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Topological strings in Mathematics and Physics

Mathematics

- Gromov-Witten Theory (A-model)
- Deformation theory, complex structures, non-commutative
geometry (B-model)
- Mirror Symmetry (relation between A and B models)
- Donaldson-Witten invariants (4d Mirror formula) etc.
......

Physics

- Toy model for String Theory (most likely integrable)
- Gauge theories (brane construction in string theory)
- Black Holes
- Non-critical Strings
- Open/close correspondence (Gauge/Gravity relation)
.....



Physical picture

2d (SUSY) Sigma model - defined through classical action
(and corresponding path integral): the functional on the
space of maps Φ (and sections ψ)

S =
1
f2

∫

Σ

1
2
gIJ(Φ)∂zφ

I∂z̄φ
J + +fermions

Σ - Riemann surface; z, z̄ - local coordinates

V -Riemannian manifold of metric g; φI - local coordinates

Φ - a map: Σ → V ; φI(z, z̄) - in local coordinates

K (K) - the canonical (anti-canonical) line bundles of Σ (the
bundle of one forms of types (1, 0) ((0, 1)))

TV - complexified tangent bundle of V .

to get supersymmetry ⇒ add some set of Grassmann vari-
ables ψI

+, ψI
− - sections of K1/2⊗Φ∗(TV ) and K̄1/2⊗Φ∗(TV ).

Suppose V - Kähler → N = 2 SUSY → extra term (TV =
T 1,0V + T 0,1V and φi, φī = φ̄i, ψi, ψī):

S ′ = iθ

∫

Σ

1
2
gij̄

(
∂zφ

i∂z̄φ
j̄ − ∂z̄φ

i∂zφ
j̄
)

Topological A and B models are two different topological
twists of same physical sigma model.



A-model

χ - section of Φ∗(TV )

ψī
+ - (1, 0) form on Σ with values in Φ∗(T 0,1V );

ψī
+ = ψī

z.

ψi
− - (0, 1) form with values in Φ∗(T 1,0V ); ψi

− = ψi
z̄.

Topological transformation laws - one can define the action
of certain operator δ acting on field space such that δ2 = 0.

Let t = θ + i
f2 , where θ and f are some real numbers (cou-

plings).

Action:

S =
1
f2

∫

Σ

d2z δR + t

∫

Σ

Φ∗(ω)

R = gij̄

(
ψī

z∂z̄φ
j + ∂zφ

īψj
z̄

)
,

∫

Σ

Φ∗(ω) = i

∫

Σ

d2z
(
∂zφ

i∂z̄φ
j̄gij̄ − ∂z̄φ

i∂zφ
j̄gij̄

)

– the integral of the pullback of the Kähler form ω = −igij̄dzidzj̄ .

∫
Φ∗(ω) - depends only on the cohomology class of ω and

the homology class β ∈ H2(V ) of the image of the map Φ.



Definition. Observable {Oi} – a functional of the fields,
s.t. δOi = 0.

Definition. Physical observable = a δ - cohomology class,
Oi ∼ Oi + δΨi.

Definition. Correlator - path integral:

〈
∏
a

Oa〉β = e
−2πt

∫
β

ω
∫

Bβ

Dφ Dχ Dψ e
− 1

f2 δ
∫

R ·
∏
a

Oa.

Bβ - the component of the field space for maps of degree
β = [Φ(Σ)] ∈ H2(V,Z), and 〈 〉β - degree β contribution to
the expectation value.

Correlators of the observables depend only on their
δ-cohomology class, in particular — independent of
the complex structure of Σ and V , and depend only
on the cohomology class of the Kähler form ω.

Correlator is independent of f2. If f2 → ∞ - Gaussian
model.

Bosonic part of the Action

it

∫
Φ∗(ω) +

1
f2

∫

Σ

gij̄(φ)∂zφ
j̄∂z̄φ

i

for given β is minimized by holomorphic map:

∂z̄φ
i = ∂zφ

ī = 0.

The entire path integral, for maps of degree β, reduces to an
integral over the space of degree β holomorphic maps Mβ .



Pick an n-form W = WI1I2...In(φ)dφI1 ∧ dφI2 ∧ . . .∧ dφIn on
V ⇒ a local functional

OW (P ) = WI1I2...In
(Φ(P ))χI1 . . . χIn(P ).

δOW = −OdW ,

d the exterior derivative on V .

⇒ W 7→ OW - natural map from the de Rham cohomology
of V to the space of physical observables of quantum field
theory A(V ). For local operators - isomorphism.

Let d - be the DeRham differential on Σ. We have descend
equations:

dOW = δO(1)
W ,

∮
C
O(1)

W - 1-observable. The physical ob-
servable depends on the homology class of C in H1(Σ).

dO(1)
W = δO(2)

W ,
∫
Σ
O(2)

W - 2-observable.

Deformations (preserving δ): change the action as follows:

ST = S + T a

∫

Σ

OWa

T a are the formal parameters (nilpotent). The path integral
with the action ST computes the generating function FA(T )
of the correlation functions of the two-observables:

FA(T ) = 〈e−
∫
Σ
S(T )〉

S(0) = S,
∂S
∂T a

|T=0 =
∫

Σ

OWa



B - model

ψī
± - sections of Φ∗(T 0,1Ṽ )

ψi
+ - section of K ⊗ Φ∗(T 1,0Ṽ )

ψi
− - section of K ⊗ Φ∗(T 1,0Ṽ ).

ρ - one form with values in Φ∗(T 1,0Ṽ ); ρi
z = ψi

+, ρi
z̄ = ψi

−

ηī = ψī
+ + ψī

−

θi = gīi

(
ψī

+ − ψī
−

)

all fields above are valued in Grassmann algebra

Action:

S =
1
f2

∫

Σ

d2z
(
gIJ∂zφ

I∂z̄φ
J + iηī(Dzρ

i
z̄ + Dz̄ρ

i
z)gīi

+iθi(Dz̄ρz
i −Dzρz̄

i) + Rīijj̄ρ
i
zρ

j
z̄η

īθkgkj̄
)

.

As in A model here also exists operation δ (which depends
on complex structure) acting on fields such that δ2 = 0 and
again one can rewrite the action using δ:

S =
1
f2

∫
δU + S0



U = gij̄

(
ρi

z∂z̄φ
j̄ + ρi

z̄∂zφ
j̄
)

S0 =
∫

Σ

(
−θiDρi − i

2
Rīijj̄ρ

i ∧ ρjηīθkgkj̄

)
.

B theory is independent of the complex structure of Σ and
the Kähler metric of Ṽ . Change of complex structure of Σ
or Kähler metric of Ṽ - Action changes by irrelevant terms
of the form δ(. . .).

The theory depends on the complex structure of Ṽ ,
which enters δ

B model is independent of f2; take limit f2 → ∞; In this
limit, one expands around minima of the bosonic part of the
Action = constant maps Φ : Σ → Ṽ :

∂zφ
i = ∂z̄φ

i = 0

The space of such constant maps is a copy of Ṽ ; the path
integral reduces to an integral over Ṽ .



Observables:

Consider (0, p) forms on Ṽ with values in ∧qT 1,0Ṽ , the qth

exterior power of the holomorphic tangent bundle of Ṽ .

W = dz̄i1dz̄i2 . . . dz̄ipWī1 ī2...̄ip

j1j2...jq
∂

∂zj1

. . .
∂

∂zjq

W is antisymmetric in the j’s as well as in the ī’s.

Form local operator:

OW = ηī1 . . . ηīpWī1...̄ip

j1...jqθj1 . . . θjq .

δOW = −O∂̄W ,

OW is δ-invariant iff ∂̄W = 0 and δ-exact if W = ∂̄S for
some S.

W 7→ OW - natural map from ⊕p,qH
p(V,∧qT 1,0V ) to the

δ-cohomology of the B model. It is isomorphism for local
operators.

The story of Correlators in B model, Descend Equations, De-
formation of the action by 2-observables, Generating func-
tion FB(T ) is completely parallel.

ST = S + T a

∫

Σ

O(2)
a

FB(T ) =< e−S(T ) >



• Interesting examples of the deformations:

W = µj
ī

∂
∂zj dz̄j̄ - deformation of the complex structure of Ṽ

W = W (z) - holomorphic function (for non-compact Ṽ )- sin-
gularity (Landau-Ginzburg in physical terminology) theory

W = 1
2πij ∂

∂zi ∧ ∂
∂zj - non-commutative deformation.

Type A sigma models: Gromov-Witten theory

Given a set of submanifolds C1, . . . , Ck, Ci ⊂ V , compute
the number NC1,...,Ck;β of rigid genus g holomorphic curves
Σ ⊂ V , [Σ] = β ∈ H2(V ;Z) passing through them

The cycles in H∗(V ) represented by C1, . . . , Ck are Poincare
dual to some cohomology classes ω1, . . . , ωk ∈ H∗(V ).

Type B sigma models: Kodaira-Spencer theory

S - space of generalized (in the sense of Kontsevich-Witten)
deformations of cmplx structures of variety Ṽ (mirror to V ).

The tangent space to S at some point s represented by a
variety Ṽs is given by:

TsS =
⊕
p,q

Hp
(
Ṽs, ΛqTṼs

)
≡

⊕
p,q

H−q,p(Ṽs)

Let T denote special coordinates on this space.



Mirror formula

∑

n;{k1,...,kn}

T k1 . . . T kn

n!

〈
O(0)

a O(0)
b O(0)

c

∫

Σ

O(2)
k1

. . .

∫

Σ

O(2)
kn

〉

A

=
∂3FB (T )

∂T a∂T b∂T c

Type A sigma model on V = Type B sigma model on Ṽ

For Kähler manifolds:

hp,q(V ) = h−p,q(Ṽ )

The concept of mirror symmetry extends to V symplectic
and Ṽ complex.

Mirror exchanges kähler (A) and complex (B) deformations.



Space-Time description - String Field Theory

Here we discuss the case of CY target space (3-complex di-
mensional with c1 = 0; (3,0) form - uniquely defined up to
the multiplication by the non-zero complex number)

A-model - world-sheet instantons → local field theory?

B-model - constant maps→ one expects to have local theory.

- Let M be a compact Calabi-Yau (CY) manifold.

- Calibrated CY manifold - a pair (M, Ω0) where M is a CY
manifold supplied with a holomorphic (3, 0)-form Ω0.

Moduli space M̂M of the calibrated CY manifolds is a C∗-
bundle over moduli space MM of complex structures on M .

Fixing particular holomorphic (3, 0)-form Ω0 defines, locally,
a section of the bundle.

Choice of complex structure:

D = D1,0 + D0,1 = ∂ + ∂̄

Ω−p,q(M) ≡ Ωq(M,∧pT ), where T is a holomorphic tangent
bundle.



- (zi, z̄ ī) be local coordinates on M

- A ∈ Ω−1,1(M), (−1, 1)-differential written locally as:

A =
∑

A
j

īdz̄i ∂

∂zj

Deformation of the complex structure - deformation of the
operator D0,1 = ∂̄ :

∂̄ → ∂̄A = ∂̄ + A =
∑

dzi(
∂

∂z̄i
+ A

j

ī

∂

∂zj
)

subject to integrability condition - Kodaira-Spencer equa-
tion:

∂̄2
A

= 0

∂̄A +
1
2
[A,A] = 0

(∂̄īA
k

j + A
l

ī∂lA
k

j )dz̄i ∧ dz̄j ∂

∂zk
= 0

The moduli space of complex structures - space of the solu-
tions of KS equation modulo the gauge transformations

δA = ∂̄Aε = ∂̄ε + [A, ε]

where ε ∈ Ω−1,0(M).



Equivalently - solutions of the pair of the equations:

∂̄A +
1
2
[A,A] = 0

∂A = 0

modulo the subgroup of the gauge transformations which
leave the holomorphic three-form Ω0 invariant.

Given a holomorphic (3, 0)-form Ω0 we could identify Ω−p,q(M)
with (3− q, p)-forms Ω3−p,q(M):

Ω−p,q(M) → Ω3−p,q(M)

A → A∨ = A ` Ω0

One can parametrise (2,1) form A∨ as:

A
∨

= x + ∂b

where x is a ∂-closed (2, 1)-form and b ∈ Ω1,1(M).

Now the KS equation becomes the equation for b

∂̄∂b +
1
2
∂((x + ∂b) ◦ (x + ∂b)) = 0

Operation ◦ is defined as:

A∨ ◦B∨ = (A ∧B) ` Ω0,



This equation has a meaning of anti-holomorphicity for fol-
lowing (1,2)-current:

J̄ (1,2) = ∂̄b +
1
2
(x + ∂b) ◦ (x + ∂b); ∂J̄ (1,2) = 0

The action functional, String Field Theory Action, leading
to the above equations of motion is:

SKS(b|x) =
∫

M

(
1
2
∂b∧ ∂̄b+

1
6

< (x+∂b), (x+∂b), (x+∂b) >)

Here we use another notation:

< A∨, B∨, C∨ >= A∨ ∧ (B∨ ◦ C∨),

where A∨ = A ` Ω0, B∨ = B ` Ω0, C∨ = C ` Ω0.

This action is equivalent to the action introduced by BCOV
(Bershadsky, Cecotti, Ooguri and Vafa, 1993) but is written
in slightly different variables.

- ZKS(T ): Partition function of the space-time quantum field
theory, KS theory

ZKS(x) =
∫

[db]e−
1
λ SKS(b|x)

λ - Plank constant in space-time field theory (coupling con-
stant)



BCOV conjecture:

ZKS(x) = exp
∑

g

λ2g−2Fg(T )

Fg(T ) - FB(T ) for genus g

x - related to special coordinates T .



KS theory in terms of 7d quadratic field theory

Functional integral with the action KS action:

Z(x) =
∫

Db e−SKS(b|x)

integral representation of some particular wave function in
the 7d field theory on M ×R with the action functional:

S(C) =
∫

M×R

CdC

C - real 3-form.
This “space-time” quantum field - higher dimensional gen-
eralization of the 3d abelian Chern-Simons but for 3-forms.

In 6 + 1 notations for local coordinates (xi, t) on M ×R:

S =
∫

M×R

dt d6x (Ω
∂

∂t
Ω + ωtdΩ)

where C = Ω + ωtdt;
Ω - a three-form component of C along M

ωt dt - a two-form along M and one-form along R.

We proceed in Hamiltonian formalism.



Consider the infinite-dimensional space of real 3-forms on M
supplied with the symplectic structure:

ωsymp(δ1Ω, δ2Ω) =
∫

M

δ1Ω ∧ δ2Ω

The phase space for 7d-theory is obtained - Hamiltonian
reduction via first class constraint (H3(M,R)):

dΩ = 0

One needs to choose the polarization (before Hamiltonian
reduction) for symplectic form and impose the constraint on
wave function in given polarization.



Linear Polarization

Here we first intriduce the complex structure on CY which
induces the complex structure on H3.

If ΩC denotes complex 3-form we choose the complex struc-
ture on M and:

ΩC = Ω3,0 ⊕ Ω2,1 ⊕ Ω1,2 ⊕ Ω0,3

The real forms are singled out by the reality condition:

Ω0,3 = Ω0,3, Ω1,2 = Ω2,1

The subspace:

Ω3,0 ⊕ Ω2,1

defines the complex Lagrangian (linear) sub-manifold in the
space of complex 3-forms → the complex polarization of the
space of real three-forms. Parameterize this subspace as:

Ωc = ρ(Ω0 + A ` Ω0)

Ω0 - fixed normalized holomorphic (3, 0)-form in a reference
complex structure
ρ - function on M

A - (−1, 1)-differential.



Non-linear polarization (following Hitchin)

Here we first introduce the complex structure on H3 which
defines the complex structure on CY.

Special properties of 3-forms in six dimensions → possibility
to decompose any generic real three-form as a sum of two
(possibly complex conjugate) decomposable 3-forms:

Ω = Ω+ + Ω− = E1 ∧ E2 ∧ E3 + E4 ∧ E5 ∧ E6

Ei’s - some 1-forms. Generically Ω− ∧Ω+ 6= 0 and Ei’s pro-
duce the frame in the complexified cotangent bundle T ∗CM
to M .

This representation follows from the existence of the open
orbit of the group GL(V ) acting on ∧3V ∗ where V a 6d
vector space.

One could explicitly reconstruct the decomposable forms Ω±
as follows:

Let Ap
M be the space of the real p-forms on M and V ectM

be the space of vector fields. Given a three-form Ω, consider
the operator KΩ:

KΩ : V ectM → A5
M ' V ectM ⊗A6

M ,

defined as:
v → (v ` Ω) ∧ Ω.



For instance, given the decomposition with real Ei’s, the
action of KΩ on the dual real frame E∗

i is:

KΩ : E∗
i → E∗

i , i = 1, 2, 3,

KΩ : E∗
i → −E∗

i , i = 4, 5, 6.

Let K∗
Ω be the group action of KΩ on Ap(M). Then:

2Ω+ = Ω + λ(Ω)−3/2K∗
ΩΩ,

2Ω− = Ω− λ(Ω)−3/2K∗
ΩΩ,

where:
λ(Ω) =

1
6
tr K2

Ω ∈ (A6
M )⊗2

Decomposition is non-degenerate (i.e Ω+ ∧Ω− has no zeros)
if the form λ(Ω) has no zeros.

The sign of λ(Ω) defines whether Ω± are real (λ(Ω) > 0) or
complex conjugate to each other Ω− = Ω+ (λ(Ω) < 0). De-
note the corresponding subspaces in the space of real three-
forms by U+ and U−.

In the case Ω ∈ U− the operator I

IΩ = (−λ(Ω))−1/2KΩ,

defines the (pseudo)complex structure. The condition of the
integrability of this complex structure:

dΩ = dΩ̂ = 0,



where Ω̂ ≡ Ω+ − Ω−. Note that Ω + iΩ̂ is a holomorphic
(3, 0)-form without zeros in this complex structure.

Condition of integrability of this complex structure - condi-
tion for the critical points of the functional Φ(Ω) written in
terms of the closed three-form Ω, dΩ = 0

Φ(Ω) =
∫

M

√
|λ(Ω)|

The variation of this functional is given by:

δΦ(Ω) = −
∫

M

Ω̂ ∧ δΩ.

The following relation holds

Ω+ ∧ Ω− =
1
2
Ω ∧ Ω̂ = (λ(Ω))1/2.

Let us restrict the space of three-forms Ω by the condition:
dΩ = 0, and fix the class of Ω in H3(M,R). Such three-forms
may be parameterized by two-form φ as: Ω = x + dφ, where
x is some fixed closed three-form [Ω− x] = 0 in H3(M,R).

The critical points of the functional Φ(Ω) under the variation
δΩ = dδϕ are given by the solutions of the equation dΩ̂ = 0.



Given the cohomology class of the real closed 3-form on M ,
and using the critical point condition one could reconstruct
unambiguously the holomorphic structure and the holomor-
phic non-degenerate (3, 0)-form Ω+ iΩ̂ on M ; thus M has a
trivial canonical class.

One can show (Hitchin) that up to the action of the diffeo-
morphisms the critical point is isolated, so it defines the map
of the subspace of H3(M,R) (such that the corresponding
critical value Ω is in U−) into the extended moduli space of
complex structures M̂M .

Consider the 3-forms in U−:

Ω = Ω+ + Ω− = E1 ∧ E2 ∧ E3 + E
1 ∧ E

2 ∧ E
3

with Ei being complex one-forms.

The subspace of the decomposable forms defines the La-
grangian family:

ωsymp(δ1Ω+, δ2Ω+) =
∫

δ1(E1∧E2∧E3)∧δ2(E1∧E2∧E3) = 0

Locally the decomposable three-form Ω+ may be parameter-
ized as:

Ω+ =
1
6
εijk%(dzi + µi

īdz̄ ī)(dzj + µj

j
dz̄j)(dzk + µi

k
dz̄k) =

= %(Ω0 + µ ` Ω0 +
1
2
µ2 ` Ω0 +

1
6
µ3 ` Ω0) = %eµ`Ω0

here µ ∈ Ω−1,1(M) and % is a function on M and we use the
notations µn `:= (µ `)n.



Wave-function in linear polarization

Wave-functions - functions of Ω3,0,Ω2,1 subject to constraints
(reduction). In this polarization the constraint equations
dΩ = 0:

∂̄Ω3,0 + ∂Ω2,1 = 0,

∂̄Ω2,1 + ∂Ω1,2 = 0,

∂̄Ω1,2 + ∂Ω0,3 = 0,

Quantum mechanically take the form of the following equa-
tions on the wave function Ψ(Ω3,0, Ω2,1)

(∂̄Ω3,0 + ∂Ω2,1)Ψ = 0

(∂̄Ω2,1 + ∂
δ

δΩ2,1
)Ψ = 0

(∂̄
δ

δΩ2,1
+ ∂

δ

δΩ3,0
)Ψ = 0

The formal solution can be written in terms of the path
integral. Given an arbitrary function Ψ0(Ω3,0, Ω2,1), one can
construct the formal solution representing it in the form:

Ψ(Ω3,0, Ω2,1) = (ΠΨ0)(Ω3,0, Ω2,1)

where the projection operator Π is given by:

Π =
∫

DΛ Dσ Db e

∫
M

Λ(∂̄Ω3,0+∂Ω2,1)
e

∫
M

σ(∂̄ δ

δΩ2,1 +∂ δ

δΩ3,0 )×

×e

∫
M

b(∂̄Ω2,1+∂ δ

δΩ2,1 )

The only restriction on Ψ0 is the convergence of the integrals.



Use parametrization of 3-forms in terms of function ρ, (2,0)-
form χ and (1,1)-form λ:

Ω3,0 = ρ0Ω0 + ∂χ

Ω2,1 = x + ∂λ− ∂̄χ

where x is a ∂-closed (2,1)-form.

In these variables the projected wave-function is:

Ψ(Ω3,0, Ω2,1) = Ψ(ρ0, χ, x, λ) = e
−

∫
M

( 1
2 ∂λ∂̄λ)×

∫
Dσ Db e

−
∫

M
( 1
2 ∂b∂̄b+∂̄b∧∂λ)Ψ0(ρ0Ω0 − ∂σ, x− ∂b− ∂̄σ)

The scalar product of the wave functions in given by:

< Ψ1|Ψ2 >=
∫

DΩ3,0 DΩ2,1 DΩ1,2 DΩ0,3 e

∫
M

(Ω3,0∧Ω0,3+Ω2,1∧Ω1,2)×

×Ψ1(Ω0,3, Ω1,2)Ψ2(Ω3,0, Ω2,1)

where integration is over the real subspace Ω0,3 = Ω3,0,
Ω1,2 = Ω2,1.



Wave-functions in non-linear polarization

In this polarization wave-functions depend on subspace de-
fined by Ω+.

Ω+ = %(Ω0 + µ ` Ω0 +
1
2
µ2 ` Ω0 +

1
6
µ3 ` Ω0)

Ω− = Ω+ = %(Ω0 + µ ` Ω0 +
1
2
µ2 ` Ω0 +

1
6
µ3 ` Ω0)

Scalar product - defined via canonical transformation from
variables µ, ρ to µ̄, ρ̄:

∑

i

PiδQ
i −

∑

i

piδq
i = δS(Q, q)

We find:

S(ρ, µ; ρ̄, µ̄) = Ω−(%, µ) ∧ Ω+(%, µ)

and:

< Ψ1|Ψ2 >=
∫
D(µ, µ, %, %)e

∫
M

Ω−(%,µ)∧Ω+(%,µ)Ψ1(%, µ)Ψ2(%, µ)

Note - the exponential factor is Hitchin functional

Ω+(Ω) ∧ Ω−(Ω) = −
√

λ(Ω)

Imposing the constraints in this polarization - quite trivial
procedure.



The constraints generate the gauge transformations:

Ω = Ω+ + Ω− → Ω + dφ =

= (Ω+ + δΩ+(Ω±, φ)) + (Ω− + δΩ−(Ω±, φ))

and the transformations of Ω± is highly non-linear in terms
of the initial Ω± - in this polarization the gauge transforma-
tion mixes “coordinates” and “momenta” in a complicated
way and the constraints are given by rather complex differ-
ential operators acting on the wave function.

We use the following strategy:
1. start with the simple unconstrained wave-function in the
non-linear polarization
2. transform this wave function into the corresponding wave
function in the linear polarization
3. impose the constraints.

This gives us the constraint wave function in the linear po-
larization whose particular form reflects the simplicity of the
initial wave function in the non-linear polarization.



We construct the generating function S(A, ρ̄|µ, %) from the
”old coordinates” ρ̄, A to new coordinates %, µ using two def-
initions of Ω given above:

ρΩ0 = %Ω0 +
1
6
% µ3 ` Ω0

ρA ` Ω0 = %µ ` Ω0 +
1
2
% µ2 ` Ω0

ρA ` Ω0 = % µ ` Ω0 + %
1
2
µ2 ` Ω0

ρ Ω0 = % Ω0 +
1
6
%µ3 ` Ω0

Define:
< µ3 > Ω0 ∧ Ω0 =

1
6
Ω0 ∧ (µ3 ` Ω0)

< µ3 > Ω0 ∧ Ω0 =
1
6
Ω0 ∧ (µ3 ` Ω0),

µ∨ ` Ω0 =
1
2
µ2 ` Ω0.

Answer for S is:

S(A, ρ|µ, %) =
∫

M

((ρ%+%2 < µ3 > +
< (Aρ− %µ∨)3 >

(ρ− % < µ3 >)
)Ω0∧Ω0+

+ρ%(µ ` Ω0) ∧ (A ` Ω0))



Semi-classical approximation (classical and one-loop) for quantum-
mechanical wave function is given by path integral:

Ψ(%, µ) =
∫

DρDA eS(A,ρ,µ,%)Ψ(ρ, A)

Ψ(ρ,A) =
∫

DρDA e−S(A,ρ,µ,%)Ψ(%, µ)

Beyond one-loop - see below.

Now we can project to physical state in linear polarization:

Ψ(Ω3,0,Ω2,1) =< Ω2,1,Ω3,0|Π|ψ >,

Claim: the following choice leads to desired result -

ψ(%, µ) = δ(µ) exp
∫

M

%

The reasoning for such choice: this wave function in the
(%, µ)-polarization is given by:

ψ(%, µ) = δ(%− 1)

This corresponds to the fixing of the holomorphic volume
form (stated differently - to the choice of the closed string
coupling constant).



Thus we have:

Ψ(Ω3,0, Ω2,1) =
∫

DµD% e−S(Ω3,0,Ω2,1,µ,%)δ(µ) exp
∫

M

% =

= δ(Ω3,0 − Ω0) exp(−
∫

M

1
6

< Ω2,1, Ω2,1, Ω2,1 >).

Final answer after the action of projector:

Ψ(Ω3,0,Ω2,1) = Ψ(ρ0, χ, x, λ, λ̃) =

= const

∫
Db e−

∫
( 1
2 ∂b∂̄b+ 1

6 <(x+∂b),(x+∂b),(x+∂b)>)



Consider the following formal path integral:

Z =
∫

(x+dφ)∈U−
dφ

∫
Dk e

∫
M

1√
1
6 trk2

(x+dφ)k(x+dφ)

x - some fixed element of H3(M,R),
φ - a two-form and k ∈ End(T ∗M) acts on arbitrary differ-
ential form as an element of the Lie algebra.

The equations of motion for k are algebraic and its solution
is

k = ρKΩ

for Ω = (x+dφ) with ρ being an arbitrary non-zero function.
Substituting this solution into the action in action one finds
that (in the classical approximation over k) the theory is
equivalent to:

Z =
∫

U−
Dφ e

√
−λ(x+dφ)

Note that latter does not depend on ρ.

This should be compared with well-known procedure in two
dimensions. Mainly - start with Polyakov formulation of the
string moving in d dimension:

Z =
∫ (

p∏
a=1

dφa

)
Dgij e

∫
M

√
ggij

∑p

a=1
∂iφ

a∂jφa



In two dimensions the analog of k can be explicitly described
in terms of the metric as:

kj
i = |g|εikgkj

One has tr k2 = 2|g|.
Then the action in 2d is given by

S =
∫

M

1√
1
2 trk2

p∑
a=1

dφa ∧ (kdφa).

One can get rid of k using its equations of motion, so result
is a Nambu-Goto action:

S =
∫

M

√√√√ det
i,j=1,2

(
p∑

a=1

∂iφa∂jφa)

Note that the proper generalization of the metric in two
dimensions in this context is given by the non-normalized
operator of the complex structure k.

In 2d if one integrates out φa instead:

S = p

∫ ∫ √
gR

1
∆(g)

√
gR = Γ(µ) + Γ(µ̄) + SLiouv(ρ, µ, µ̄)

where we parametrized the metric:

ds2 = gijdζidζj = eρ|dz + µdz̄|2



Here we explained that KS action is analog of Γ(µ) and
Hitchin action is analog of Liouville action.

7d CS theory of 3-forms is an analog of SL(2, R) CS action
describing 2d gravity for 3-manifold Σ×R.

Q1: In 2d - theory defined via gravitational WZW action
Γ(µ) is equivalent to Liouville theory. Is this true in 6d?

Q2: Can one describe KS theory as a simple field theory
similar to what we know in 2d?

Yes! To do this we need to consider 4 complex dimensional
non-compact CY manifold N with original 3d compact CY
M being a divisor in N . Theory of free fermions in 8d in-
teracting with three forms on divisor M (complex boundary
for N) gives full answer for Z(λ, t).

Above statement is a conjecture for 3 complex dimensional
CY, but it is a theorem for 0-dimensional CY - point. Latter
- c < 1 noncritical strings where exact answers are known
due to Kontsevich.


