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Outline
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N=1 sigma-models
Let M be a manifold,g be a Riemannian metric on
M , andB be a B-field.
Roughly speaking, a B-field is a 2-form onM . Let
H = dB.
More precisely, a B-field is a pair(B, H), whereB is a
homomorphismZ2(M, Z) → U(1), andH is a closed
3-form onM such that on 2-boundaries one has

B(∂α) = exp

(

i

∫

α

H

)

To the triple(M, g, B) one can associate a classical 2d
field theory withN = (1, 1) SUSY (the
sigma-model).
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N=2 sigma-models
If H = dB = 0, and(M, g) is a Kähler manifold with
complex structureI, then the sigma-model has
N = (2, 2) SUSY.

Supposec1(M) = 0. Then the quantized sigma-model
is anN = (2, 2) Super-Conformal Field Theory
(SCFT).

M is called a Calabi-Yau manifold ifKM is
holomorphically trivial. CY =⇒ c1(M) = 0.

The CY condition is required to define the
topologically twisted version of the theory (B-model).
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Topological twist
If M is Kähler, one can twist the SCFT to a
topological field theory (TFT) known as the A-model.
The A-model is an invariant of the symplectic
structure onM .

If M is also a Calabi-Yau, there is another twist,
which gives another 2d TFT, known as the B-model.
It is an invariant of the complex structure onM .

Roughly speaking, twisting amounts to truncating the
space of states and operators to a cohomology of a
certain operator (the BRST operator).
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Topological Field Theory
TFT is essentially the same as a supercommutative
Frobenius algebra, i.e. a unital supercommutative
algebraA with an invariant metric:

〈a, bc〉 = 〈ab, c〉

Instead of specifying the metric, it is convenient to
specify the trace function onA:

tr : A → C, a 7→ 〈1, a〉
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The A-model
For the A-model,A is the quantum cohomology ring
of M , which is a deformation of the De Rham
cohomology ring

⊕pH
p(M, C).

The deformed product depends on the symplectic
structureω = gI. The trace is given by

tr : a 7→

∫

M

a, ∀a ∈ H•(M).
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The B-model
For the B-model,A is the sum of Dolbeault
cohomology groups:

A = ⊕p,qH
p(ΛqTX1,0).

Let Ω be a holomorphic trivialization of the canonical
line bundle ofM . The trace function is given by

tr : a 7→

∫

M

Ω ∧ ιaΩ, ∀a ∈ H•(Λ•TX).

It is nonvanishing only forp = q = n.
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N=2 sigma-models with H-flux
If H 6= 0, M does not have to be Kähler for the
sigma-model to haveN = 2 SUSY.

Necessary and sufficient conditions forN = 2 SUSY
(Gates, Hull, Rocek, 1984):

• Two complex structuresI+, I− such thatg is
Hermitian with respect to both.

• ∇±I± = 0, where

∇± = ∇LC ±
1

2
g−1H.
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Formulation of the problem
• What is the analogue of the Calabi-Yau

condition?
• What is the geometric meaning of the

corresponding TFTs?
• What is the geometric significance of topological

D-branes?
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Generalized CY condition I
It is easy to find the generalization of the weak form
of the CY condition. For the A-model (resp.
B-model) it is the condition of the vanishing of the
anomaly in the vector (resp. axial) R-current.

Anomaly in the left-moving (resp. right-moving)
R-current isc1(M, I+) (resp.−c1(M, I−)).

c1(I+) − c1(I−) = 0 =⇒ A − twist exists

c1(I+) + c1(I−) = 0 =⇒ B − twist exists

Generalized complex geometry and topological sigma-models – p. 11/32



The BRST cohomology
The theory has four supercharges:Q+, Q−, Q̄+, Q̄−.

A-model BRST operator:

QA = Q+ + Q̄−.

B-model BRST operator:

QB = Q+ + Q̄+.

The BRST cohomology of operators:

A = ker[Q, •]/im[Q, •].

The BRST cohomology of any twisted N=2 theory is
a supercommutative ring.
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The Dorfman-Courant bracket
If M is a smooth manifold, one defines a bilinear
operation on the sections ofTM ⊕ T ∗M :

(X + ξ) ◦ (Y + η) = [X, Y ] + LXη − ιY dξ.

This operation, known as the Dorfman bracket, is not
skew-symmetric, but satisfies a sort of Jacobi identity.
Its skew-symmetrization is known as the Courant
bracket.

OnTM ⊕ T ∗M there is also a metric of signature
(n, n):

q(X + ξ, Y + η) = X(η) + Y (ξ).
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Twisted Dorfman bracket
Let H be a closed 3-form onM . One can define a
twisted version of the Dorfman bracket:

(X + ξ)◦H (Y + η) = [X, Y ]+LXη− ιY dξ + ιXιY H.

The (twisted) Dorfman bracket is invariant under
automorphisms ofTM ⊕ T ∗M induced by closed
2-forms:

X + ξ 7→ X + ξ + ιXB, B ∈ Ω2

cl(M).

This is called a B-field transformation. It is a gauge
symmetry of the classical sigma-model.
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Generalized complex manifolds
A (twisted) generalized complex structure onM is an
endomorphismI of TM ⊕ T ∗M such that

• I2 = −1.

• q(Ix, Iy) = q(x, y), i.e. q is of type(1, 1).
• Let E be the eigenbundle ofI with eigenvalue
−i. E must be closed with respect to the
(twisted) Dorfman bracket.

The last condition is the integrability condition for the
GC structureI.

This notion was introduced by N. Hitchin (2003).

Generalized complex geometry and topological sigma-models – p. 15/32



Examples of GC structures
• If I is a complex structure onM , then

I =

(

I 0

0 −I∨

)

is a GC structure.
• If ω is a symplectic form onM , then

I =

(

0 −ω−1

ω 0

)

is a GC structure.
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Generalized Kähler manifolds
A generalized Kähler (GK) structure onM is a pair of
commuting GC structuresI,J such that the
symmetric bilinear form

G : (TM ⊕ T ∗M) × (TM ⊕ T ∗M) 7→ R,

G(x, y) = q(Ix,J y),

is positive-definite.

Rationale: ifI is made from a complex structureI,
andJ is made from a symplectic formω, then(I,J )
define a GK structure iff(I, ω) define a Kähler
structure.
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The Gualtieri theorem (2003)
Let g, I+, I−, H be the geometric data on a manifold
M satisfying the constraints imposed by N=2 SUSY.
Let

I =
1

2

(

I+ + I− −ω−1
+ + ω−1

−

ω+ − ω− −I∨+ − I∨−

)

be an endomorphism ofTM ⊕ T ∗M . LetJ be
another such tensor obtained fromI by I− → −I−,
ω− → −ω−. ThenI andJ define a twisted GK
structure onM . Moreover, anyGK structure onM
arises in this way, up to a B-field transform.
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Lie algebroids I
From a GC structure we get a complex Lie algebroid.
Definition 1 A complex Lie algebroid overM is a
triple (E, [•, •], a), whereE is a complex vector
bundle overM , [•, •] is a Lie bracket onΓ(E), and
a : E → TMC is a Lie algebra homomorphism such
that∀s1, s2 ∈ Γ(E),∀f ∈ C∞(M)

[fs1, s2] = f [s1, s2] − a(s2)(f) · s1.

A complex Lie algebroid can be thought of as a
“generalizedTMC”.

Given a GC-structureI onM , let E beker(I + i).
ThenE is a complex Lie algebroid.
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Lie algebroids II
An equivalent definition (A. Vaintrob, 1997):
Definition 2 A complex Lie algebroid overM is a
pair (E, Q), whereE is a complex vector bundle over
M , andQ is a degree-1 vector field on the graded
supermanifoldΠE such that{Q, Q} = 0.

Relation between definitions: leteα be a local
trivialization ofE, [eα, eβ] = cγ

αβeγ, and

a(eα) = ai
α∂i. Let θα be fermionic coordinates on

ΠE. Let

Q = ai
αθα∂i + cγ

αβθ
αθβ ∂

∂θγ
.

ThenE is a Lie algebroid iff{Q, Q} = 0.
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Lie algebroid cohomology
SinceC∞(ΠE) ≃ Γ(Λ•E∨), we can associate to any
Lie algebroid a complex

Q : Γ(ΛpE∨) → Γ(Λp+1E∨).

Its cohomology will be called Lie algebroid
cohomology.

Examples: ifE = TMC, then this is the usual De
Rham complex. IfM is complex andE = TM 0,1,
then this is the complex(Ω0,•(M), ∂̄).

This illustrates a general principle: any natural
construction onTM makes sense for arbitrary Lie
algebroids.
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Generalized chiral ring
Computing the BRST-cohomology of operators for
the generalized B-model, one gets the following result
(A.K. and Yi Li, 2004):
Theorem 1 On the classical level, the algebra of the
generalized B-model is isomorphic to the Lie
algebroid cohomology ofE = ker(I + i). For the
generalized A-model, one has to replaceI with J .

This suggests that the generalized B-model (resp.
A-model) depends only on the GC structureI (resp.
J ). This will be confirmed by the computation of the
Frobenius trace (see below).
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Differential forms as spinors
Recall thatTM ⊕ T ∗M has a natural metricq, so it
generates a bundle of Clifford algebras. Using the
natural polarization, its spinor bundle can be
identified with

⊕pΛ
pT ∗M.

An elementX + ξ ∈ TM ⊕ T ∗M acts on a formα as
follows:

α 7→ ιXα + ξ ∧ α
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Forms on a GC manifold
On a GC manifold,TMC ⊕ T ∗MC has an isotropic
subbundleE. Let U0 be a subbundle ofΛ•(T ∗MC)
defined by the condition that it is annihilated by any
element ofE.
We can think of elements ofE∨ as “creation
operators”, and elements ofE as “annihilation
operators.” ThenU0 is the “vacuum bundle”, so it
must be a line bundle. We can decompose

Ω•(M) = U0 ⊕ U1 ⊕ . . . ⊕ U2n,

whereUk consists of forms obtained fromU0 by the
action ofk elements ofE∨. The new grading is not
compatible with the wedge product of forms, in
general.
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Generalized Dolbeault complex
Let πk be a projection toUk. Let

∂̄E = πk+1 ◦ (d−H) ◦πk, ∂E = πk−1 ◦ (d−H) ◦πk

M. Gualtieri proved
Theorem 2 The integrability ofI is equivalent to
d − H = ∂E + ∂̄E.
ThusΩ•(M) equipped with the new grading and the
differential ∂̄E becomes a complex.

If I came from a complex structureI, then

Uk = ⊕p−q=kΩ
p,q(M),

and∂̄E is the usual̄∂.
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Generalized CY condition II
Cancellation of R-anomaly requires

c1(I+) + c1(I−) = −c1(E) = 0.

Equivalently, this condition says thatU0 is
topologically trivial.

Definition 3 (Hitchin/Gualtieri) The GC manifold is
called a generalized Calabi-Yau if there exists a
trivialization Ω of the line bundleU0 satisfying

∂̄EΩ = 0.

Equivalently, one may require(d − H)Ω = 0.
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Generalized B-model I
From the physical viewpoint, gen. CY condition forI
ensures the existence of a BRST-invariant measure in
the path-integral for the generalized B-model. If it is
satisfied, we can write down a formula for the
Frobenius trace on the Lie algebroid cohomology.

Let Ω be the “generalized-holomorphic” section of
U0, as above. Consider the following automorphism
of TM ⊕ T ∗M :

p : (X, ξ) 7→ (X,−ξ), ∀X ∈ Γ(TM),∀ξ ∈ Γ(T ∗M)

It takes the Dorfman bracket twisted byH to the
Dorfman bracket twisted by−H. It also takes the
H-twisted GC structureI and the corresponding form
Ω to−H-twistedI ′, Ω′.
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Generalized B-model II
Let ρ be a section ofΛ•(E∨) annihilated byQ. It can
be shown (A.K. and Yi Li, 2004) that its Frobenius
trace is given by

tr(ρ) =

∫

M

Ω′ ∧ ρ · Ω,

whereρ acts on forms via the spinor representation.
If I+ = I−, H = 0, then

• E∨ = T ∗M 0,1 ⊕ TM 1,0, Q = ∂̄,

• U0 is the canonical line bundle ofM ,

so the above formula reduces to the usual one for the
B-model.
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Generalized B-model III
If I+ = −I−, H = 0, then the generalized B-model is
equivalent to the usual A-model. One has

Ω = eiω, Ω′ = e−iω.

The Lie algebroidE has the form

E = {X − i · ιXω|X ∈ TM}

It is isomorphic to the standard Lie algebroidTMC

via
X − i · ιXω 7→ X.

The same map takes̄∂E to d, andΩ andΩ′ to 1, giving
the usual formulas for the A-model.
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Discussion
• To any GK manifold(M, I,J ) satisfying the

generalized CY condition with respect toI one
can associate a TFT whose space of statesA is
the Lie algebroid cohomology ofI.

• The ring structure onA coming from physics
may differ from the “classical” one by corrections
coming from “generalized holomorphic
instantons.”

• There is evidence that this TFT does not depend
onJ , but this has not been proved yet.

• Presumably, this TFT is the Hochschild
cohomology of some category of D-branes
associated to any GC manifold.
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