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N=1 sigma-models

Let M be a manifoldg be a Riemannian metric on

M, andB be a B-field.

Roughly speaking, a B-field is a 2-form dd. Let

H = dB.

More precisely, a B-field is a paii3, H), whereB is a
homomorphisn¥sy(M,Z) — U(1), andH is a closed
3-form on M such that on 2-boundaries one has

B(a) = exp (z /a H)

To the triple(M, g, B) one can associate a classical
field theory withNV = (1,1) SUSY (the
sigma-model).
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N=2 sigma-models

If H=dB =0, and(M, g) is a Kahler manifold with
complex structurd, then the sigma-model has
N = (2,2) SUSY.

Suppose; (M) = 0. Then the quantized sigma-moc
iIsanN = (2, 2) Super-Conformal Field Theory
(SCFT).

M is called a Calabi-Yau manifold K, IS
holomorphically trivial. CY = ¢ (M) = 0.

The CY condition is required to define the
topologically twisted version of the theory (B-mode
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Topological twist

If M 1s Kahler, one can twist the SCFT to a
topological field theory (TFT) known as the A-mod
The A-model Is an invariant of the symplectic

structure on\/.

If M I1s also a Calabi-Yau, there i1s another twist,
which gives another 2d TFT, known as the B-mode
It IS an Invariant of the complex structure Am.

Roughly speaking, twisting amounts to truncating t
space of states and operators to a cohomology of
certain operator (the BRST operator).

Generalized complex geometry and topological sigma-models —



Topological Field Theory

TFT Is essentially the same as a supercommutativ
Frobenius algebra, I.e. a unital supercommutative
algebraA with an invariant metric:

(a,bc) = (ab, c)

Instead of specifying the metric, it is convenient to
specify the trace function oA

tr: A—C, a— (1,a)

Generalized complex geometry and topological sigma-models —



The A-model

For the A-model A is the quantum cohomology ring
of M, which Is a deformation of the De Rham
cohomology ring

o, HP (M, C).

The deformed product depends on the symplectic
structurev = ¢/. The trace Is given by

tr:aH/a, VYa € H*(M).
M
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The B-model

For the B-model A4 i1s the sum of Dolbeault
cohomology groups:

A=, HP(NITX).

Let €2 be a holomorphic trivialization of the canonic
line bundle ofM. The trace function is given by

tr:aH/ QA $2, Yae H(A*TX).
M

It Is nonvanishing only fop = ¢ = n.
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N=2 sigma-models with H-flux
If H = 0, M does not have to be Kahler for the
sigma-model to havél = 2 SUSY.
Necessary and sufficient conditions fgr= 2 SUSY
(Gates, Hull, Rocek, 1984):
« Two complex structures, , /_ such that Is
Hermitian with respect to both.

e V.I. =0, where

Vi =Vioc=* —g_lH.
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Formulation of the problem

« What Is the analogue of the Calabi-Yau
condition?

« What is the geometric meaning of the
corresponding TFTs?

« What is the geometric significance of topologic
D-branes?
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Generalized CY condition |

It IS easy to find the generalization of the weak forr
of the CY condition. For the A-model (resp.

B-model) it is the condition of the vanishing of the
anomaly In the vector (resp. axial) R-current.

Anomaly In the left-moving (resp. right-moving)
R-currentiscy (M, I) (resp.—cy (M, 1_)).

c1(ly) — () =0 = A — twist exists
c1(ly) +c () =0 = B — twist exists
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The BRST cohomology

The theory has four superchargés;, Q_. Q.. Q_.
A-model BRST operator:

Qa=0Q++ Q-
B-model BRST operator:
Qp = Q4+ Q4.

The BRST cohomology of operators:

A = ker|Q), o] /im|Q), o]

The BRST cohomology of any twisted N=2 theory
a supercommutative ring.
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The Dorfman-Courant bracket
If M IS a smooth manifold, one defines a bilinear
operation on the sections 6tV & 1™ M

(X +&o(Y+n) =X Y|+ Lxn— 1ydE.

This operation, known as the Dorfman bracket, is
skew-symmetric, but satisfies a sort of Jacobi iden

Its skew-symmetrization is known as the Courant
bracket.

OnT M & T™* M there is also a metric of signature
(n,n):

(X +&Y +19)=X(n) +Y(E).
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Twisted Dorfman bracket

Let H be a closed 3-form oA/. One can define a
twisted version of the Dorfman bracket:

(X—I—f) Of (Y—I—?]) — [X, Y]-l-[gﬂ?-bydf-l-bxby[‘[.

The (twisted) Dorfman bracket is invariant under
automorphisms of' M & 1% M induced by closed
2-forms:

X+&- X +E+1xB, BeQyM).

This is called a B-field transformation. It is a gauge
symmetry of the classical sigma-model.
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Generalized complex manifolds

A (twisted) generalized complex structure dhis an
endomorphisn? of T'M ¢ T* M such that

e 2= 1.
* q(Zx,Ty) = q(x,y),i.e.qis of type(1,1).

* Let £ be the eigenbundle &f with eigenvalue

—1. 2 must be closed with respect to the
(twisted) Dorfman bracket.

The last condition is the integrability condition for tl
GC structurer.

This notion was introduced by N. Hitchin (2003).
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Examples of GC structures

 If IIs a complex structure o/, then

I 0
=0 )

Is a GC structure.
 If wis asymplectic form o/, then

0 —w !
T —
0 o)

IS a GC structure.
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Generalized Kahler manifolds

A generalized Kahler (GK) structure dvi is a pair of
commuting GC structures, 7 such that the
symmetric bilinear form

G- (TMaeT"M)x (TM®&T"M) — R,

G(z,y) = q(Zx, Jy),

IS positive-definite.

Rationale: IfZ Is made from a complex structure
and.7 is made from a symplectic form, then(Z, )

define a GK structure iff/, w) define a Kéhler
structure.
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The Gualtieri theorem (2003)

Letg, I, I_, H be the geometric data on a manifolc
M satisfying the constraints imposed by N=2 SUS

Let
L (1. +1_ —w;l £
L= v Y

be an endomorphism GiM ¢ T*M. Let J be
another such tensor obtained franby /_ — —1_,
w_ — —w_. ThenZ andJ define a twisted GK
structure onV/. Moreover, anyG K structure on\/
arises in this way, up to a B-field transform.
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Lie algebroids |

From a GC structure we get a complex Lie algebra

Definition 1 A complex Lie algebroid oveV! is a
triple (E, |e, o], a), whereFE is a complex vector

bundle over)/, |e, o] is a Lie bracket oi’(E), and
a: E — TMcis alLie algebra homomorphism suct

thatVs;, s, € T(E),Vf € C®(M)
fs1,82] = [ls1,82] —als2)(f) - s1.

A complex Lie algebroid can be thought of as a
“generalizedl' M.

Given a GC-structurg on M, let £ beker(Z + 7).
ThenFE Is a complex Lie algebroid.
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Lie algebroids Il

An equivalent definition (A. Vaintrob, 1997):

Definition 2 A complex Lie algebroid oveV! is a
pair (£, ), whereE is a complex vector bundle ove
M, and() is a degree-1 vector field on the graded

supermanifoldI £ such that{ @, @} = 0.
Relation between definitions: let be a local
trivialization of E, [e,, eg] = ¢/ 3¢, and
a(eq) = a',0;. Let 0 be fermionic coordinates on
IIE. Let

0
007

ThenFE is a Lie algebroid iff{ @, Q} = 0.
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Lie algebroid cohomology

SinceC*(IIF) ~ I'(A*EY), we can associate to an
Lie algebroid a complex

Q : [(APEY) — T'(APTTEY).
Its cohomology will be called Lie algebroid

cohomology.

Examples: IfE = T M¢, then this is the usual De
Rham complex. If\/ is complex ands = T M,
then this is the complef’* (M), 9).

This illustrates a general principle: any natural
construction o’ M makes sense for arbitrary Lie

algebroids.
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Generalized chiral ring

Computing the BRST-cohomology of operators for
the generalized B-model, one gets the following re
(A.K. and Yi Li, 2004).

Theorem 1 On the classical level, the algebra of th
generalized B-model is iIsomorphic to the Lie
algebroid cohomology ot/ = ker(Z + 7). For the
generalized A-model, one has to replaceith 7.

This suggests that the generalized B-model (resp.
A-model) depends only on the GC structuréresp.
J). This will be confirmed by the computation of th
Frobenius trace (see below).
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Differential forms as spinors

Recall thatl’M & T M has a natural metrig, so it
generates a bundle of Clifford algebras. Using the
natural polarization, its spinor bundle can be
identified with

D, APT* M.

An elementX + ¢ € TM & T* M acts on a formy as
follows:
a— Lxa+ENa
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Forms on a GC manifold

On a GC manifold{ ' M¢ ¢ T Mc has an isotropic
subbundlet. Let U, be a subbundle of* (7™ M)
defined by the condition that it is annihilated by an
element ofF.

We can think of elements dfV as “creation
operators’, and elements afas “annihilation
operators.” Then/, is the “vacuum bundle”, so it
must be a line bundle. We can decompose

VC(M)=Usp Uy & ... Us,,,

whereU,. consists of forms obtained frobq, by the

action ofk elements ofY. The new grading is not
compatible with the wedge product of forms, In
general.
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Generalized Dolbeault complex

Let ;. be a projection td/,.. Let
Op = Tpr10(d—H)om, Op=mp_10(d—H)om,

M. Gualtieri proved

Theorem 2 The integrability off is equivalent to
d— H = 0p + 5E

ThusQ* (M) equipped with the new grading and the
differential O becomes a complex.

If 7 came from a complex structure then
Uk = @p—q=11"(M),

andoy is the usuab.
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Generalized CY condition |
Cancellation of R-anomaly requires

Cl(]_|_) + Cl([_) = —Cl(E) = 0.

Equivalently, this condition says that, is
topologically trivial.

Definition 3 (Hitchin/Gualtieri) The GC manifold is
called a generalized Calabi-Yau if there exists a
trivialization ) of the line bundld/, satisfying

Op€) = 0.
Equivalently, one may requirel — H)S) = 0.
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Generalized B-model |

From the physical viewpoint, gen. CY condition for
ensures the existence of a BRST-invariant measur
the path-integral for the generalized B-model. If it
satisfied, we can write down a formula for the
Frobenius trace on the Lie algebroid cohomology.

Let €2 be the “generalized-holomorphic” section of
Uy, as above. Consider the following automorphisr
of M & T*M:

p:(X,6) — (X,=£), VX eT(TM),V¢eT(TM)

It takes the Dorfman bracket twisted 15§/ to the
Dorfman bracket twisted by H. It also takes the
H-twisted GC structur& and the corresponding for
(2 to — H-twistedZ’, V.
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Generalized B-model ||

Let p be a section oAA*(E"Y) annihilated byQ. It can
be shown (A.K. and Yi Li, 2004) that its Frobenius
trace Is given by

tf(ﬂ)z/Q’Ap-Q,
M

wherep acts on forms via the spinor representatior
If I, =1_, H=0,then

o BV — T*)\f0.1 D TMl’O, Q _ 57
» U, Is the canonical line bundle @/,

so the above formula reduces to the usual one for:
B-model.
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Generalized B-model Il

If . = —1_, H=0,then the generalized B-model
equivalent to the usual A-model. One has

Q — 6’&@)) Q, _ e—iw.
The Lie algebroid? has the form
E={X —1i-1xw|/ X € TM}
It Is Isomorphic to the standard Lie algebrdia/c
via
X —1- LYW F— X.

The same map takes; to d, and2 and(’ to 1, giving
the usual formulas for the A-model.
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Discussion

« To any GK manifold(M,Z, J) satisfying the
generalized CY condition with respectiocone
can associate a TFT whose space of staies
the Lie algebroid cohomology df.

* The ring structure ol coming from physics
may differ from the “classical” one by correctio
coming from “generalized holomorphic
Instantons.”

« There is evidence that this TFT does not depe|
on 7, but this has not been proved yet.

* Presumably, this TFT is the Hochschild
cohomology of some category of D-branes
associated to any GC manifold.
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