is an analog of $S L(2, R)$ CS action describing 2 d gravity for 3 -manifold $\Sigma \times R$.

Q1: In 2d - theory defined via gravitational WZW action $\Gamma(\mu)$ is equivalent to Liouville theory. Is this true in 6 d ?

Q2: Can one describe $K S$ theory as a simple field theory similar to what we know in 2 d ?

Yes! To do this we need to consider 4 complex dimensional non-compact CY manifold $N$ with original 3d compact CY $M$ being a divisor in $N$. Theory of free fermions in 8 d interacting with three forms on divisor $M$ (complex boundary for $N$ ) gives full answer for $Z(\lambda, t)$.

Above statement is a conjecture for 3 complex dimensional CY, but it is a theorem for 0-dimensional CY - point. Latter - $c<1$ noncritical strings where exact answers are known due to Kontsevich.

