Generalized complex geometry and topological sigma-models

Anton Kapustin

California Institute of Technology

Outline

- Review of N = 2 sigma-models and their topologically twisted versions
- N = 2 sigma-models with *H*-flux and generalized complex geometry
- Topological sigma-models with H-flux
- Discussion

Based on hep-th/0310057 (A.K.) and hep-th/0407249 (A.K. and Yi Li).

N=1 sigma-models

Let M be a manifold, g be a Riemannian metric on M, and B be a B-field. Roughly speaking, a B-field is a 2-form on M. Let H = dB. More precisely, a B-field is a pair (\mathcal{B}, H) , where \mathcal{B} is a homomorphism $Z_2(M, \mathbb{Z}) \to U(1)$, and H is a closed 3-form on M such that on 2-boundaries one has

$$\mathcal{B}(\partial \alpha) = \exp\left(i\int_{\alpha}H\right)$$

To the triple (M, g, B) one can associate a classical 2d field theory with N = (1, 1) SUSY (the sigma-model).

N=2 sigma-models

If H = dB = 0, and (M, g) is a Kähler manifold with complex structure I, then the sigma-model has N = (2, 2) SUSY.

Suppose $c_1(M) = 0$. Then the quantized sigma-model is an N = (2, 2) Super-Conformal Field Theory (SCFT).

M is called a Calabi-Yau manifold if K_M is holomorphically trivial. CY $\implies c_1(M) = 0$.

The CY condition is required to define the topologically twisted version of the theory (B-model).

Topological twist

If M is Kähler, one can twist the SCFT to a topological field theory (TFT) known as the A-model. The A-model is an invariant of the symplectic structure on M.

If M is also a Calabi-Yau, there is another twist, which gives another 2d TFT, known as the B-model. It is an invariant of the complex structure on M.

Roughly speaking, twisting amounts to truncating the space of states and operators to a cohomology of a certain operator (the BRST operator).

Topological Field Theory

TFT is essentially the same as a supercommutative Frobenius algebra, i.e. a unital supercommutative algebra \mathcal{A} with an invariant metric:

$$\langle a, bc \rangle = \langle ab, c \rangle$$

Instead of specifying the metric, it is convenient to specify the trace function on \mathcal{A} :

$$\operatorname{tr}: \mathcal{A} \to \mathbb{C}, \quad a \mapsto \langle 1, a \rangle$$

The A-model

For the A-model, \mathcal{A} is the quantum cohomology ring of M, which is a deformation of the De Rham cohomology ring

 $\oplus_p H^p(M,\mathbb{C}).$

The deformed product depends on the symplectic structure $\omega = gI$. The trace is given by

$$\operatorname{tr}: a \mapsto \int_M a, \quad \forall a \in H^{\bullet}(M)$$

The B-model

For the B-model, \mathcal{A} is the sum of Dolbeault cohomology groups:

$$\mathcal{A} = \oplus_{p,q} H^p(\Lambda^q T X^{1,0}).$$

Let Ω be a holomorphic trivialization of the canonical line bundle of M. The trace function is given by

$$\operatorname{tr}: a \mapsto \int_{M} \Omega \wedge \iota_{a} \Omega, \quad \forall a \in H^{\bullet}(\Lambda^{\bullet} TX).$$

It is nonvanishing only for p = q = n.

N=2 sigma-models with H-flux

If $H \neq 0$, M does not have to be Kähler for the sigma-model to have N = 2 SUSY.

Necessary and sufficient conditions for N = 2 SUSY (Gates, Hull, Rocek, 1984):

- Two complex structures I_+ , I_- such that g is Hermitian with respect to both.
- $\nabla_{\pm}I_{\pm} = 0$, where

$$\nabla_{\pm} = \nabla_{LC} \pm \frac{1}{2}g^{-1}H.$$

Formulation of the problem

- What is the analogue of the Calabi-Yau condition?
- What is the geometric meaning of the corresponding TFTs?
- What is the geometric significance of topological D-branes?

Generalized CY condition I

It is easy to find the generalization of the weak form of the CY condition. For the A-model (resp. B-model) it is the condition of the vanishing of the anomaly in the vector (resp. axial) R-current.

Anomaly in the left-moving (resp. right-moving) R-current is $c_1(M, I_+)$ (resp. $-c_1(M, I_-)$).

> $c_1(I_+) - c_1(I_-) = 0 \implies A - \text{twist exists}$ $c_1(I_+) + c_1(I_-) = 0 \implies B - \text{twist exists}$

The BRST cohomology

The theory has four supercharges: $Q_+, Q_-, \bar{Q}_+, \bar{Q}_-$. A-model BRST operator:

$$Q_A = Q_+ + \bar{Q}_-.$$

B-model BRST operator:

$$Q_B = Q_+ + \bar{Q}_+.$$

The BRST cohomology of operators:

 $\mathcal{A} = \ker[Q, \bullet] / \operatorname{im}[Q, \bullet].$

The BRST cohomology of any twisted N=2 theory is a supercommutative ring.

The Dorfman-Courant bracket

If M is a smooth manifold, one defines a bilinear operation on the sections of $TM \oplus T^*M$:

 $(X+\xi)\circ(Y+\eta)=[X,Y]+\mathcal{L}_X\eta-\iota_Yd\xi.$

This operation, known as the Dorfman bracket, is not skew-symmetric, but satisfies a sort of Jacobi identity. Its skew-symmetrization is known as the Courant bracket.

On $TM \oplus T^*M$ there is also a metric of signature (n, n):

 $q(X + \xi, Y + \eta) = X(\eta) + Y(\xi).$

Twisted Dorfman bracket

Let H be a closed 3-form on M. One can define a twisted version of the Dorfman bracket:

 $(X+\xi)\circ_H(Y+\eta) = [X,Y] + \mathcal{L}_X\eta - \iota_Y d\xi + \iota_X\iota_Y H.$

The (twisted) Dorfman bracket is invariant under automorphisms of $TM \oplus T^*M$ induced by closed 2-forms:

 $X + \xi \mapsto X + \xi + \iota_X B, \quad B \in \Omega^2_{cl}(M).$

This is called a B-field transformation. It is a gauge symmetry of the classical sigma-model.

Generalized complex manifolds

A (twisted) generalized complex structure on M is an endomorphism \mathcal{I} of $TM \oplus T^*M$ such that

- $\mathcal{I}^2 = -1.$
- $q(\mathcal{I}x, \mathcal{I}y) = q(x, y)$, i.e. q is of type (1, 1).
- Let E be the eigenbundle of I with eigenvalue

 -i. E must be closed with respect to the
 (twisted) Dorfman bracket.

The last condition is the integrability condition for the GC structure \mathcal{I} .

This notion was introduced by N. Hitchin (2003).

Examples of GC structures

• If I is a complex structure on M, then

$$\mathcal{I} = \begin{pmatrix} I & 0\\ 0 & -I^{\vee} \end{pmatrix}$$

is a GC structure.

• If ω is a symplectic form on M, then

$$\mathcal{I} = \begin{pmatrix} 0 & -\omega^{-1} \\ \omega & 0 \end{pmatrix}$$

is a GC structure.

Generalized Kähler manifolds

A generalized Kähler (GK) structure on M is a pair of commuting GC structures \mathcal{I}, \mathcal{J} such that the symmetric bilinear form

 $\mathcal{G}: (TM \oplus T^*M) \times (TM \oplus T^*M) \mapsto \mathbb{R},$ $\mathcal{G}(x, y) = q(\mathcal{I}x, \mathcal{J}y),$

is positive-definite.

Rationale: if \mathcal{I} is made from a complex structure I, and \mathcal{J} is made from a symplectic form ω , then $(\mathcal{I}, \mathcal{J})$ define a GK structure iff (I, ω) define a Kähler structure.

The Gualtieri theorem (2003)

Let g, I_+, I_-, H be the geometric data on a manifold M satisfying the constraints imposed by N=2 SUSY. Let

$$\mathcal{I} = \frac{1}{2} \begin{pmatrix} I_{+} + I_{-} & -\omega_{+}^{-1} + \omega_{-}^{-1} \\ \omega_{+} - \omega_{-} & -I_{+}^{\vee} - I_{-}^{\vee} \end{pmatrix}$$

be an endomorphism of $TM \oplus T^*M$. Let \mathcal{J} be another such tensor obtained from \mathcal{I} by $I_- \to -I_-$, $\omega_- \to -\omega_-$. Then \mathcal{I} and \mathcal{J} define a twisted GK structure on M. Moreover, any GK structure on Marises in this way, up to a B-field transform.

Lie algebroids I

From a GC structure we get a complex Lie algebroid. **Definition 1** A complex Lie algebroid over M is a triple $(E, [\bullet, \bullet], a)$, where E is a complex vector bundle over M, $[\bullet, \bullet]$ is a Lie bracket on $\Gamma(E)$, and $a : E \to TM_{\mathbb{C}}$ is a Lie algebra homomorphism such that $\forall s_1, s_2 \in \Gamma(E), \forall f \in C^{\infty}(M)$

$$[fs_1, s_2] = f[s_1, s_2] - a(s_2)(f) \cdot s_1.$$

A complex Lie algebroid can be thought of as a "generalized $TM_{\mathbb{C}}$ ".

Given a GC-structure \mathcal{I} on M, let E be $\ker(\mathcal{I}+i)$. Then E is a complex Lie algebroid.

Lie algebroids II

An equivalent definition (A. Vaintrob, 1997): **Definition 2** A complex Lie algebroid over M is a pair (E, Q), where E is a complex vector bundle over M, and Q is a degree-1 vector field on the graded supermanifold ΠE such that $\{Q, Q\} = 0$.

Relation between definitions: let e_{α} be a local trivialization of E, $[e_{\alpha}, e_{\beta}] = c_{\alpha\beta}^{\gamma} e_{\gamma}$, and $a(e_{\alpha}) = a_{\alpha}^{i} \partial_{i}$. Let θ^{α} be fermionic coordinates on ΠE . Let

$$Q = a^i_{\alpha} \theta^{\alpha} \partial_i + c^{\gamma}_{\alpha\beta} \theta^{\alpha} \theta^{\beta} \frac{\partial}{\partial \theta^{\gamma}}.$$

Then E is a Lie algebroid iff $\{Q, Q\} = 0$.

Lie algebroid cohomology

Since $C^{\infty}(\Pi E) \simeq \Gamma(\Lambda^{\bullet} E^{\vee})$, we can associate to any Lie algebroid a complex

 $Q: \Gamma(\Lambda^p E^{\vee}) \to \Gamma(\Lambda^{p+1} E^{\vee}).$

Its cohomology will be called Lie algebroid cohomology.

Examples: if $E = TM_{\mathbb{C}}$, then this is the usual De Rham complex. If M is complex and $E = TM^{0,1}$, then this is the complex $(\Omega^{0,\bullet}(M), \bar{\partial})$.

This illustrates a general principle: any natural construction on TM makes sense for arbitrary Lie algebroids.

Generalized chiral ring

Computing the BRST-cohomology of operators for the generalized B-model, one gets the following result (A.K. and Yi Li, 2004):

Theorem 1 On the classical level, the algebra of the generalized B-model is isomorphic to the Lie algebroid cohomology of $E = \ker(\mathcal{I} + i)$. For the generalized A-model, one has to replace \mathcal{I} with \mathcal{J} .

This suggests that the generalized B-model (resp. A-model) depends only on the GC structure \mathcal{I} (resp. \mathcal{J}). This will be confirmed by the computation of the Frobenius trace (see below).

Differential forms as spinors

Recall that $TM \oplus T^*M$ has a natural metric q, so it generates a bundle of Clifford algebras. Using the natural polarization, its spinor bundle can be identified with

 $\oplus_p \Lambda^p T^* M.$

An element $X + \xi \in TM \oplus T^*M$ acts on a form α as follows:

 $\alpha \mapsto \iota_X \alpha + \xi \wedge \alpha$

Forms on a GC manifold

On a GC manifold, $TM_{\mathbb{C}} \oplus T^*M_{\mathbb{C}}$ has an isotropic subbundle E. Let U_0 be a subbundle of $\Lambda^{\bullet}(T^*M_{\mathbb{C}})$ defined by the condition that it is annihilated by any element of E.

We can think of elements of E^{\vee} as "creation operators", and elements of E as "annihilation operators." Then U_0 is the "vacuum bundle", so it must be a line bundle. We can decompose

 $\Omega^{\bullet}(M) = U_0 \oplus U_1 \oplus \ldots \oplus U_{2n},$

where U_k consists of forms obtained from U_0 by the action of k elements of E^{\vee} . The new grading is not compatible with the wedge product of forms, in general.

Generalized Dolbeault complex

Let π_k be a projection to U_k . Let

 $\bar{\partial}_E = \pi_{k+1} \circ (d-H) \circ \pi_k, \quad \partial_E = \pi_{k-1} \circ (d-H) \circ \pi_k$

M. Gualtieri proved **Theorem 2** The integrability of \mathcal{I} is equivalent to $d - H = \partial_E + \overline{\partial}_E$. Thus $\Omega^{\bullet}(M)$ equipped with the new grading and the differential $\overline{\partial}_E$ becomes a complex.

If \mathcal{I} came from a complex structure I, then

$$U_k = \bigoplus_{p-q=k} \Omega^{p,q}(M),$$

and ∂_E is the usual ∂ .

Generalized CY condition II

Cancellation of R-anomaly requires

 $c_1(I_+) + c_1(I_-) = -c_1(E) = 0.$

Equivalently, this condition says that U_0 is topologically trivial.

Definition 3 (*Hitchin/Gualtieri*) *The GC manifold is* called a generalized Calabi-Yau if there exists a trivialization Ω of the line bundle U_0 satisfying

 $\bar{\partial}_E \Omega = 0.$

Equivalently, one may require $(d - H)\Omega = 0$.

Generalized B-model I

From the physical viewpoint, gen. CY condition for \mathcal{I} ensures the existence of a BRST-invariant measure in the path-integral for the generalized B-model. If it is satisfied, we can write down a formula for the Frobenius trace on the Lie algebroid cohomology.

Let Ω be the "generalized-holomorphic" section of U_0 , as above. Consider the following automorphism of $TM \oplus T^*M$:

 $p: (X,\xi) \mapsto (X,-\xi), \quad \forall X \in \Gamma(TM), \forall \xi \in \Gamma(T^*M)$

It takes the Dorfman bracket twisted by H to the Dorfman bracket twisted by -H. It also takes the H-twisted GC structure \mathcal{I} and the corresponding form Ω to -H-twisted \mathcal{I}', Ω' .

Generalized B-model II

Let ρ be a section of $\Lambda^{\bullet}(E^{\vee})$ annihilated by Q. It can be shown (A.K. and Yi Li, 2004) that its Frobenius trace is given by

$$\operatorname{tr}(\rho) = \int_{M} \Omega' \wedge \rho \cdot \Omega,$$

where ρ acts on forms via the spinor representation. If $I_+ = I_-$, H = 0, then

- $E^{\vee} = T^* M^{0,1} \oplus T M^{1,0}, Q = \overline{\partial},$
- U_0 is the canonical line bundle of M,

so the above formula reduces to the usual one for the B-model.

Generalized B-model III

If $I_+ = -I_-$, H = 0, then the generalized B-model is equivalent to the usual A-model. One has

$$\Omega = e^{i\omega}, \quad \Omega' = e^{-i\omega}.$$

The Lie algebroid E has the form

$$E = \{X - i \cdot \iota_X \omega | X \in TM\}$$

It is isomorphic to the standard Lie algebroid $TM_{\mathbb{C}}$ via

$$X - i \cdot \iota_X \omega \mapsto X.$$

The same map takes $\bar{\partial}_E$ to d, and Ω and Ω' to 1, giving the usual formulas for the A-model.

Discussion

- To any GK manifold (M, I, J) satisfying the generalized CY condition with respect to I one can associate a TFT whose space of states A is the Lie algebroid cohomology of I.
- The ring structure on \mathcal{A} coming from physics may differ from the "classical" one by corrections coming from "generalized holomorphic instantons."
- There is evidence that this TFT does not depend on \mathcal{J} , but this has not been proved yet.
- Presumably, this TFT is the Hochschild cohomology of some category of D-branes associated to any GC manifold.