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Abstract

Based on the hierarchical ordering principle of factorial effects in experimental

design, we propose an aliased effect-number pattern (AENP) as a criterion to judge

a two-level regular design; such a pattern contains the basic information of non-

aliased effects as well as effects aliased at varying degrees in a design. A design that

sequentially maximizes the numbers in the AENP is called a general minimum lower-

order confounding (GMLOC) design. The new criterion is thus called a GMLOC

criterion and several results follow. First, the word-length pattern, as the core of

the minimum aberration (MA) criterion, is a function of the AENP, thus the MA

criterion can be considered as a special case of the new criterion. The same also holds

for the clear effects criterion under the hierarchical ordering principle. Furthermore,

since the estimation capacity of a design can be calculated as a function of the new

pattern, its corresponding criterion can be treated as a special case of the GMLOC

criterion as well. From the new pattern, certain ties between the MA and clear effects

criteria are revealed. In addition, we introduce in this paper a concept of estimation

ability for regular designs, and infer that a GMLOC design is simply a design with

the best estimation ability. At last, a simple algorithm for computing the AENP is

provided. All the GMLOC designs for 16 and 32 runs and some comparisons with

MA designs are tabulated in the Appendix.
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chical ordering principle, Minimum aberration, Minimum lower-order confounding,

Regular design.

1 Introduction

One of the main tasks in experimental design is to find good designs and to analyze

experimental data more effectively, so that more effects and more possible models

related to the effects in experiments can be estimated. Regular designs have been

the most commonly considered designs in practice due to their simple confounding

structure.

The effect hierarchy principle is one of most important principles having been

used in experiments (Wu and Hamada (2000)). The principle reveals that a lower-

order effect is likely more important than a higher-order one and effects of the same

order are equally important. Therefore, to estimate more important parameters and

models, a good design should minimize the confounding between the lower-order

effects. Aimed at such a purpose, many optimality criteria have been proposed and

discussed in the literature.

In this paper, we restrict ourselves to the discussion of the case of two-level

regular designs. A regular 2n−m design is determined by m independent defining

relations. A defining relation is given by a word of letters which are labels of factors

denoted by 1, 2, . . . , n. All possible products of the m independent defining words

constitute its defining contrast subgroup, denoted by G = {I, w1, . . . , w2m−1}. Start-

ing from the subgroup, there are quite a few optimality criteria for choosing good

designs; the following four we describe appear to be the most popular.

The first one is the maximum resolution criterion proposed by Box and Hunter

(1961). The number of letters in a word in G of a design d is called the length of

the word and the length of the shortest word in G is called the resolution of d. The

goal is then to choose the designs with maximum resolution. For a given pair of n

and m, there may exist many designs with the same maximum resolution among

which only some of the designs are considered good ones; this criterion is unable to

compare them to find the best ones.
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To extract good designs from the set returned by using the maximum resolution

criterion, Fries and Hunter (1980) proposed the minimum aberration (MA) criterion.

It is based on the word-length pattern (WLP):

W = (A1, A2, A3, A4, . . . , An) (1)

where Ai denotes the number of words with length i in G. According to this criterion,

for any two designs, one compares the first unequal Ar’s in their WLPs and the

one with the smaller Ar is said to have less aberration. The design with the least

aberration is called an MA design. In the past two and half decades, the MA criterion

has been the most popular choice for finding good designs, and consequently much

attention has been paid to its theory and constructions. Many related papers have

been published since 1980, including Franklin (1984), Chen and Wu (1991), Chen

(1992), Tang and Wu (1996), Chen and Hedayat (1996), Tang and Wu (1996), Suen,

Chen and Wu (1997), Cheng, Steinberg and Sun (1999), Mukerjee and Wu (2001).

Zhang and Park (2000), Zhang and Shao (2001), Ai and Zhang (2004), Zhu and

Zeng (2005), Cheng and Tang (2005) and so on. However, sometimes the use of

the MA criterion can fail to detect good designs under the effect hierarchy principle

(Wu and Hamada (2000)).

The third one is the clear effects criterion proposed first by Wu and Chen (1992).

To remedy the above problem of the MA criterion, they introduced the notion of

clear effects. A main effect or two-factor interaction is said to be clear if none of its

aliases are main effects or two-factor interactions (2fi’s). The clear effects criterion

selects designs which sequentially maximizes the numbers of clear main effects and

clear 2fi’s. Thus a design with more clear main effects and 2fi’s is better. Recent

results on the clear effects criterion include Chen and Hedayat (1998), Tang, Ma,

Ingram and Wang (2002), Wu and Wu (2002), Ai and Zhang (2004), Yang, Liu and

Zhang (2005), Chen, Li, Liu and Zhang (2005), Yang, Li, Liu and Zhang (2005).

But the clear effects criterion can only be used when there exist designs having

clear effects. In addition, like the maximum resolution criterion, there may be many

equally good designs under the clear effects criterion, but this criterion can not judge

which one is better.

Furthermore, although for given parameters n and m, both the MA criterion

and clear effects criterion usually lead to the same set of optimal designs, especially
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when n−m is small, in certain cases the optimal designs obtained by the two criteria

may conflict each other. For example, consider the following two 29−4 designs.

Example 1.
d1 : I = 1236 = 1247 = 1258 = 13459;

d2 : I = 1236 = 1247 = 1348 = 23459,

where I is the column with all entries zeros. The word-length patterns of d1 and

d2 are (0,0,0,6,8,0,0,1,0) and (0,0,0,7,7,0,0,0,1). Both of the designs have 9 clear

main effects since they are of resolution IV, but d1 only has 8 clear 2fi’s and d2 has

15 clear 2fi’s.

Under the MA criterion, d1 is an MA 29−4 design, implying that d1 has less

aberration than d2, and hence d1 is better than d2. But under the clear effects

criterion, d2 contains maximum number of clear main effects and 2fi’s in all 29−4

designs and so it is optimal and better than d1.

The fourth one is the criterion of estimation capacity. Sun (1993) first introduced

the notion of estimation capacity, where the idea is to estimate as many as possible

models, involving all the main effects and some 2fi’s. Cheng and Mukerjee (1998),

Cheng, Steinberg and Sun (1999), and Ai and Zhang (2004) studied it in detail, and

obtained some “good” designs which have maximum estimation capacity (MEC).

These designs can be used to estimate as many as possible models involving all the

main effects and some special 2fi’s, but they need a strong assumption that all the

other 2fi’s, those that are not involved in the models but are aliasing the 2fi’s in the

models, are absent or negligible.

In the face of so many criteria, one may ask the following questions: What

relationships are there between the criteria? Why do the criteria originating from

the same ideas, especially the MA and clear effects criteria, lead to the same optimal

designs in most cases, but can still give conflicting results? Why do the existing good

criteria have themselves defect? What is the basic information being contained in

the defining contrast group G indeed? Is there a criterion which more reasonably

reflect the effect hierarchy principle? In this paper we try to answer these questions.

In Section 2 we introduce a new aliasing pattern for judging two-level regular

designs, called the aliased effect-number pattern (AENP), and based on the AENP

we propose a general minimum lower-order confounding criterion for rank-ordering
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regular 2n−m designs and choosing optimal designs under the effect hierarchy prin-

ciple. Relations of the new criterion with the MA, clear effects and MEC criteria

are studied in Sections 3, 4 and 5, respectively. Especially, the ties between the MA

and clear criteria is addressed in Section 4. A novel criterion, maximum estimation

ability criterion, is proposed in Section 6. A simple algorithm for computing the

AENP is given in Section 7. In Section 8 we make a simplification to the AENP and

give more usages of the AENP via examples. The optimal designs of 16- and 32-run

and 64-run with some parameters under the new criterion and some comparisons

with the MA and clear criteria are tabulated in the Appendix.

2 A New Aliasing Pattern and Minimum Lower-

Order Confounding Criterion

In this section, we first introduce a new aliasing pattern for characterizing 2n−m

designs and then based on the new pattern suggest a new criterion for rank-ordering

the designs.

In order to give a good aliasing pattern and criterion, we need to explore further

the basic information hidden in the subgroup G. We note that the confounding

between effects in a design contains information on how the effects of all different

orders are confounded by other effects. First, we consider a description of an i-

order effect being aliased by j-order effects, for all i and j. To characterize the

confoundedness of i-order effects by j-order effects, two basic elements should be

considered. The first one is that for a given i-order effect, how severe it is aliased

by j-order effects, and we call the severity an aliased degree. If the i-order effect is

aliased by k j-order effects simultaneously, it is said that the i-order effect is aliased

by j-order effects at degree k. In particular, if k = 0, then the i-order effect is not

aliased by j-order effects. The second consideration is how many i-order effects are

aliased by j-order effects at a given degree k. We use the notation #
i C

(k)
j to denote

the number of i-order effects aliased by j-order effects at degree k. Thus, for a

design, we have a set

{#
i C

(k)
j , i, j = 0, 1, . . . , n, k = 0, 1, . . . , Kj}, (2)

where Kj =
(

n
j

)

and use this set to reflect the whole confounding between effects in
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the design.

Obviously, the numbers in (2) are not equally important, we need to arrange

them in a particular order. Clearly, for an i-order effect, the lesser the degree at

which it is aliased by other effects, the easier it can be estimated. In particular, if

it is aliased at degree 0 by lower-order effects and higher-order effects are negligible,

then it can be estimated without confounding. In addition, since the total number

of i-order effects in a 2n−m design is a constant
(

n
i

)

, the larger the number #
i C

(0)
j is,

the less severe the i-order effects are confounded by j-order effects. Subsequently,

under the condition of maximizing the number #
i C

(0)
j , the larger the number #

i C
(1)
j

is, the less severe the i-order effects are confounded by j-order effects, and so on.

Consider {#
i C

(k)
j , k = 0, 1, . . . , Kj}. Since the larger the degree k is, the more severe

the effect is aliased, we should rank the confounded numbers of i-order effects by

j-order effects from degree 0 to most severe degree in the following order, denoted

by the vector
#
i Cj = (#

i C
(0)
j , #

i C
(1)
j , . . . , #

i C
(Kj)
j ). (3)

It turns out that this vector indicates a distribution of the total number of i-order

effects aliased by j-order effects on the degrees k = 0, 1, . . . , Kj. When i = 0 or j = 0,

0-order effect appears and is just the total mean effect, which is most important in

a design. It is easy to see that #
i C0 = (#

i C
(0)
0 , #

i C
(1)
0 ), #

0 Cj = (1, 0, . . .) for Aj = 0

and #
0 Cj = (0, . . . , #

0 C
(Aj−1)
j = 0, 1) for Aj 6= 0, where the Aj’s are the components

in the word-length pattern of the design.

Now we consider the ranking of the different vectors #
i Cj’s. First we ignore

#
0 C0,

#
0 C1 and #

1 C0 since we always have #
0 C0 = (1, 0, . . . , 0), #

0 C1 = (1, 0, . . . , 0)

and #
1 C0 = (n, 0, . . . , 0) for the 2n−m designs in consideration. Let us consider the

remaining ones. According to the effect hierarchy principle, we should rank #
1 C1

first and then consider the vectors related to two-factor interactions. If two-factor

interactions are not negligible, then we should rank the vectors #
2 C0,

#
1 C2,

#
2 C1 and

#
2 C2 in order as (#

2 C0,
#
1 C2,

#
2 C1,

#
2 C2). The reason for placing #

2 C0 at the first place

here is that the number involves if the total mean effect, the most important effect,

can be estimated under the assumption that 2-factor effects can not be neglected.
#
1 C2 being put before #

2 C1 is due to the fact that main effects are more important

than 2-factor interactions. #
2 C2 should be placed last. If the three-order effects are
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not negligible, following the similar arguments above we should rank the vectors
#
3 C0,

#
1 C3,

#
3 C1,

#
2 C3,

#
3 C2 and #

3 C3 in order as (#
3 C0,

#
1 C3,

#
3 C1,

#
2 C3,

#
3 C2,

#
3 C3),

and so on. The general rule can be described as follows: (i) if max(i, j) < max(s, t)

then #
i Cj is placed ahead of #

s Ct, (ii) if i + j < s + t then #
i Cj is placed ahead of

#
s Ct, and (iii) if i + j = s + t and i < s then #

i Cj is placed ahead of #
s Ct. Therefore,

according to the principle that lower-order effects are more important than higher-

order effects, we shall rank the numbers in set (2) as follows:

#C = (#
1 C1,

#
2 C0,

#
1 C2,

#
2 C1,

#
2 C2,

#
3 C0,

#
1 C3,

#
3 C1,

#
2 C3,

#
3 C2,

#
3 C3,

#
4 C0,

#
1 C4,

#
4 C1,

#
2 C4,

#
4 C2,

#
3 C4,

#
4 C3,

#
4 C4, . . .).

(4)

We call the ordering (4) an aliased effect-number pattern (AENP). Such a pattern,

as well as set (2), contains the basic information of non-aliased effects as well as

effects aliased at varying degrees in a design. In the Appendix we give the complete

AENPs of three designs in Table 14.

One of the main purposes of experimental design is to estimate as many as

possible the effects of factors, especially the lower-order effects, e.g., the main effects

and 2fi’s. Hence, a “good” design should minimize the confounding between the

lower-order effects, i.e., it should maximize the entries of #C sequentially.

Based on #C, we define a general minimum lower-order confounding (GMLOC)

criterion as follows. The GMLOC criterion selects designs having

the least GMLOC as the optimal designs.

Definition 1. Let #Cl be the l-th component of #C, and #C(d1) and #C(d2)

the aliased effect-number patterns of two designs d1 and d2. Suppose #Cl is the

first component such that #Cl(d1) and #Cl(d2) are different from each other. If

#Cl(d1) > #Cl(d2), then d1 is said to have less general lower-order confounding

than d2. A design d is said to have general minimum lower-order confounding if no

other design has less general lower-order confounding than d.

Definition 1 shows us that a GMLOC design is simply one which sequentially

maximizes the components #
i C

(k)
j ’s of #C in (4).

Example 2. Let us consider the following two 28−3 designs determined by:

d3 : I = 1236 = 1247 = 1358,

d4 : I = 1236 = 1247 = 1348.
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Since they are of resolution IV, there does not exist any alias between the main

effects and 2fi’s in both d3 and d4, and obviously we have #
1 C1(d3) = #

1 C1(d4) =

(8, 0, . . . , 0), #
2 C0(d3) = #

2 C0(d4) = (8), #
1 C2(d3) = #

1 C2(d4) = (8, 0, . . . , 0) and
#
2 C1(d3) = #

2 C1(d4) = (28, 0, . . . , 0). Also, via an easy calculation (Refer to our

simple algorithm given in Section 7), we can obtain: #
2 C2(d3) = (4, 18, 6, 0, . . . , 0)

and #
2 C2(d4) = (7, 0, 21, 0, . . . , 0). Therefore, the confounding between the 2fi’s of d3

is more severe than that of d4, as #
2 C

(0)
2 (d3) = 4 < #

2 C
(0)
2 (d4) = 7. Hence the design

d4 has less general lower-order confounding than design d3.

Remark 1. #
i Cj and #

i Cj do not have symmetric property with respect to i and j.

This can be observed for design d3 in Example 2, where we note that #
1 C

(0)
2 (d3) =

8 6= 28 = #
2 C

(0)
1 (d3) and #

1 C2(d3) 6=
#
2 C1(d3).

We have directly the following theorem from Definition 1:

Theorem 1. A GMLOC 2n−m design must be one with maximum resolution in all

2n−m designs.

Proof. For any given n and m, suppose that the maximum resolution of the 2n−m

designs is R. Then there exits at least one 2n−m design, say d, which has resolution

R and for the design d, by the definition of resolution and the meaning of #
i C

(0)
j

we have #
i Cj(d) = (

(

n
i

)

, 0, . . . , 0) for any i and j satisfying i + j < R. On the

other hand, the fact that #
i Cj(d) = (

(

n
i

)

, 0, . . . , 0) for any i and j with i + j < R

implies that the design d has sequentially maximized all the components of #
i Cj’s

with i + j < R in (4), for all 2n−m designs. Therefore, according to Definition 1, a

GMLOC 2n−m design at least satisfies that #
i Cj(d) = (

(

n
i

)

, 0, . . . , 0) for any i and j

with i + j < R. It follows that any GMLOC 2n−m design must have resolution no

less than R. But we have supposed that the maximum resolution of 2n−m designs

is R, thus the resolution of a GMLOC 2n−m design must be R. The proof of the

theorem is completed.

3 Relations with Minimum Aberration Criteria

To study the relations of the GMLOC criterion with the MA criterion, we need to

study the relations of the world-length pattern, as the core of MA, with the AENP,
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as the core of GMLOC. First, We have the following theorem.

Theorem 2. For any 2n−m design, its word-length pattern W , given in (1), is a

function of {#
i C

(k)
j , i, j = 0, 1, . . . , n, k = 1, . . . , Kj} in the following three forms:

1. Ai = #
i C

(1)
0 , i = 1, . . . , n;

2. Aj is a function of #
0 Cj, j = 1, . . . , n;

3. For any i, Ai is a function of sCt, s, t = 1, . . . , n in (6), where sCt is a

function of {#
s C

(k)
t , k = 1, . . . , Kj} as in (7), and sequentially minimizing Ai’s of W

is equivalent to sequentially minimizing sCt’s of C in (6).

Proof. By definition of the AENP, results 1 and 2 in the theorem are trivially

implied. Let us focus on result 3 only.

Considering the 2n−m designs with resolution at least III, Zhang and Park (2000)

defined iCj as the number of alias relations of i- and j-order effects in a design and

obtained a general formula for calculating iCj with i ≤ j as:

iCj =
i

∑

l=0

(

n − (j − i + 2l)

i − l

)(

j − i + 2l

l

)

Aj−i+2l, i, j = 1, 2, . . . , n, (5)

where
(

x
0

)

= 1,
(

x
y

)

= 0 for x < y or x < 0, and Ai = 0 for i ≤ 2 or i > n.

Furthermore, they proposed to use the following sequence

C = (1C1, 1C2, 2C2, 1C3, 2C3, 3C3, 1C4, 2C4, 3C4, 4C4, . . .) (6)

as a characterization to choose optimal designs. Based on equation (5), they showed

that sequences (1) and (6) can be determined from each other. Also they proved

that sequentially minimizing sequence (6) is equivalent to sequentially minimizing

sequence (1).

By the definition of iCj and comparing with the definition of alias sets for a

regular design, it is easy to see that

iCj =

{

∑Ki

k=1 k · #
i C

(k)
i /2, if i = j,

∑Kj

k=1 k · #
i C

(k)
j , if i 6= j.

(7)

Thus result 3 is proved.

From Theorem 2, immediately we have the following corollary:
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Corollary 1. The designs with different word-length patterns must have different

AENPs.

But the inverse of the corollary does not hold and the AENP is not a function

of word-length pattern W . It follows that designs with different AENPs may have

the same word-length pattern. This is illustrated by the following example.

Example 3. Consider the two 212−7 designs:

d5 : I = 126 = 137 = 238 = 12349 = 1235t0 = 45t1 = 12345t2,

d6 : I = 126 = 137 = 248 = 349 = 125t0 = 135t1 = 145t2,

where t0, t1, t2 denote the factors 10, 11, 12. The word-length patterns of d5 and

d6 are both W = (0, 0, 8, 15, 24, 32, 24, 15, 8, 0, 0, 1). But the sequence of the aliased

effect-number pattern of d5 and d6 are different and the first different components

of them are #
2 C1

2(d5) = 60 and #
2 C1

2(d6) = 54. Incidentally we can infer that d5 has

less general lower-order confounding than d6 by Definition 1.

Consequently, the AENP is a more refined pattern than the word-length pattern,

when they are used to judge designs.

An interesting observation is that the two sequences (4) and (6) have the follow-

ing relation. After dropping #, sequence (4) becomes

C = (1C1, 2C0, 1C2, 2C1, 2C2, 3C0, 1C3, 3C1,

2C3, 3C2, 3C3, 4C0, 1C4, 4C1, . . .).
(8)

Note that iCj = jCi and iC0 = Ai is a function of (1C1, 1C2, 2C2, . . . , bi/2cC(i−bi/2c))

by (5). Sequence (8) is turned into (6) after dropping iCj for i > j and the iC0’s.

From Theorem 2, we can see that the MA criterion only uses the information from

{#
i C

(k)
j , i, j = 0, 1, . . . , n, k = 1, . . . , Kj}, but not {#

i C
(0)
j , i, j = 0, 1, . . . , n, }. We

note that although #
i C

(0)
j can determine the sum

∑Kj

k=1
#
i C

(k)
j , it cannot determine the

vector (#
i C

(1)
j , . . . , #C

(Kj)
j ) and iCj =

∑Kj

k=1 k ·#i C
(k)
j . Therefore, it is possible for two

designs d and d′ with #
i C

(0)
j (d) > #

i C
(0)
j (d′) to have

∑Kj

k=1
#
i C

(k)
j (d) <

∑Kj

k=1
#
i C

(k)
j (d′),

but at the same time, iCj =
∑Kj

k=1 k · #
i C

(k)
j > iCj =

∑Kj

k=1 k · #
i C

(k)
j .

Let us now recall the two designs d1 and d2 in Example 1. We have #
1 C2(d1) =

#
1 C2(d2) = (9, 0, . . .), #

2 C1(d1) = #
2 C1(d2) = (36, 0, . . .) and #

2 C2(d1) = (8, 24, 0, 4)

and #
2 C2(d2) = (15, 0, 21). Although #

2 C
(0)
2 (d1) = 8 < #

2 C
(0)
2 (d2) = 15, we still have
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2C2(d1) = 1 × 24 + 3 × 4 = 36 < 2C2(d2) = 2 × 21 = 41. Thus, by sequentially

minimizing (6) the MA criterion infers that d1 is better than d2 and d1 is a MA

design. However, under the effect hierarchical principle, d2 is better than d1, since

d2 has 15 clear 2fis while d1 has only 8 ( both have 9 clear main effects). Perhaps

using only partial information in the AENP is a reason why sometimes the MA

criterion fails to detect optimal designs under the effect hierarchy principle.

From equation (7), one can find that iCj is a linear function of the components

of #
i Cj with k as the weight of #

i C
(k)
j . In addition, a design which sequentially

maximizes the components of #
i Cj tends to minimize iCj. Hence, the optimal designs

under MA and GMLOC criteria are consistent in many cases, especially for designs

with small runs (for more examples, see the tables in Appendix). However, there

are quite a few optimal designs under the two criteria that differ from each other,

since they are established on different bases. One more example is shown below.

Example 4. Consider the three 213−7 designs with 64 runs (designs 13-7.7, 13-7.2,

and 13-7.1 in Table 13):

d7 : I = 12347 = 34568 = 2459 = 1456t0 = 256t1 = 136t2 = 235t3,

d8 : I = 12347 = 3458 = 2459 = 356t0 = 256t1 = 456t2 = 346t3,

d9 : I = 12347 = 34568 = 2459 = 1456t0 = 246t1 = 12356t2 = 256t3,

The word-length patterns of d7, d8 and d9 are respectively

d7 : (0, 14, 28, 24, 24, 17, 12, 8, 0, 0, 0),

d8 : (0, 26, 12, 24, 28, 13, 20, 0, 4, 0, 0),

d9 : (0, 14, 33, 16, 16, 33, 14, 0, 0, 0, 1)

and the most important part of their AENP are shown in the following table:

d7 d8 d9
#
i Cj j = 1 j = 2 j = 1 j = 2 j = 1 j = 2

i = 1 13 13 13 13 13 13

i = 2 78 20, 36, 18, 4 78 23, 0, 24, 16, 15 78 36, 0, 42

According to the MA criterion, d7 is the best and it is an MA design, the second

best one is d9 and the worst is d8. However, from the above table of their AENPs,

it is easy to see that they all have 13 clear main effects, d7 only has 20 clear 2fi’s,

d8 has 23 clear 2fi’s, and d9 has 36 clear 2fi’s. Therefore, according the GMLOC

and clear effects criteria their order of optimality is d9, d8 and d7. The best design
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d7 in MA criterion becomes the worst one under the other two criteria. The MA

criterion fails to detect the best design in this case as well.

Zhu and Zeng (2005) proposed the minimum M -aberration (MMA) criterion for

selecting “good” designs and proved that the MMA criterion is more detailed than

MA. To show the relation between the GMLOC and MMA criteria, the definition

of MMA is reviewed below.

Let G be the defining contrast subgroup of d. Zhu and Zeng (2005) defined an

order C between the effects of d. Suppose that i1 · · · ik and j1 · · · jl are two different

effects, i1 · · · ik is said to be smaller than j1 · · · jl if k < l or if k = l and i1 · · · ik should

be listed ahead of j1 · · · jl lexicographically. If i1 · · · ik is “smaller” than j1 · · · jl, it

will be written as i1 · · · ik C j1 · · · jl. Applying C to the effects of a given alias set,

the “smallest” effect in the alias set is referred to as the alias set leader. If an alias

set has i1 · · · ik as its alias set leader, it is said to be a k-order alias set and denoted

by i1 · · · ikG. If two effects e1 and e2 of order i and j are aliased with each other,

and they are included in a k-order alias set, then the aliasing between e1 and e2 is

of type (i, j)k. Let M(i,j)k
be the number of pairs of aliased effects which are of the

type (i, j)k. Define

M = (M(1,2)1 , M(2,2)2 , M(2,2)1 , M(1,3)1 , M(2,3)2 , M(2,3)1 ,

M(1,4)1 , M(3,3)3 , M(3,3)2 , M(3,3)1 , . . .)

and call M the aliasing type pattern of a design. The MMA criterion chooses the

designs which sequentially minimize the components of M as the optimal ones.

Clearly, M and #C have the following relation:

∑

k≥0

M(i,j)k
=

{

∑

k≥1 k · #
i C

(k)
j /2, if i = j,

∑

k≥1 k · #
i C

(k)
j , if i 6= j.

Similar to the word-length pattern (1), M still depends directly on the number

of pairs of i- and j-order effects aliased with each other. Hence, the MMA criterion,

though more elaborate than the MA, still can not lead to the optimal in certain

cases, as illustrated below.

Example 1 (continued). Note that M(d1) = (0, 18, 0, . . .) and M(d2) = (0, 21, 0, . . .).

Thus d1 is better than d2 under the MMA criterion, which still conflicts with

result from the GMLOC and clear effects criteria.

12



4 Relations with Clear Effects Criterion

To make clear the relations of the new criterion with the clear effects criterion, we

first note some results related to the clear effects criterion.

For regular 2n−m designs, we have the following lemmas.

Lemma 1. When 2n−m−1 < n < 2n−m−1, there exist only the designs with resolution

R ≤ III, and for any 2n−m design with resolution III, it has neither any clear main

effect nor any clear two-factor interaction.

Lemma 2. When 2n−m−2 + 1 < n ≤ 2n−m−1, there exist resolution IV designs, but

any such resolution IV 2n−m design does not contain any clear two-factor interaction.

If a 2n−(n−k) design contains clear two-factor interaction for 2n−m−2 < n ≤ 2n−m−1,

then its resolution must be less than IV.

Lemma 3. When M(n − m) < n ≤ 2n−m−2 + 1, there exist 2n−m designs with

resolution IV which contain clear two-factor interactions, where M(n − m) is the

maximum number of factors that can be accommodated in a 2n−m design with the

maximum resolution at least V.

Lemma 4. Consider the 2n−m designs which have resolution at least III. Then #
1 C

(0)
2

is simply the number of clear main effects in a design, and #
2 C

(0)
2 − #

1 C
(1)
2 is simply

the number of clear 2fi’s in a design.

Lemmas 1, 2 and 3 are the results of Chen and Hedayat (1998), which also gave

a complete classification of the existence of clear two-factor interactions (2fi’s) in

regular 2n−m designs with resolution III or IV. The proofs of these lemmas can be

found from their paper. We only give a proof of Lemma 4 below.

By the definition of clear main effect, for a 2n−m design with resolution at least

III, we always have #
1 C

(0)
1 = n. This means that no main effect is aliased by any other

main effect, thus the number #
1 C

(0)
2 is simply the number of clear main effects in the

design. By the definition of clear two-factor interaction, if a two-factor interaction is

clear, it must be in an alias set which only contains itself as the unique 2fi and does

not contain any main effects. The number of such alias sets is simply the number

of clear 2fi’s in the design. By the definitions of #
2 C

(0)
2 and #

1 C
(1)
2 , the number
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#
2 C

(0)
2 − #

1 C
(1)
2 is simply the number of the alias sets satisfying the two conditions

above. Lemma 4 is therefore proved.

Since a main effect is more important than a 2fi under the hierarchical assump-

tion, designs with most clear main effects are always preferred.

In addition, for a given number of clear main effects, designs with the most clear

2fi’s should be selected as the optimal ones under the clear effects criterion. The

following Theorem 3 reveals the relation between the new criterion and clear effects

criterion and shows that the clear effects criterion is a special case of the GMLOC

criterion.

Theorem 3. The clear effects criterion selects the 2n−m designs which sequentially

maximize #
1 C

(0)
2 and #

2 C
(0)
2 as the optimal ones when n ≤ 2n−m−1. For given n and

m, if an optimal design under the clear effects criterion exists, then the GMLOC

criterion must be at its best for the optimal clear effects criterion designs, where the

meaning of “best” is under the GMLOC criterion, as given in Definition 1.

Proof. Without lost of generality, we only consider the designs with resolution at

least III. For the first part, by Lemma 1, when 2n−m−1 < n ≤ 2n−m − 1, there are

no designs with resolution higher than III and any 2n−m design in this case does not

contain any clear main effects and 2fi’s, hence the clear effects criterion can not be

used to select the optimal designs. Consider the case where n ≤ 2n−m−1. By Lemma

4, the clear effects criterion maximizes #
1 C

(0)
2 and #

2 C
(0)
2 − #

1 C
(1)
2 sequentially. And

in this case, by Lemmas 2 and 3, there exist resolution IV designs, and the clear

effects criterion must choose the designs with resolution IV to obtain all clear main

effects. Note that the number #
1 C

(1)
2 for designs with resolution IV is equal to 0,

thus the proof of the first part is finished.

For the second part, consider the four cases for n. For the case 2n−m−1 < n <

2n−m − 1, by Lemma 1, all the considered designs must be of resolution III and

have no any clear main effects and clear 2fi’s, thus the GMLOC design also does not

contain any clear main effects and clear 2fi’s, finishing the proof in this case. For

the case 2n−m−2 + 1 < n ≤ 2n−m−1, since there exist designs with resolution IV ( no

higher than IV) by Lemma 2, by Theorem 1 the GMLOC design, say d′, must be

of resolution IV. Note that for any resolution IV design d, #
1 C1(d) = (n, 0, . . . , 0),

#
2 C0(d) = (

(

n
2

)

, 0), #
1 C2(d) = (n, 0, . . . , 0), #

2 C1(d) = (
(

n
2

)

, 0, . . . , 0) and #
2 C0

2(d) is
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simply the number of clear 2fi’s of d. Again by Lemma 2, for this case we have
#
2 C

(0)
2 (d′) = 0 and hence the GMLOC design d′ must be one and the best one

among the optimal designs under the clear criterion, which contain n clear main

effects and 0 clear 2fi. For the case M(n − m) < n ≤ 2n−m−2 + 1, by Lemma 3,

there exist resolution-IV designs, then the GMLOC design, say d′′, also must be a

resolution IV design and sequentially maximizes the components of sequence (4).

Thus #
1 C

(1)
2 (d′′) = 0 and d′′ also maximizes the number #

2 C
(0)
2 . Therefore, d′′ has n

clear main effects and maximum number of clear 2fi’s, and it is the best one among

all optimal designs under the clear effects criterion. For the case n ≤ M(n − m),

by noting that there exist designs with resolutions at least V, the GMLOC design

is obviously optimal under the clear effects criterion; this completes the proof.

As a popular choice for selecting good designs, the clear effects criterion can

not be used in many situations. For example, when n > 2n−m−1, Lemma 1 tells us

that the resolution III designs existed do not contain any clear main effects or 2fi’s.

However, the GMLOC criterion can be used for all the range of parameters. When

2n−m−2 + 1 < n ≤ 2n−m−1, all of the resolution-IV 2n−m designs existed make no

difference under the clear effects criterion. The GMLOC criterion can discriminate

them further, as illustrated below.

Example 5. Consider the designs 10-5.1,10-5.2, 10-5.3 and 10-5.4 in Table 6 in the

Appendix. The clear effects criterion does not distinguish between the four designs,

while the GMLOC criterion can. We can see that design 10-5.1 is the best, since

it has 40 2fi’s being aliased by only one 2fi, among them about 20 2fi’s may be

de-aliased by some follow-up designs if the experimenter wishes to estimate them.

Design 10-5.4 is the worst one, since all 45 2fi’s are aliased by 3 2fi’s, thus any one

of them would be difficult to de-alias with follow-up designs due to the severity of the

aliases. From the perspective of an experimenter, the best choice would obviously be

design 10-5.1.

Now we need to analyze designs 8-4.3 and 8-4.4 ( denoted as d and d′) in Table 5

in the Appendix, which is an exceptional example. Design d has one clear main effect

and one clear 2fi and design d′ has one clear main effect and 7 clear 2fi’s, but why the

former is judged to be better than the latter? Let us look at their AENPs. We have
#
2 C2(d) = #

2 C2(d
′) = (7, 0, 21), but #

1 C2(d) = (1, 6, 0, 1) and #
1 C2(d

′) = (1, 0, 0, 7).

15



It follows that design d has 6 main effects confounded by only one 2fi; these main

effects may be de-aliased easily by some follow-up experiments so that they can be

estimated. On the other hand, design d′ has 7 main effects which are confounded by

3 2fi’s and hence it can hardly be de-aliased by follow-up experiments. Therefore,

although design d′ has 6 more clear 2fi’s than d, it needs to sacrifice 6 main effects

which may be estimated in d. Hence according to the effect hierarchy principle,

design d should be preferred.

Based on the analysis above, we can conclude that the GMLOC criterion is more

refined and a more reasonable choice than the clear effects criterion when judging

designs.

Now let us discuss the ties between the MA and clear effects criteria, which

are revealed by our new development. From our analysis in Sections 3 and 4, we

have found that the MA criterion only uses the information from {#
i C

(k)
j , i, j =

0, 1, . . . , n, k = 1, . . . , Kj} in the set (2) and the clear effects criterion only uses the

information from {#
i C

(k)
j , i, j = 0, 1, . . . , n, k = 0}. In other words, they separately

use different parts of the information contained in the same set. As mentioned above,

the two parts have the relation #
i C

(0)
j +

∑Kj

k=1
#
i C

(k)
j =

(

n
j

)

for any i and j. Thus

the larger the number #
i C

(0)
j we choose, the less the number

∑Kj

k=1
#
i C

(k)
j we obtain.

In most cases, when #
i C

(0)
j is large, the weighed sum iCj =

∑Kj

k=1 k · #
i C

(k)
j tends

to be small. Thus sequentially maximizing the sequence (#
1 C

(0)
2 , #

2 C
(0)
2 , . . .) tends

to sequentially minimize the sequence (6). Perhaps this is the reason why in most

cases, the two criteria would give the same optimal designs. However, although the

relationship between the number #
i C

(0)
j and the sum

∑Kj

k=1
#
i C

(k)
j is rather clear, the

same cannot be said between #
i C

(0)
j and the weighted sum iCj =

∑Kj

k=1 k · #
i C

(k)
j .

Therefore, conflicting results from the two criteria may appear as shown in examples

given so far.

5 Relations with Maximum Estimation Capacity

Criterion

Cheng and Mukerjee (1998) and Cheng, Steinberg and Sun (1999) discussed the

estimation capacity of a design d. Let Er(d) denote the number of models containing
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all the main effects and r 2fi’s, 1 ≤ r ≤ n(n − 1)/2, which can be estimated by

the design d. The design d is said to dominate a design d′ if Er(d) ≥ Er(d
′) for

all r and with strict inequality for at least one r. Furthermore, a design which

maximizes Er(d) for all r is said to have maximum estimation capacity (MEC). The

MEC criterion selects the designs with MEC as the optimal ones. We only consider

designs with resolution at least III in this section since there are at least two main

effects aliased with each other in any resolution-II design and these two main effects

can not be estimated at the same time.

Clearly, there are #
2 C

(k)
2 /(k+1) alias sets containing k+1 2fi’s and #

1 C
(k+1)
2 /(k+1)

alias sets containing k + 1 2fi’s and one main effects. An alias set contains at most

l = min{bn/2c, 2m} 2fi’s, where bxc is the integer part of x. Then all of the alias

sets containing 2fi’s but none of the main effects can be partitioned into l classes

and the i-th class includes the alias sets containing i + 1 2fi’s for i = 0, 1, . . . , l − 1.

Let Ci be the i-th class. Then |Ci| = (#
2 C

(i)
2 − #

1 C
(i+1)
2 )/(i + 1), where | · | denote the

cardinality of a set. Note that there may exist |Ci| = 0 for some i. By the definition

of Er(d), it is easy to obtain the following theorem:

Theorem 4. Er(d) can be expressed as a function of #
2 C2 and #

1 C2 as follows:

Er(d) =

{

∑

· · ·
∑

r0+···+rl−1=r

∏l−1
i=0

(

|Ci|
ri

)

(i + 1)ri, if r ≤ f,

0, otherwise.

where 0 ≤ ri ≤ |Ci|, f = 2n−m − 1 − n.

This theorem reveals the relation between the MEC and GMLOC criteria. Namely,

the MEC criterion can be seen as one that optimizes a function of the AENP. The

following provides further analysis to illuminate this point.

It is clear that C defined in Section 3 can be applied to the alias set leaders,

so the alias sets can be rank-ordered from the “smallest” to the “largest” with the

“smallest” alias set G receiving rank 0 and the “largest” receiving rank 2n−m − 1.

For a 2n−m design of resolution III or more, let mi denote the number of 2fi’s in the

i-th alias set and m = (mn+1, . . . , mn+f), where f = 2n−m − 1 − n. Recall that a

vector u = (u1, . . . , us) is said to be upper weakly majorized by v = (v1, . . . , vs) if
∑t

i=1 u[i] ≥
∑t

i=1 v[i] for 1 ≤ t ≤ s, where u[1] ≤ u[2] ≤ . . . ≤ u[s] and v[1] ≤ v[2] ≤

. . . ≤ v[s] are the ordered components of u and v, respectively. A sufficient condition
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for d1 to dominate d2 is given in the following Lemma 5 by Cheng, Steinberg and

Sun (1999).

Lemma 5. If m(d1) is upper weakly majorized by m(d2) and m(d1) cannot be ob-

tained from m(d2) by permuting its components, then d1 dominates d2 with respect

to the criterion of estimation capacity.

Lemma 5 shows that a design d will behave well under the MEC criterion

if
∑n+f

i=n+1 mi(d) is large and mn+1(d), . . . , mn+f(d) are close to one another, i.e.,

a design d tends to behave well if
∑n+f

i=n+1 mi(d) is large and
∑n+f

i=n+1 m2
i (d) is

small under such a criterion. Note that
∑n+f

i=n+1 mi(d) =
∑l−1

i=0 |Ci|(i + 1) and
∑n+f

i=n+1 m2
i (d) =

∑l−1
i=0 |Ci|(i+1)2. Then a design d which maximizes

∑l−1
i=0 |Ci|(i+1)

and minimizes
∑l−1

i=0 |Ci|(i + 1)2 tends to behave well under the MEC criterion.

6 Maximum Estimation Ability

The optimal designs under the MEC criterion can estimate as many as possible

models involving all the main effects and some 2fi’s with the assumption that all

other 2fi’s not involved in the model are negligible. Such an assumption is too strong

to justify if some 2fi’s not included in the model are active. In such cases people

would prefer to choose designs with smaller degree aliasing between the 2fi’s.

To avoid the strong assumption, we introduce the notion of estimation ability

and propose an maximum estimation ability criterion.

Now let us consider the classes Ci for i = 0, 1, . . . , l − 1. Note that there are

i + 1 2fi’s in each alias set in the class Ci. Hence, a smaller i implies aliasing

between the 2fi’s in the alias sets of Ci to a lesser degree. Any model involving

all the main effects and r ≤ |C0| 2fi’s can be estimated without bias under the

weaker assumption of absence of interactions involving at least three factors. And

any model involving all the main effects and |C0| < r ≤ |C0| + |C1| 2fi’s can be

estimated under the assumption of absence of |C1| 2fi’s in the alias sets of C1 and

interactions involving at least three factors. Similarly, any model involving all the

main effects and
∑j

i=0 |Ci| < r ≤
∑j+1

i=0 |Ci| (j = 0, 1, . . . , l−1) 2fi’s can be estimated

under the assumption of absence of i|Ci| 2fi’s in the alias sets of Ci for i = 0, . . . , j

and interactions involving at least three factors. For convenience, we call a model
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involving only the 2fi’s in the alias sets of C0, C1, . . . , Ci an i-class model in the

following. A good design should sequentially maximize |Ci| for i = 0, 1, . . . , l − 1

since such a design can be used to estimate all the main effects and 2fi’s with aliasing

between the 2fi’s to the least degree. A design which sequentially maximizes |Ci|

for i = 0, 1, . . . , l − 1 is said to be a design with maximum estimation ability. The

criterion selecting such designs as the optimal ones is called the maximum estimation

ability (MEA) criterion.

The optimal designs under the MEA criterion can estimate the model involving

all the main effects and some 2fi’s with confounding between the 2fi’s to the least

degree, especially for models containing a few 2fi’s. If the experimenter wishes to de-

alias the confounding between the 2fi’s, he/she needs only to perform a few follow-up

experiments.

Note that |Ci| = (#
2 C

(i)
2 − #

1 C
(i+1)
2 )/(i + 1). For given #

1 C2 and #
2 C1, sequentially

maximizing the components of #
2 C2 is equivalent to sequentially maximizing |Ci| for

i = 0, 1, . . . , l − 1. Hence a GMLOC design sequentially maximizes the estimation

ability of i-class models for i = 0, 1, . . . , l − 1. Under the effect hierarchy principle,

the estimatability of the main effects is our first concern, thus a good design must

sequentially maximize #
1 C2 and #

2 C1. Therefore, in any case, a GMLOC design can

sequentially maximize the estimation ability of i-class models for i = 0, 1, . . . , l − 1.

7 Algorithm for AENP and GMLOC Designs with

16- and 32-run

In this section, we give an algorithm for computing AENP through an example.

Although the series (4) appear complicated, the algorithm is in fact quite simple.

Consider a 2n−m regular design d. Let us use a 2m × n matrix D to express

the defining contrast subgroup G of the design d, where the entry (i, j) of D equals

1 if the i-th word in G contains letter j and 0 otherwise. We call D the defining

structure matrix (or defining pencil matrix) of design d. In matrix D, the first row

is a vector of 0’s, which corresponds to the element I in the subgroup G, and every

other row indicates a word in G.

Let S denote the set of all effects of n factors in d, where a k-order effect i1 · · · ik
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of d is expressed as an n-dimensional row vector with the i1-th, . . ., ik-th entries

ones and zeros otherwise. The effects in G or the defining structure matrix D are

those which are aliased with I, the total mean effect. Let the column sum (ordinary

addition) of D be as its marginal column.

The algorithm of computing #
i Cj(d) can be described as follows:

Step 1. Set S0 to be the empty set. And set #
i C

(k)
j = 0 for all i, j = 0, 1, . . . , n, k =

0, 1, . . . , Kj.

Step 2. Let S = S \ S0. Selecting one vector (i.e. a effect) from S (can be from

lower order to higher order). Adding (in module 2) it to the every row of D, we

obtain the aliased-effect matrix D′ of the selected effect. From the matrix D′, we

can get the alias set T to which the selected effect belongs (also the element of T is

expressed as an n-dimensional vector). And then set S0 = S0 ∪ T and i = j = 0.

Step 3. Let pi and qj be the numbers of i- and j-order effects in T respectively

(just count the numbers of i’s and j’s at the marginal column by the D′ in the table

respectively). We set #
i C

(qj)
j = #

i C
(qj)
j + pi if i 6= j or #

i C
(qj−1)
j = #

i C
(qj−1)
j + pi if

i = j. Then repeat this step for all cases: 1 ≤ i + j ≤ n, i, j = 1, . . . , n.

Step 4. Stop if |S0| = 2n and go to Step 2 otherwise, where | · | is the cardinality

of a set.

Let us consider the design d3 in Example 2 as an example. The defining contrast

subgroup G of d3 is

{I, 1236, 1247, 1358, 2568, 3467, 145678, 234578},

and its defining structure matrix D is given in Table 1.

Table 1. Defining structure matrix D of d3

0 0 0 0 0 0 0 0 0

1 1 1 0 0 1 0 0 4

1 1 0 1 0 0 1 0 4

1 0 1 0 1 0 0 1 4

0 1 0 0 1 1 0 1 4

0 0 1 1 0 1 1 0 4

1 0 0 1 1 1 1 1 6

0 1 1 1 1 0 1 1 6

The marginal column in the table is simply the distribution of word-

lengths in the defining contrast subgroup G.
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For the example, in step 1 the S is the set of all effects of 5 factors. For simplicity,

we only consider to calculate #
2 C

(k)
j ’s of d3.

At step 2, say, we select vector (1, 1, 0, 0, 0, 0, 0, 0) (2fi 12) from S. Adding it to

every row of D in Table 1, we obtain the aliased-effect matrix D′ and its marginal

column of the 2fi 12 of d3 which is shown in Table 2.

Table 2. Aliased-effect matrix D′ of the 2fi 12 of d3

1 1 0 0 0 0 0 0 2

0 0 1 0 0 1 0 0 2

0 0 0 1 0 0 1 0 2

0 1 1 0 1 0 0 1 4

1 0 0 0 1 1 0 1 4

1 1 1 1 0 1 1 0 6

0 1 0 1 1 1 1 1 6

1 0 1 1 1 0 1 1 6

The marginal column in the table is simply the distribution of effect

orders in the alias set containing the 2fi 12.

From D′ we obtain the alias set T of the 2fi 12:

T = {12, 36, 47, 2358, 1568, 123467, 245678, 134578}.

Set S0 = S0 ∪ T (i.e. add the row vectors of D′ into S0) and i = j = 0.

In step 3, in this case we take i = j = 2 and have p2 = q2 = 3 (the number of 2’s

at the marginal column in Table is 3), and then set #
2 C

(2)
2 = #

2 C
(2)
2 + 3. Considering

i = 2, j = 4, have p2 = 3, q4 = 2, and set #
2 C

(2)
4 = #

2 C
(2)
4 + 3. Considering i = 2 and

j = 6, have p2 = 3, q6 = 3, and set #
2 C

(3)
6 = #

2 C
(3)
6 + 3. No change for other #

2 C
(k)
j ’s.

In step 4, in this case only calculate the number of 2fi’s in S0, the number 3 is less

than
(

5
2

)

= 10, then go to step 2. Set S = S \ S0. Select one 2fi belonging to S, say

45, and add (0, 0, 0, 1, 1, 0, 0, 0) to the rows of Table 1. we obtain the aliased-effect

matrix D′′ of the 2fi 45 of d3 which is shown in Table 3.
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Table 3. Aliased-effect matrix D′′ of the 2fi 45 of d3

0 0 0 1 1 0 0 0 2

1 1 1 1 1 1 0 0 6

1 1 0 0 1 0 1 0 4

1 0 1 1 0 0 0 1 4

0 1 0 1 0 1 0 1 4

0 0 1 0 1 1 1 0 4

1 0 0 0 0 1 1 1 4

0 1 1 0 0 0 1 1 4

The marginal column in the table is simply the distribution of effect

orders in the alias set containing the 2fi 45.

From Table 3, we can get the alias set containing 2fi 45:

T = {45, 123456, 1257, 1348, 2468, 3567, 1678, 2378}.

Let S0 = S0 ∪ T . Since p2 = q2 = 1 (the number of 2’s at the marginal column

in Table 3 is 1), set #
2 C

(0)
2 = #

2 C
(0)
2 + 1. In same way to consider i = 2, j = 4 and

i = 2, j = 6.

Repeat the procedure above, we can obtain #
2 C2(d3) = (4, 18, 6, 0 . . . , 0) and

#
2 C

(k)
j , j = 1, 2, 3, . . . , k = 0, 1, 2 . . . of d3.

In the Appendix, in Table 14 we list the complete AENPs of d1, d2 and d10 in

Examples 1 and 6. For convenience, we show the AENP in an array (or a matrix)

of dimension 10 × 10, and the (i, j)-th entry of the array is #
i Cj. To save space,

we omit the zeros after the last nonzero component of #
i Cj and use 0k to denote k

successive zero entries. For example, the (1,3)-th entry (1, 02, 8) of d1 in Table 14 of

the Appendix expands to #
1 C3(d1) = (1, 0, 0, 8, 0, . . . , 0). Also, we tabulate the 16-

and 32-run GMLOC designs and 64-run GMLOC designs with some parameters and

some comparisons with MA and clear effects criteria in Table 6-13 of the Appendix.

We make an illustration to the tables in the following.

Let a1, a2, a3, a4 and a5 denote the five independent columns (10000)′, (01000)′,

(00100)′, (00010)′ and (00001)′, respectively. Then any product of a1, a2, a3, a4 and

a5 also corresponds to a binary sequence, for example a1a3a5 corresponds to (10101)′.

Table 4 converts these binary sequences into decimal ones. A 2n−m design can be

obtained by selecting a subset of n columns of C = {1, . . . , 2n−m − 1}, consisting of

n − m independent columns and m additional columns.
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For simplicity, in the tables we use n-m.i to denote the i-th good design according

to the GMOLC criterion among 2n−m designs with n factors and m independent

defining words. The additional columns are listed in decimal in the second part of

the tables. The third part of the tables is the AENP of the design, here we only list
#
1 C2,

#
2 C1, and #

2 C2 for short. We also list the WLP and the number of clear main

effect and clear 2fi’s for comparison in the fourth and fifth parts respectively. In

the last part, the optimality order-numbers of the designs under GMLOC, MA and

clear effects criterion respectively in all the isomorphism 2n−m designs are listed. We

only list the first ten good designs under GMLOC criterion if there are more than

ten non-isomorphic designs, otherwise we list all of them in order. For parameter

n = 2n−m − i, i = 1, 2, 3, the design is unique up to isomorphism and hence is

omitted.

8 Simplification of the AENP and Its More Usage

From the complete AENPs of three designs in Table 14 of the Appendix, one may

say that the AENP of a design appears to be rather complicated. However, one

should note that from an application point of view in design, the most important

part of the AENP is only the small part at the top left corner. If we only consider

designs in which three and higher order interactions are negligible, then we only need

to be concerned with the 2 × 2 sub-matrix (or a sub-array) (#
i Cj) with i, j = 1, 2;

this can usually discriminate different designs. If we consider designs in which only

four and higher order interactions are negligible, then the 3 × 3 sub-matrix (#
i Cj),

i, j = 1, 2, 3, suffices. However the former is more commonly used in practice.

From these low-dimensional sub-matrices we can already obtain all the information

concerning the numbers of clear main effects and two-factor interactions and the

severity of confounding between the lower-order effects. As a consequence, the

complete AENP can be simplified into a set of few numbers. If we only consider

designs with resolution no less than III, we can also drop #
1 C1 from the matrices

and leave only three entries for the 2× 2 case. Thus in the tables related to 16-run,

32-run and 64-run designs in the Appendix, we list these three entries for every

design.

Example 6. Let us consider the 29−4 designs d1, d2 in Example 1 and the following
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design d10 (they are 9-4.2, 9-4.1, and 9-4.3 in Table 6 respectively) defined by

d1 : I = 1236 = 1247 = 1258 = 13459;

d2 : I = 1236 = 1247 = 1348 = 23459;

d10 : I = 1236 = 2347 = 1348 = 1249.

All the main effects of d1, d2 and d10 are clear and the number of clear 2fi’s of d1, d2

and d10 are 8, 15 and 8, respectively. The word-length patterns of the three designs

are (0,0,0,6,8,0,0,1,0), (0,0,0,7,7,0,0,0,1) and (0,0,0,14,0,0,. . . ), respectively. d1

has MA in all 29−4 designs, and d2 has the most clear 2fi’s in all 29−4 designs. Note

that
#
1 C1(d1) = #

1 C1(d2) = #
1 C1(d10) = (9, 0, . . . , 0),

#
2 C0(d1) = #

2 C0(d2) = #
1 C1(d10) = 36,

#
1 C2(d1) = #

1 C2(d2) = #
1 C1(d10) = (9, 0, . . . , 0),

#
2 C1(d1) = #

2 C1(d2) = #
1 C1(d10) = (36, 0, . . . , 0),

#
2 C2(d1) = (8, 24, 0, 4, 0, . . . , 0),
#
2 C2(d2) = (15, 0, 21, 0, . . . , 0),
#
2 C2(d10) = (8, 0, 0, 28, 0, . . . , 0).

Although according to the word-length pattern of MA criterion, d1 is better than d2

and d10, according to the AENP of GMLOC criterion, d2 is obviously better than d1

and d10. d1 and d10 make no difference under the clear effects criterion, but d1 is

better than d10 according to the GMLOC criterion, and the word-length pattern of

d10 is much worse than that of d1.

In fact, the GMLOC criterion given by Definition 1 mainly adapts to the case

where three or higher order interactions are negligible. If three or higher order

interactions are active and need to be estimated, we probably have to make some

necessary modifications. But we can still use the AENP or its set form (2).

Furthermore, the AENP has more usages. In what follows, we shall use it to

perform more analysis using the above example.

As the core of the GMLOC, the AENP, in addition to being used to rank-order

2n−m designs, also contains more useful information which one can find from it

directly. For example, let us study the AENPs of designs d1 and d10 in Example 6

further. Note that #
2 C

(0)
3 (d10) = 36, which is simply the number of all the 2fi’s of

design d10, i.e., there does not exist 2fi’s aliased with any three-factor interactions

(3fi’s). Hence the eight clear 2fi’s of d10 are all strongly clear. By studying #
2 C2(d1) =

(8, 24, 0, 4), #
2 C3(d1) = (4, 02, 8, 24), #

3 C1(d1) = (60, 24), #
3 C2(d1) = (28, 32, 24) and
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#
3 C3(d1) = (0, 24, 24, 36), which are listed in Table 14, we can conclude that the

aliasing cosets of d1 containing 2fi’s and 3fi’s have five forms. They are: 1 coset

containing four 2fi’s but no 3fi’s, 1 coset containing four 3fi’s but no 2fi’s, 12 cosets

containing two 2fi’s and two 3fi’s, 8 cosets containing one 2fi and four 3fi’s, and 8

cosets containing three 3fi’s but no 2fi’s. Then in #
2 C1(d1) the eight 2fi’s non-aliased

by main effects must be in the 8 cosets containing one 2fi and four 3fi’s respectively.

But each of such 8 cosets contains 3fi’s. Hence, none of the eight clear 2fi’s of d1 is

strongly clear. Although d1 has less general lower-order confounding than d10 by the

AENPs listed in Table 6 and 14, d10 is perhaps a good selection between d1 and d10

for the experimenter if the interactions involving three factors can not be ignored,

if he/she is willing to sacrifice 12 2fi’s which may be de-aliased and estimated by

some follow-up experiments. Note that the word-length of d10 is much worse than

that of d1 and the analysis above can not be arrived at from only the word-length

patterns of d1 and d10. Hence the AENP contains more information of a design than

the word-length pattern and we can easily retrieve such information from the AENP

directly.

Finally, we have found that nearly all the existing criteria for choosing optimal

designs can be expressed as a function of the AENP. Choosing different function

of the AENP can lead to different criteria, such as the MA, the clear effects, the

week MA, the MEC, the MMA, the MEA criteria and so on. For example, for the

maximal designs of resolution IV proposed by Chen and Cheng (2006), we have that

a 2n−m design of resolution IV is maximal if and only if the design satisfies the two

conditions: #
1 C

(0)
2 = n and

∑

k≥1,j≥3
#
j C

(k)
2 +

(

n
2

)

= 2n − (n + 1)2m.
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Appendix

Table 4. Design matrices for 16- and 32-run designs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 5. 16-run GMLOC designs and comparisons with MA and Clear criteria

designs add. columns #
1 C2;

#
2 C1;

#
2 C2 WLP Cs Orders

G,M,C

6-2.1 7 14 6; 15; 0,12,3 0, 3, 0, 0 6, 0 1, 1, 1

6-2.2 3 14 3,3; 12,3; 9,6 1, 1, 1, 0 3, 6 2, 2, 2

6-2.3 6 12 1,4,1; 9,6; 9,6 2, 1, 0, 0 1, 5 3, 4, 3

6-2.4 3 12 0,6;9,6;15 2, 0, 0, 1 0, 9 4, 3, 4

7-3.1 14 7 11 7; 21; 02,21 0, 7, 0, 0 7, 0 1, 1, 1

7-3.2 14 7 3 2,4,1; 15,6; 6,12,3 2, 3, 2, 0 2, 2 2, 2, 2

7-3.3 12 6 10 1,0,6; 9,12; 6,12,3 4, 3, 0, 0 1, 6 3, 5, 3

7-3.4 14 7 6 0,6,0,1; 12,9; 6,12,3 3, 3, 0, 0 0, 0 4, 4, 5

7-3.5 12 6 3 0,5,2; 12,9; 9,12 3, 2, 1, 1 0, 4 5, 3, 4

8-4.1 14 7 11 13 8; 28; 03,28 0, 14, 0, 0 8, 0 1, 1, 1

8-4.2 14 7 3 5 2,0,6; 16,12; 0,24,0,4 4, 6, 4, 0 2, 0 2, 4, 2

8-4.3 14 7 11 3 1,6,0,1; 19,9; 7,0,21 3, 7, 4, 0 1, 1 3, 2, 4

8-4.4 12 6 10 14 1,02,7; 7,21; 7,0,21 7, 7, 0, 0 1, 7 4, 6, 3

8-4.5 14 7 3 12 0,4,4; 16,12; 4,18,6 4, 5, 4, 2 0, 0 5, 3, 6

8-4.6 14 7 6 3 0,2,5,1; 13,15; 4,18,6 5, 5, 2, 2 0, 2 6, 5, 5

9-5.1 14 7 11 13 3 0,8,02,1; 24,12; 8,02,28 4, 14, 8, 0 0, 0 1, 1, 1

9-5.2 14 7 11 3 6 0,2,5,2; 18,18; 2,12,18,4 6, 10, 8, 4 0, 0 2, 3, 1

9-5.3 12 6 10 14 3 0,2,0,6,1; 12,24; 2,12,18,4 8, 10, 4, 4 0, 0 3, 5, 1

9-5.4 14 7 3 12 9 02,9; 18,18; 0,18,18 6, 9, 9, 6 0, 0 4, 2, 1

9-5.5 14 7 3 12 6 02,6,3; 15,21; 0,18,18 7, 9, 6, 6 0, 0 5, 4, 1

10-6.1 14 7 11 13 3 6 02,8,0,2; 21,24; 0,16,0,24,5 8, 18, 16, 8 0, 0 1, 1, 1

10-6.2 14 7 3 12 9 6 02,3,7; 18,27; 0,6,27,12 9, 16, 15, 12 0, 0 2, 2, 1

10-6.3 12 6 10 14 3 5 02,3,4,3; 15,30; 0,6,27,12 10, 16, 12, 12 0, 0 3, 4, 1

10-6.4 14 7 3 12 6 15 03,10; 15,30; 02,45 10, 15, 12, 15 0, 0 4, 3, 1

11-7.1 14 7 11 13 3 6 12 03,8,3; 19,36; 02,24,16,15 12, 26, 28, 24 0, 0 1, 1, 1

11-7.2 14 7 11 13 3 6 5 03,8,0,3; 16,39; 02,24,16,15 13, 26, 24, 24 0, 0 2, 3, 1

11-7.3 14 7 3 12 9 6 5 03,5,6; 16,39; 02,15,40 13, 25, 25, 27 0, 0 3, 2, 1

12-8.1 14 7 11 13 3 6 12 9 04,12; 18,48; 03,48,0,18 16, 39, 48, 48 0, 0 1, 1, 1

12-8.2 14 7 11 13 3 6 12 5 04,9,3; 15,51; 03,36,30 17, 38, 44, 52 0, 0 2, 2, 1
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Table 6. 32-run GMLOC designs and comparisons with MA and Clear criteria

designs add. columns #
1 C2;

#
2 C1;

#
2 C2 WLP Cs Orders

G,M,C

7-2.1 30 7 7; 21; 15,6 0, 1, 2, 0 7, 15 1, 1, 1
7-2.2 28 7 7; 21; 9,12 0, 2, 0, 1 7, 9 2, 2, 2
7-2.3 28 14 7; 21; 6,12,3 0, 3, 0, 0 7, 6 3, 3, 3
7-2.4 30 3 4,3; 18,3; 21 1, 0, 1, 1 4, 18 4, 4, 4
7-2.5 28 3 4,3; 18,3; 15,6 1, 1, 0, 0 4, 12 5, 5, 5
7-2.6 28 6 4,3; 18,3; 15,6 1, 1, 1, 0 4, 12 6, 6, 5
7-2.7 24 12 2,4,1; 15,6; 15,6 2, 1, 0, 0 2, 11 7, 8, 7
7-2.8 24 3 1,6; 15,6; 21 2, 0, 0, 1 1, 15 8, 7, 8

8-3.1 30 7 11 8; 28; 13,12,3 0, 3, 4, 0 8, 13 1, 1, 1
8-3.2 28 14 22 8; 28; 7,0,21 0, 7, 0, 0 8, 7 2, 4, 2
8-3.3 28 14 7 8; 28; 4,18,6 0, 5, 0, 2 8, 4 3, 2, 3
8-3.4 28 14 3 8; 28; 0,24,0,4 0, 6, 0, 0 8, 0 4, 3, 4
8-3.5 30 7 12 5,3; 25,3; 16,12 1, 2, 3, 1 5, 13 5, 5, 5
8-3.6 28 14 13 5,3; 25,3; 13,12,3 1, 3, 2, 0 5, 10 6, 6, 6
8-3.7 30 7 3 3,4,1; 22,6; 22,6 2, 1, 2, 2 3, 18 7, 7, 7
8-3.8 28 6 3 3,4,1; 22,6; 16,12 2, 2, 1, 1 3, 12 8, 9, 8
8-3.9 30 7 6 3,4,1; 22,6; 16,12 2, 2, 2, 0 3, 12 9, 10, 8
8-3.10 28 14 6 3,4,1; 22,6; 13,12,3 2, 3, 2, 0 3, 9 10,11,10

9-4.1 30 7 11 13 9; 36; 15,0,21 0, 7, 7, 0 9, 15 1, 2, 1
9-4.2 30 7 11 19 9; 36; 8,24,0,4 0, 6, 8, 0 9, 8 2, 1, 2
9-4.3 28 14 22 26 9; 36; 8,02,28 0, 14, 0, 0 9, 8 3, 5, 2
9-4.4 28 14 13 7 9; 36; 2,12,18,4 0, 10, 0, 4 9, 2 4, 4, 4
9-4.5 28 14 7 19 9; 36; 0,18,18 0, 9, 0, 6 9, 0 5, 3, 5
9-4.6 28 14 22 3 6,3; 33,3; 15,0,21 1, 7, 4, 0 6, 12 6, 7, 6
9-4.7 30 7 11 24 6,3; 33,3; 12,18,6 1, 5, 6, 2 6, 9 7, 6, 7
9-4.8 30 7 11 6 4,4,1; 30,6; 15,18,3 2, 4, 6, 2 4, 11 8, 9, 8
9-4.9 28 14 7 3 4,4,1; 30,6; 12,18,6 2, 5, 4, 2 4, 8 9, 10,9
9-4.10 28 14 7 10 4,4,1; 30,6; 12,18,6 2, 5, 5, 2 4, 8 10,11,9

10-5.1 30 7 11 19 29 10; 45; 0,40,02,5 0, 10, 16, 0 10, 0 1, 1, 1
10-5.2 28 14 22 26 7 10; 45; 0,16,0,24,5 0, 18, 0, 8 10, 0 2, 4, 1
10-5.3 28 14 7 19 11 10; 45; 0,6,27,12 0, 16, 0, 12 10, 0 3, 3, 1
10-5.4 28 14 7 19 25 10; 45; 02,45 0, 15, 0, 15 10, 0 4, 2, 1
10-5.5 28 14 22 26 3 7,3; 42,3; 17,02,28 1, 14, 7, 0 7, 14 5, 6, 5
10-5.6 30 7 11 19 14 7,3; 42,3; 11,12,18,4 1, 10, 11, 4 7, 8 6, 5, 6
10-5.7 28 14 22 3 5 5,4,1; 39,6; 11,12,18,4 2, 10, 8, 4 5, 7 7, 10, 7
10-5.8 28 14 7 19 5 5,4,1; 39,6; 9,18,18 2, 9, 9, 6 5, 5 8, 9, 8
10-5.9 30 7 11 19 6 5,4,1; 39,6; 8,30,3,4 2, 8, 12, 4 5, 4 9, 8, 9
10-5.10 30 7 11 24 21 4,6; 39,6; 12,24,9 2, 7, 12, 7 4, 6 10, 7, 11

11-6. 1 28 14 22 26 7 11 11; 55; 02,24,16,15 0, 26, 0, 24 11, 0 1, 2, 1
11-6. 2 28 14 7 19 25 11 11; 55; 02,15,40 0, 25, 0, 27 11, 0 2, 1, 1
11-6. 3 28 14 22 26 7 3 6,4,1; 49,6; 10,16,0,24,5 2, 18, 14, 8 6, 6 3, 5, 3
11-6. 4 28 14 7 19 11 17 6,4,1; 49,6; 10,6,27,12 2, 16, 16, 12 6, 6 4, 4, 3
11-6. 5 30 7 11 19 29 6 6,4,1; 49,6; 4,28,18,0,5 2, 14, 22, 8 6, 0 5, 3, 5
11-6. 6 30 7 11 19 6 5 5,0,6; 43,12; 4,28,18,0,5 4, 14, 16, 8 5, 4 6, 15, 6
11-6. 7 28 14 7 19 11 18 4,6,0,1; 46,9; 10,6,27,12 3, 16, 12, 12 4, 4 7, 8, 7
11-6. 8 28 14 7 19 11 6 4,6,0,1; 46,9; 10,6,27,12 3, 16, 13, 12 4, 4 8, 9, 7
11-6. 9 28 14 7 19 25 3 4,6,0,1; 46,9; 10,0,45 3, 15, 13, 15 4, 4 9, 7, 7
11-6.10 30 7 11 24 21 14 4,5,2; 46,9; 8,24,15,8 3, 13, 19, 11 4, 3 10, 6, 10
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Table 7. 32-run GMLOC designs and comparisons with MA and Clear criteria (continued)

designs add. columns #
1 C2;#2 C1;#2 C2 WLP Cs Orders

G,M,C

12-7.1 28 14 22 26 7 11 13 12; 66; 03,48,0,18 0, 39, 0, 48 12, 0 1, 2, 1

12-7.2 28 14 7 19 25 11 13 12; 66; 03,36,30 0, 38, 0, 52 12, 0 2, 1, 1

12-7.3 28 14 22 26 7 3 5 6,0,6; 54,12; 0,36,0,24,0,6 4, 23, 28, 16 6, 0 3, 7, 3

12-7.4 28 14 22 26 7 11 3 5,6,0,1; 57,9; 11,0,24,16,15 3, 26, 22, 24 5, 5 4, 4, 4

12-7.5 28 14 7 19 25 11 6 5,6,0,1; 57,9; 11,0,15,40 3, 25, 23, 27 5, 5 5, 3, 4

12-7.6 28 14 22 26 7 3 9 4,4,4; 54,12; 4,32,0,20,10 4, 22, 28, 20 4, 0 6, 6, 7

12-7.7 30 7 11 19 29 6 12 4,4,4; 54,12; 4,22,27,8,5 4, 20, 32, 22 4, 0 7, 5, 7

12-7.8 28 14 7 19 11 17 18 4,2,5,1; 51,15; 4,22,27,8,5 5, 20, 28, 22 4, 2 8, 12, 6

12-7.9 28 14 7 19 11 6 13 3,8,02,1; 54,12; 11,0,24,16,15 4, 26, 20, 24 3, 3 9, 9, 9

12-7.10 28 14 7 19 25 11 3 3,8,02,1; 54,12; 11,0,15,40 4, 25, 19, 27 3, 3 10, 8, 9

13-8.1 28 14 22 26 7 11 13 19 13; 78 ;04,60,18 0, 55, 0, 96 13, 0 1, 1, 1

13-8.2 28 14 22 26 7 11 13 3 4,8,02,1; 66,12; 12,02,48,0,18 4, 39, 32, 48 4, 4 2, 4, 2

13-8.3 28 14 7 19 25 11 13 24 4,8,02,1; 66,12; 12,02,36,30 4, 38, 32, 52 4, 4 3, 2, 2

13-8.4 28 14 7 19 25 11 13 6 4,8,02,1; 66,12; 12,02,36,30 4, 38, 33, 52 4, 4 4, 3, 2

13-8.5 28 14 22 26 7 11 3 5 4,2,5,2; 60,18; 2,20,24,16,10,6 6, 31, 44, 40 4, 0 5, 9, 5

13-8.6 30 7 11 19 29 6 12 9 4,0,9; 60,18; 0,18,45,0,15 6, 28, 51, 42 4, 0 6, 6, 5

13-8.7 30 7 11 19 29 6 12 10 4,0,6,3; 57,21; 0,18,45,0,15 7, 28, 46, 42 4, 0 7, 14, 5

13-8.8 28 14 7 19 11 6 13 5 3,0,8,0,2; 54,24; 2,20,24,16,10,6 8, 31, 40, 40 3, 2 8, 29, 8

13-8.9 30 7 11 19 6 12 10 2 3,0,3,7; 51,27; 0,18,45,0,15 9, 28, 42, 42 3, 0 9, 46, 9

13-8.10 28 14 7 19 25 11 13 3 2,10,03,1; 63,15; 12,02,36,30 5, 38, 28, 52 2, 2 10, 5, 13

14-9.1 28 14 22 26 7 11 13 19 21 14; 91; 05,84,7 0, 77, 0, 168 14, 0 1, 1, 1

14-9.2 28 14 22 26 7 11 13 3 5 4,0,8,0,2; 67,24; 0,24,0,48,0,12,7 8, 45, 64, 72 4, 0 2, 8, 2

14-9.3 30 7 11 19 29 6 12 10 5 4,0,3,7; 64,27; 0,6,51,16,0,18 9, 41, 69, 72 4, 0 3, 11, 2

14-9.4 28 14 22 26 7 11 13 19 3 3,10,03,1; 76,15; 13,03,60,18 5, 55, 45, 96 3, 3 4, 2, 4

14-9.5 29 14 7 19 11 6 13 5 10 3,02,8,3; 55,36; 0,6,51,16,0,18 12, 41, 64, 72 3, 0 5, 66, 5

14-9.6 28 14 7 19 25 11 13 24 20 2,4,6,0,2; 67,24; 4,20,0,36,25,6 8, 43, 64, 80 2, 0 6, 6, 8

14-9.7 28 14 7 19 25 11 13 6 3 2,2,8,0,1,1; 64,27; 4,20,0,36,25,6 9, 43, 61, 80 2, 2 7, 13, 7

14-9.8 28 14 22 26 6 12 24 18 11 2,03,12; 43,48; 0,24,0,48,0,12,7 16, 45, 64, 72 2, 0 8, 124, 8

14-9.9 28 14 13 7 3 6 11 10 5 2,03,9,3; 40,51; 4,20,0,36,25,6 17, 43, 61, 80 2, 4 9, 125, 6

14-9.10 28 14 22 26 7 11 13 19 6 1,12,04,1; 73,18; 13,03,60,18 6, 55, 40, 96 1, 1 10, 3, 15

15-10.1 28 14 22 26 7 11 13 19 21 25 15; 105; 06,105 0, 105, 0, 280 15, 0 1, 1, 1

15-10.2 28 14 22 26 7 11 13 3 5 9 4,02,8,3; 69,36; 02,36,48,02,21 12, 57, 100, 120 4, 0 2, 13, 2

15-10.3 28 14 7 19 11 6 13 5 10 9 3,03,12; 57,48; 02,36,48,02,21 16, 57, 96, 120 3, 0 3, 98, 3

15-10.4 28 14 22 26 7 11 13 19 21 3 2,12,04,1; 87,18; 14,04,84,7 6, 77, 62, 168 2, 2 4, 2, 4

15-10.5 28 14 22 26 7 11 13 19 3 5 2,2,9,02,2; 75,30; 2,24,02,60,12,7 10, 61, 90, 136 2, 0 5, 5, 6

15-10.6 28 14 13 7 3 6 11 10 5 9 2,04,12,1; 39,66; 2,24,02,60,12,7 22, 61, 94, 136 2, 2 6, 144, 4

15-10.7 30 7 11 19 29 6 12 24 9 10 1,3,3,5,3; 69,36; 3,6,27,36,15,18 12, 53, 100, 136 1, 0 7, 11, 12

15-10.8 28 14 7 19 25 11 13 3 12 6 1,2,1,8,1,2; 63,42; 3,6,27,36,15,18 14, 53, 94, 136 1, 1 8, 39, 10

15-10.9 28 14 7 19 11 6 13 5 10 3 1,2,02,9,2,1; 51,54; 3,6,27,36,15,18 18, 53, 90, 136 1, 1 9, 127, 10

15-10.10 28 14 22 26 7 11 13 19 6 12 1,0,12,03,2; 69,36; 2,24,02,60,12,7 12, 61, 80, 136 1, 2 10, 14, 9
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Table 8. 32-run GMLOC designs and comparisons with MA and Clear criteria (continued)

designs add. columns #
1 C2; #

2 C1;
#
2 C2 WLP Cs Orders

G,M,C

16-11.1 28 14 22 26 7 11 13 19 21
25 31 16; 120; 07,120 0,140, 0,448 16, 0 1, 1, 1

16-11.2 28 14 22 26 7 11 13 3 5
9 15 4,03,12; 72,48; 03,96,03,24 16, 76,144,192 4, 0 2, 20, 2

16-11.3 28 14 22 26 7 11 13 19 21
3 5 2,0,12,03,2; 84,36; 0,28,03,84,0,8 12, 84,124,224 2, 0 3, 4, 3

16-11.4 28 14 13 7 3 6 11 10 5
9 15 2,05,14; 36,84; 0,28,03,84,0,8 28, 84,140,224 2, 0 4, 144, 3

16-11.5 28 14 22 26 7 11 13 19 21
25 3 1,14,05,1; 99,21; 15,05,105 7,105, 84,280 1, 1 5, 2, 7

16-11.6 28 14 22 26 7 11 13 19 3
5 9 1,3,0,9,0,3; 75,45; 3,0,36,0,60,0,21 15, 73,140,216 1, 0 6, 9, 9

16-11.7 28 14 7 19 11 6 13 5 10
9 3 1,2,03,12,0,1; 51,69; 3,0,36,0,60,0,21 23, 73,132,216 1, 1 7, 140, 7

16-11.8 30 7 11 19 29 6 12 24 9
18 10 1,0,6,0,9; 72,48; 0,12,0,72,0,36 16, 68,144,224 1, 0 8, 14, 9

16-11.9 28 14 7 19 11 17 6 5 3
10 9 1,0,3,0,9,0,3; 60,60; 0,12,0,72,0,36 20, 68,132,224 1, 0 9, 106, 9

16-11.10 30 7 11 19 29 6 12 24 9
18 23 1,02,15; 75,45; 02,45,0,75 15, 65,156,232 1, 0 10, 6, 9

17-12.1 28 14 22 26 7 11 13 19 21
25 31 3 0,16,06,1; 112,24; 16,06,120 8,140,112,448 0, 0 1, 1, 1

17-12.2 30 7 11 19 29 6 12 24 9
10 5 15 0,4,02,9,4; 76,60; 4,02,48,60,02,24 20, 92,200,336 0, 0 2, 15, 1

17-12.3 28 14 22 26 7 11 13 3 5
9 15 6 0,4,03,12,02,1; 64,72; 4,02,48,60,02,24 24, 92,192,336 0, 0 3, 97, 1

17-12.4 28 14 22 26 7 11 13 19 21
25 3 6 0,2,13,04,2; 94,42; 2,28,04,98,8 14,112,168,364 0, 0 4, 2, 1

17-12.5 28 14 22 26 7 11 13 19 21
3 12 5 0,2,2,10,02,3; 82,54; 2,4,36,02,72,14,8 18, 96,192,348 0, 0 5, 5, 1

17-12.6 28 14 7 19 11 6 13 5 10
9 3 12 0,2,1,03,12,2; 46,90; 2,4,36,02,72,14,8 30, 96,184,348 0, 0 6,130, 1

17-12.7 28 14 22 26 7 11 13 19 21
3 5 6 0,2,0,12,03,2,1; 76,60; 2,4,36,02,72,14,8 20, 96,180,348 0, 0 7, 16, 1

17-12.8 28 14 22 26 6 12 24 18 10
20 30 3 0,2,05,14,1; 28,108; 2,28,04,98,8 36,112,196,364 0, 0 8,132, 1

17-12.9 30 7 11 19 29 6 12 24 9
18 10 5 0,1,3,3,6,4; 76,60; 1,6,9,36,45,18,21 20, 88,200,356 0, 0 9, 13, 1

17-12.10 28 14 22 26 7 11 13 19 3
5 9 6 0,1,3,1,8,1,2,1; 70,66; 1,6,9,36,45,18,21 22, 88,192,356 0, 0 10, 43, 1

18-13.1 28 14 22 26 7 11 13 19 21 25
31 3 6 02,16,05,2; 105,48; 0,32,05,112,9 16,148,224,560 0, 0 1, 1, 1

18-13.2 28 14 22 26 7 11 13 19 21 3
12 5 10 02,4,0,10,0,4; 81,72; 0,8,0,48,0,72,0,16,9 24,116,272,528 0, 0 2, 9, 1

18-13.3 30 7 11 19 29 6 12 24 17 10
5 15 9 02,4,0,3,11; 78,75; 0,8,0,12,85,24,0,24 25,112,275,536 0, 0 3, 13, 1

18-13.4 30 7 11 19 29 6 12 24 9 10
5 15 3 02,4,0,1,8,4,0,1; 69,84; 0,8,0,12,85,24,0,24 28,112,264,536 0, 0 4, 68, 1

18-13.5 28 14 22 26 7 11 13 3 5 9
15 6 12 02,4,03,12,0,2; 57,96; 0,8,0,48,0,72,0,16,9 32,116,256,528 0, 0 5,108, 1

18-13.6 28 14 22 26 7 11 13 19 21 25
3 6 12 02,3,12,03,3; 90,63; 0,6,39,03,84,24 21,126,259,532 0, 0 6, 2, 1

18-13.7 28 14 22 26 7 11 13 19 21 25
3 6 5 02,3,12,04,3; 87,66; 0,6,39,03,84,24 22,126,252,532 0, 0 7, 3, 1

18-13.8 28 14 22 26 6 12 24 18 10 20
30 3 5 02,3,04,12,3; 39,114; 0,6,39,03,84,24 38,126,252,532 0, 0 8,113, 1

18-13.9 28 14 22 26 7 11 13 19 21 3
12 24 5 02,2,4,8,0,4; 81,72; 0,4,12,40,0,54,35,8 24,114,272,540 0, 0 9, 7, 1

18-13.10 28 14 22 26 7 11 13 19 21 3
12 9 5 02,2,4,8,0,1,3; 78,75; 0,4,12,40,0,54,35,8 25,114,267,540 0, 0 10, 16, 1
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Table 9. 32-run GMLOC designs and comparisons with MA and Clear criteria (continued)

designs add. columns #
1 C2; #

2 C1;#2 C2 WLP Cs Orders
G,M,C

19-14.1 28 14 22 26 7 11 13 19 21 25
31 3 6 12 03,16,04,3; 99,72; 02,48,04,96,27 24,164,344,784 0, 0 1, 1, 1

19-14.2 28 14 22 26 7 11 13 19 21 25
31 3 6 5 03,16,05,3; 96,75; 02,48,04,96,27 25,164,336,784 0, 0 2, 2, 1

19-14.3 28 14 22 26 7 11 13 19 21 25
3 6 12 9 03,4,11,02,4; 87,84; 02,12,48,02,84,0,27 28,148,364,784 0, 0 3, 4, 1

19-14.4 28 14 22 26 7 11 13 19 21 25
3 6 12 24 03,4,11,02,4; 87,84; 02,12,48,02,63,48 28,147,364,791 0, 0 4, 3, 1

19-14.5 28 14 22 26 7 11 13 19 21 25
3 6 12 5 03,4,11,02,1,3; 84,87; 02,12,48,02,63,48 29,147,357,791 0, 0 5, 5, 1

19-14.6 28 14 22 26 7 11 13 19 21 3
12 24 5 10 03,4,2,8,5; 81,90; 02,12,8,50,48,28,16,9 30,140,370,800 0, 0 6,10, 1

19-14.7 28 14 22 26 7 11 13 19 21 3
12 9 5 10 03,4,2,8,0,4,1; 75,96; 02,12,8,50,48,28,16,9 32,140,360,800 0, 0 7,31, 1

19-14.8 30 7 11 19 29 6 12 24 9 10
5 15 3 14 03,4,1,0,8,4,2; 63,108; 02,12,8,50,48,28,16,9 36,140,348,800 0, 0 8,82, 1

19-14.9 28 14 22 26 7 11 13 19 21 3
12 5 10 6 03,4,0,10,0,4,0,1;72,99;02,12,8,50,48,28,16,9 33,140,352,800 0, 0 9,50, 1

19-14.10 30 7 11 19 29 6 12 24 9 18
23 3 14 13 03,4,0,9,6; 78,93; 02,12,0,45,90,0,24 31,137,369,811 0, 0 10, 7, 1

20-15. 1 28 14 22 26 7 11 13 19 21 25
31 3 6 12 9 04,16,03,4; 94,96; 03,64,03,96,0,30 32,189,480,1120 0, 0 1, 2, 1

20-15. 2 28 14 22 26 7 11 13 19 21 25
31 3 6 12 24 04,16,03,4; 94,96; 03,64,03,72,54 32,188,480,1128 0, 0 2, 1, 1

20-15. 3 28 14 22 26 7 11 13 19 21 25
31 3 6 12 5 04,16,03,1,3; 91,99; 03,64,03,72,54 33,188,472,1128 0, 0 3, 3, 1

20-15. 4 28 14 22 26 7 11 3 17 13 5
23 24 30 12 10 04,6,0,14; 82,108; 03,24,0,108,0,48,0,10 36,173,492,1152 0, 0 4, 8, 1

20-15. 5 28 14 22 26 7 11 13 19 21 3
12 9 5 10 15 04,6,0,8,0,6; 70,120; 03,24,0,108,0,48,0,10 40,173,472,1152 0, 0 5, 50, 1

20-15. 6 28 14 22 26 7 11 13 19 21 25
3 6 12 24 9 04,5,10,0,5; 85,105; 03,20,55,0,56,32,27 35,176,490,1148 0, 0 6, 5, 1

20-15. 7 28 14 22 26 7 11 13 19 21 25
3 6 12 24 17 04,5,10,0,5; 85,105; 03,20,55,0,35,80 35,175,491,1155 0, 0 7, 4, 1

20-15. 8 28 14 22 26 7 11 13 19 21 25
3 6 12 24 5 04,5,10,0,2,3; 82,108; 03,20,55,0,35,80 36,175,483,1155 0, 0 8, 9, 1

20-15. 9 28 14 22 26 7 11 13 19 21 25
3 6 12 9 5 04,5,10,02,4,1; 79,111; 03,20,55,0,56,32,27 37,176,476,1148 0, 0 9, 14, 1

20-15.10 28 14 22 26 6 12 24 18 10 20
30 3 5 7 9 04,5,02,8,4,3; 55,135; 03,20,55,0,56,32,27 45,176,452,1148 0, 0 10, 67, 1

21-16.1 28 14 22 26 7 11 13 19 21 25
31 3 6 12 24 9 05,16,02,5; 90,120; 04,80,02,64,36,30 40,221,640,1600 0, 0 1, 2, 1

21-16.2 28 14 22 26 7 11 13 19 21 25
31 3 6 12 24 17 05,16,02,5; 90,120; 04,80,02,40,90 40,220,641,1608 0, 0 2, 1, 1

21-16.3 28 14 22 26 7 11 13 19 21 25
31 3 6 12 24 5 05,16,02,2,3; 87,123; 04,80,02,40,90 41,220,632,1608 0, 0 3, 3, 1

21-16.4 28 14 22 26 7 11 13 19 21 25
31 3 6 12 9 5 05,16,03,4,1; 84,126; 04,80,02,64,36,30 42,221,624,1600 0, 0 4, 6, 1

21-16.5 28 14 22 26 7 11 13 19 21 25
3 6 12 24 9 18 05,6,9,6; 84,126; 04,30,60,56,0,54,10 42,213,644,1624 0, 0 5, 5, 1

21-16.6 28 14 22 26 7 11 13 19 21 25
3 6 12 24 17 5 05,6,9,3,3; 81,129; 04,30,60,21,72,27 43,211,638,1638 0, 0 6, 8, 1

21-16.7 28 14 22 26 7 11 13 19 21 25
3 6 12 24 9 5 05,6,9,1,4,1; 78,132; 04,30,60,21,72,27 44,211,630,1638 0, 0 7, 14, 1

21-16.8 28 14 22 26 7 11 13 19 21 25
3 6 12 24 5 20 05,6,9,0,6; 78,132; 04,30,60,0,120 44,210,630,1646 0, 0 8, 8, 1

21-16.9 28 14 22 26 7 11 13 19 21 25
3 6 12 9 5 10 05,6,9,02,6; 72,138; 04,30,60,56,0,54,10 46,213,616,1624 0, 0 9, 35, 1

21-16.10 28 14 22 26 7 11 3 17 13 5
23 24 30 12 9 10 05,6,4,10,1; 78,132; 04,30,24,98,48,0,10 44,209,636,1644 0, 0 10, 7, 1
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Table 10. 32-run GMLOC designs and comparisons with MA and Clear criteria (continued)

designs add. columns #
1 C2; #

2 C1;#2 C2 WLP Cs Orders
G,M,C

22-17.1 28 14 22 26 7 11 13 19 21 25
31 3 6 12 24 9 5 06,16,0,1,4,1; 81,150; 05,96,0,24,81,30 50,261,816,2240 0, 0 3, 5, 1

22-17.2 28 14 22 26 7 11 13 19 21 25
31 3 6 12 24 5 20 06,16,02,6; 81,150; 05,96,02,135 50,260,816,2249 0, 0 4, 4, 1

22-17.3 28 14 22 26 7 11 13 19 21 25
31 3 6 12 9 5 10 06,16,03,6; 75,156; 05,96,0,64,0,60,11 52,263,800,2224 0, 0 5, 16, 1

22-17.4 28 14 22 26 7 11 3 17 13 5
23 24 30 12 9 10 15 06,10,0,12; 75,156; 05,60,0,160,02,11 52,255,816,2264 0, 0 6, 15, 1

22-17.5 28 14 22 26 7 11 13 19 21 25
31 3 6 12 24 9 18 06,16,0,6; 87,144; 05,96,0,64,0,60,11 48,263,832,2224 0, 0 1, 1, 1

22-17.6 28 14 22 26 7 11 13 19 21 25
31 3 6 12 24 17 5 06,16,0,3,3; 84,147; 05,96,0,24,81,30 49,261,825,2240 0, 0 2, 3, 1

22-17.7 28 14 7 19 25 11 6 24 21 13
18 12 22 15 17 27 5 06,7,15; 84,147; 05,42,119,02,70 49,259,833,2240 0, 0 7, 2, 1

22-17.8 28 14 22 26 7 11 13 19 21 25
3 6 12 24 9 18 5 06,7,10,4,1; 78,153; 05,42,77,48,54,10 51,255,821,2268 0, 0 8, 7, 1

22-17.9 28 14 22 26 7 11 13 19 21 25
3 6 12 24 9 5 10 06,7,9,0,6; 72,159; 05,42,77,48,54,10 53,255,805,2268 0, 0 9, 22, 1

22-17.10 28 14 22 26 7 11 13 19 21 25
3 6 12 24 9 18 10 06,7,8,6,0,1; 75,156; 05,42,77,48,54,10 52,255,812,2268 0, 0 10, 14, 1

23-18.1 28 14 22 26 7 11 13 19 21 25
31 3 6 12 24 9 18 23 07,16,7; 85,168; 06,112,64,02,77 56,315,1064,3024 0, 0 1, 1, 1

23-18.2 28 14 22 26 7 11 13 19 21 25
31 3 6 12 24 9 18 5 07,16,2,4,1; 79,174; 06,112,16,54,60,11 58,311,1050,3056 0, 0 2, 2, 1

23-18.3 28 14 22 26 7 11 13 19 21 25
31 3 6 12 24 9 5 10 07,16,1,0,6; 73,180; 06,112,16,54,60,11 60,311,1032,3056 0, 0 3, 9, 1

23-18.4 28 14 22 26 7 11 13 19 21 25
31 3 6 12 24 9 18 10 07,16,0,6,0,1; 76,177; 06,112,16,54,60,11 59,311,1040,3056 0, 0 4, 5, 1

23-18.5 28 14 22 26 7 11 13 19 21 25
31 3 6 12 24 5 20 10 07,16,0,5,2; 76,177; 06,112,0,81,60 59,310,1041,3065 0, 0 5, 4, 1

23-18.6 28 14 22 26 7 11 13 19 21 25
31 3 6 12 9 5 10 15 07,16,03,7; 64,189; 06,112,64,02,77 63,315,1008,3024 0, 0 6, 22, 1

23-18.7 28 14 22 26 7 11 13 19 21 25
3 6 12 24 9 18 5 15 07,10,7,6; 73,180; 06,70,64,108,0,11 60,307,1040,3080 0, 0 7, 8, 1

23-18.8 28 14 22 26 7 11 3 17 13 5
23 24 30 12 9 10 15 6 07,10,0,12,0,1; 64,189; 06,70,64,108,0,11 63,307,1016,3080 0, 0 8, 20, 1

23-18.9 28 14 7 19 25 11 6 24 21 13
18 12 22 15 17 27 5 3 07,9,13,0,1; 76,177; 06,63,120,0,70 59,308,1047,3073 0, 0 9, 3, 1

23-18.10 28 14 22 26 7 11 13 19 21 25
3 6 12 24 9 5 10 15 07,9,7,0,7; 64,189; 06,63,120,0,70 63,308,1015,3073 0, 0 10, 21, 1

24-19.1 28 14 22 26 7 11 13 19 21 25
31 3 6 12 24 9 18 23 29 08,24; 84,192; 07,192,03,84 64,378,1344,4032 0, 0 1, 1, 1

24-19.2 28 14 22 26 7 11 13 19 21 25
31 3 6 12 24 9 18 5 15 08,18,0,6; 72,204; 07,144,0,120,0,12 68,370,1316,4096 0, 0 2, 4, 1

24-19.3 28 14 22 26 7 11 13 19 21 25
31 3 6 12 24 9 18 23 5 08,17,6,0,1; 75,201; 07,136,63,0,77 67,371,1324,4088 0, 0 3, 2, 1

24-19.4 28 14 22 26 7 11 13 19 21 25
31 3 6 12 24 9 5 10 15 08,17,02,7; 63,213; 07,136,63,0,77 71,371,1288,4088 0, 0 4, 14, 1

24-19.5 28 14 22 26 7 11 13 19 21 25
31 3 6 12 24 9 18 5 20 08,16,4,4; 72,204; 07,128,36,90,22 68,369,1316,4106 0, 0 5, 3, 1

24-19.6 28 14 22 26 7 11 13 19 21 25
31 3 6 12 24 9 18 10 5 08,16,2,5,1; 69,207; 07,128,36,90,22 69,369,1306,4106 0, 0 6, 7, 1

24-19.7 28 14 7 19 25 11 6 24 21 13
18 12 22 15 17 27 3 10 5 08,11,11,2; 69,207; 07,88,117,60,11 69,367,1310,4120 0, 0 7, 6, 1

24-19.8 28 14 22 26 7 11 13 19 21 25
3 6 12 24 9 18 5 15 10 08,11,6,6,1; 63,213; 07,88,117,60,11 71,367,1292,4120 0, 0 8, 13, 1

24-19.9 28 14 7 19 25 11 6 24 21 13
18 12 22 15 17 27 3 10 20 08,9,15; 69,207; 07,72,144,60 69,366,1311,4129 0, 0 9, 5, 1

24-19.10 28 14 22 26 7 11 13 19 21 3
12 24 17 9 20 10 23 5 6 08,9,12,3; 66,210; 07,72,144,60 70,366,1301,4129 0, 0 10, 9, 1
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Table 11. 32-run GMLOC designs and comparisons with MA and Clear criteria (continued)

designs add. columns #
1 C2;#2 C1;#2 C2 WLP Cs Orders

G,M,C

25-20.1 28 14 22 26 7 11 13 19 21 25

31 3 6 12 24 9 18 23 29 5 09,24,02,1; 72,228; 08,216,02,84 76,442,1656,5376 0, 0 1, 1, 1

25-20.2 28 14 22 26 7 11 13 19 21 25

31 3 6 12 24 9 18 23 5 10 09,18,5,2; 66,234; 08,162,60,66,12 78,438,1640,5412 0, 0 2, 3, 1

25-20.3 28 14 22 26 7 11 13 19 21 25

31 3 6 12 24 9 18 5 15 10 09,18,0,6,1; 60,240; 08,162,60,66,12 80,438,1620,5412 0, 0 3, 9, 1

25-20.4 28 14 22 26 7 11 13 19 21 25

31 3 6 12 24 9 18 5 20 27 09,16,9; 66,234; 08,144,90,66 78,437,1641,5422 0, 0 4, 2, 1

25-20.5 28 14 22 26 7 11 13 19 21 25

31 3 6 12 24 9 18 5 20 10 09,16,6,3; 63,237; 08,144,90,66 79,437,1630,5422 0, 0 5, 5, 1

25-20.6 28 14 7 19 25 11 6 24 21 13

18 12 22 15 17 27 3 10 20 5 09,13,12; 63,237; 08,117,150,33 79,436,1632,5430 0, 0 6, 4, 1

25-20.7 28 14 7 19 25 11 6 24 21 13

18 12 22 15 17 27 3 10 9 5 09,13,9,3; 60,240; 08,117,150,33 80,436,1622,5430 0, 0 7, 8, 1

25-20.8 28 14 22 26 7 11 13 19 21 3

12 24 17 9 20 6 27 5 10 18 09,10,15; 60,240; 08,90,210 80,435,1622,5440 0, 0 8, 6, 1

25-20.9 28 14 22 26 7 11 13 19 21 3

12 24 17 9 20 6 27 5 10 15 09,10,15; 60,240; 08,90,210 80,435,1623,5440 0, 0 9, 7, 1

26-21.1 28 14 22 26 7 11 13 19 21 25

31 3 6 12 24 9 18 23 29 5 10 010,24,0,2; 61,264; 09,240,0,72,13 88,518,2032,7032 0, 0 1, 1, 1

26-21.2 28 14 22 26 7 11 13 19 21 25

31 3 6 12 24 9 18 5 20 27 10 010,19,7; 58,267; 09,190,99,36 89,516,2023,7052 0, 0 2, 2, 1

26-21.3 28 14 22 26 7 11 13 19 21 25

31 3 6 12 24 9 18 23 5 10 15 010,19,4,3; 55,270; 09,190,99,36 90,516,2012,7052 0, 0 3, 5, 1

26-21.4 28 14 22 26 7 11 13 19 21 25

31 3 6 12 24 9 18 5 20 10 17 010,16,10; 55,270; 09,160,165 90,515,2012,7063 0, 0 4, 3, 1

26-21.5 28 14 7 19 25 11 6 24 21 13

18 12 22 15 17 27 3 10 20 5 9 010,16,10; 55,270; 09,160,165 90,515,2013,7062 0, 0 5, 4, 1

27-22.1 28 14 22 26 7 11 13 19 21 25 31

3 6 12 24 9 18 23 29 5 10 20 011,24,3; 51,300; 010 ,264,48,39 100,606,2484,9064 0, 0 1, 1, 1

27-22.2 28 14 22 26 7 11 13 19 21 25 31

3 6 12 24 9 18 23 29 5 10 15 011,24,0,3; 48,303; 010 ,264,48,39 101,606,2472,9064 0, 0 2, 3, 1

27-22.3 28 14 22 26 7 11 13 19 21 25 31

3 6 12 24 9 18 5 20 27 10 15 011,21,6; 48,303; 010 ,231,120 101,605,2473,9075 0, 0 3, 2, 1

28-23.1 28 14 22 26 7 11 13 19 21 25 31

3 6 12 24 9 18 23 29 5 10 20 27 012,28 ; 42,336 ; 011,336,0,42 112,707,3024,11536 0, 0 1, 1, 1

28-23.2 28 14 22 26 7 11 13 19 21 25 31

3 6 12 24 9 18 23 29 5 10 20 15 012,25,3 ; 39,339 ; 011,300,78 113,706,3012,11548 0, 0 2, 2, 1
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Table 12. 64-run GMLOC designs and comparisons with MA and Clear criteria

designs add. columns #
1 C2;

#
2 C1;

#
2 C2 WLP Cs Orders

G,M,C

8-2.1 60 15 8; 28; 28 0, 0, 2, 1 8, 28 1, 1, 1

8-2.2 62 7 8; 28; 22,6 0, 1, 0, 2 8, 22 2, 2, 2

8-2.3 60 7 8; 28; 22,6 0, 1, 1, 0 8, 22 3, 3, 2

8-2.4 60 14 8; 28; 22,6 0, 1, 2, 0 8, 22 4, 4, 2

8-2.5 56 7 8; 28; 16,12 0, 2, 0, 0 8, 16 6, 5, 5

8-2.6 56 11 8; 28; 16,12 0, 2, 0, 1 8, 16 5, 6, 5

8-2.7 56 28 8; 28; 13,12,3 0, 3, 0, 0 8, 13 7, 7, 7

8-2.8 62 3 5,3; 25,3; 28 1, 0, 0, 1 5, 25 8, 8, 8

8-2.9 60 3 5,3; 25,3; 28 1, 0, 1, 0 5, 25 10, 9, 8

8-2.10 60 6 5,3; 25,3; 28 1, 0, 1, 1 5, 25 9, 10, 8

9-3.1 60 15 22 9; 36; 30,6 0, 1, 4, 2 9, 30 1, 1, 1

9-3.2 60 14 19 9; 36; 24,12 0, 2, 3, 1 9, 24 2, 2, 2

9-3.3 56 7 27 9; 36; 24,12 0, 2, 4, 0 9, 24 3, 3, 2

9-3.4 62 7 11 9; 36; 21,12,3 0, 3, 0, 4 9, 21 4, 4, 4

9-3.5 60 14 7 9; 36; 21,12,3 0, 3, 2, 0 9, 21 5, 6, 4

9-3.6 60 14 13 9; 36; 21,12,3 0, 3, 3, 0 9, 21 6, 7, 4

9-3.7 60 14 22 9; 36; 21,12,3 0, 3, 4, 0 9, 21 7, 8, 4

9-3.8 56 11 22 9; 36; 18,18 0, 3, 0, 4 9, 18 8, 4, 8

9-3.9 56 11 7 9; 36; 15,18,3 0, 4, 0, 2 9, 15 9, 9, 9

9-3.10 56 28 44 9; 36; 15,0,21 0, 7, 0, 0 9, 15 10, 12, 9

10-4.1 60 15 22 39 10; 45; 33,12 0, 2, 8, 4 10, 33 1, 1, 1

10-4.2 60 15 22 26 10; 45; 30,12,3 0, 3, 8, 3 10, 30 2, 4, 2

10-4.3 60 15 22 21 10; 45; 30,12,3 0, 3, 7, 4 10, 30 3, 3, 2

10-4.4 60 15 22 35 10; 45; 27,18 0, 3, 6, 4 10, 27 4, 2, 4

10-4.5 56 7 27 14 10; 45; 24,18,3 0, 4, 6, 2 10, 24 5, 5, 5

10-4.6 56 7 27 30 10; 45; 24,18,3 0, 4, 8, 0 10, 24 6, 6, 5

10-4.7 62 7 11 13 10; 45; 24,0,21 0, 7, 0, 7 10, 24 7, 15, 5

10-4.8 60 14 13 7 10; 45; 24,0,21 0, 7, 3, 0 10, 24 8, 17, 5

10-4.9 60 14 22 26 10; 45; 24,0,21 0, 7, 7, 0 10, 24 9, 18, 5

10-4.10 60 14 19 7 10; 45; 21,18,6 0, 5, 4, 2 10, 21 10, 7, 10

11-5.1 60 15 22 39 21 11; 55; 34,18,3 0, 4, 14, 8 11, 34 1, 1, 1

11-5.2 60 15 22 35 26 11; 55; 28,24,3 0, 5, 12, 7 11, 28 2, 3, 2

11-5.3 56 7 27 14 13 11; 55; 28,6,21 0, 8, 10, 4 11, 28 3, 11, 2

11-5.4 60 14 22 26 29 11; 55; 28,6,21 0, 8, 14, 0 11, 28 4, 13, 2

11-5.5 60 15 22 21 27 11; 55; 27,24,0,4 0, 6, 12, 8 11, 27 5, 6, 5

11-5.6 60 14 13 7 11 11; 55; 27,02,28 0, 14, 4, 0 11, 27 6, 30, 5

11-5.7 60 15 22 35 57 11; 55; 25,30 0, 5, 10, 10 11, 25 7, 2, 7

11-5.8 60 15 22 35 21 11; 55; 25,24,6 0, 6, 10, 8 11, 25 8, 4, 7

11-5.9 60 15 22 39 19 11; 55; 25,24,6 0, 6, 12, 4 11, 25 9, 5, 7

11-5.10 60 14 19 7 37 11; 55; 22,24,9 0, 7, 8, 7 11, 22 10, 7, 10
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Table 13. 64-run GMLOC designs and comparisons with MA and Clear criteria (continued)

designs add. columns #
1 C2;

#
2 C1;

#
2 C2 WLP Cs Orders

G,M,C

12-6.1 60 15 22 39 21 59 12; 66; 36,24,6 0, 6, 24, 16 12, 36 1, 1, 1

12-6.2 60 15 22 39 21 19 12; 66; 30,12,24 0, 10, 20, 8 12, 30 2, 5, 2

12-6.3 60 15 22 39 19 41 12; 66; 27,30,9 0, 8, 20, 14 12, 27 3, 2, 3

12-6.4 60 15 22 35 26 37 12; 66; 24,30,12 0, 9, 18, 13 12, 24 4, 3, 4

12-6.5 60 15 22 35 21 19 12; 66; 23,18,21,4 0, 12, 14, 12 12, 23 5, 12, 5

12-6.6 60 15 22 35 57 19 12; 66; 21,30,15 0, 10, 15, 16 12, 21 6, 4, 6

12-6.7 60 14 19 7 37 26 12; 66; 21,24,21 0, 11, 14, 15 12, 21 7, 6, 6

12-6.8 60 14 22 11 7 13 12; 66; 21,16,0,24,5 0, 18, 8, 8 12, 21 8, 35, 6

12-6.9 60 14 22 11 19 7 12; 66; 21,6,27,12 0, 16, 9, 12 12, 21 9, 28, 6

12-6.10 60 14 22 26 7 11 12; 66; 21,6,27,12 0, 16, 10, 12 12, 21 10, 29, 6

13-7.1 60 15 22 39 21 59 19 13; 78; 36,0,42 0, 14, 33, 16 13, 36 1, 2, 1

13-7.2 60 14 22 11 19 7 13 13; 78; 23,0,24,16,15 0, 26, 12, 24 13, 23 2, 37, 2

13-7.3 60 14 22 26 7 11 13 13; 78; 23,0,24,16,15 0, 26, 13, 24 13, 23 3, 38, 2

13-7.4 60 14 22 26 7 11 19 13; 78; 23,0,15,40 0, 25, 13, 27 13, 23 4, 34, 2

13-7.5 60 15 22 39 19 46 21 13; 78; 22,30,18,8 0, 15, 28, 20 13, 22 5, 5, 5

13-7.6 56 11 22 7 35 19 45 13; 78; 21,16,36,0,5 0, 18, 21, 24 13, 21 6, 14, 6

13-7.7 60 15 22 39 19 41 26 13; 78; 20,36,18,4 0, 14, 28, 24 13, 20 7, 1, 7

13-7.8 60 14 19 7 37 26 11 13; 78; 20,18,24,16 0, 19, 19, 25 13, 20 8, 16, 7

13-7.9 60 14 22 38 11 19 25 13; 78; 20,18,24,16 0, 19, 20, 24 13, 20 9, 17, 7

13-7.10 56 28 14 38 50 23 13 13; 78; 20,12,42,4 0, 18, 20, 28 13, 20 10, 13, 7

14-8.1 60 14 22 11 19 7 13 21 14; 91; 25,02,48,0,18 0, 39, 16, 48 14, 25 1, 42, 1

14-8.2 60 14 22 26 7 11 19 13 14; 91; 25,02,36,30 0, 38, 17, 52 14, 25 2, 40, 1

14-8.3 60 14 19 7 37 26 11 13 14; 91; 19,16,24,12,20 0, 30, 25, 44 14, 19 3, 17, 3

14-8.4 60 14 22 38 11 19 25 7 14; 91; 19,16,15,36,5 0, 29, 26, 46 14, 19 4, 15, 3

14-8.5 56 11 22 7 35 19 45 28 14; 91; 18,16,36,16,5 0, 26, 29, 48 14, 18 5, 11, 5

14-8.6 60 15 22 39 19 46 21 43 14; 91; 16,34,24,12,5 0, 23, 38, 38 14, 16 6, 5, 6

14-8.7 60 14 22 38 58 11 19 25 14; 91; 16,34,24,12,5 0, 23, 40, 36 14, 16 7, 6, 6

14-8.8 56 28 14 38 50 23 13 27 14; 91; 16,28,42,0,5 0, 22, 40, 41 14, 16 8, 2, 6

14-8.9 60 14 22 38 11 19 35 25 14; 91; 16,24,27,24 0, 25, 30, 50 14, 16 9, 9, 6

14-8.10 60 14 22 38 11 19 37 31 14; 91; 16,18,45,12 0, 24, 31, 54 14, 16 10, 7, 6
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Table 14. AENPs of d1, d2 and d10 in Example 4.

#
i C

(k)
j (d1) j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9

i = 0 1 1 1 1 06, 1 08, 1 1 1 0, 1 1
i = 1 9 9 9 1, 02, 8 04, 8, 03, 1 03, 8, 02, 1 1, 03, 8 1, 8 9 8, 1
i = 2 36 36 8, 24, 0, 4 4, 0, 24, 0, 8 4, 02, 8, 24 04, 32, 03, 4 02, 24, 8, 4 12, 0, 24 28, 8 36
i = 3 84 60, 24 28, 32, 24 0, 24, 24, 36 03, 32, 48, 03, 4 4, 02, 24, 56 4, 0, 24, 32, 24 32, 24, 24, 0, 4 52, 32 84
i = 4 120, 6 86, 40 54, 24, 48 14, 0, 48, 32, 32 02, 24, 80, 0, 6, 0, 16 8, 02, 32, 72, 0, 8, 0, 6 22, 0, 48, 24, 32 38, 32, 48, 0, 8 96, 30 118, 8
i = 5 118, 8 96, 30 38, 32, 48, 0, 8 22, 0, 48, 24, 32 8, 02, 32, 72, 0, 8, 0, 6 02, 24, 80, 0, 6, 0, 16 14, 0, 48, 32, 32 54, 24, 48 86, 40 120, 6
i = 6 84 52, 32 32, 24, 24, 0, 4 4, 0, 24, 32, 24 4, 02, 24, 56 03, 32, 48, 03, 4 0, 24, 24, 36 28, 32, 24 60, 24 84
i = 7 36 28, 8 12, 0, 24 02, 24, 8, 4 04, 32, 03, 4 4, 02, 8, 24 4, 0, 24, 0, 8 8, 24, 0, 4 36 36
i = 8 8, 1 9 1, 8 1, 03, 8 03, 8, 02, 1 04, 8, 03, 1 1, 02, 8 9 9 9
i = 9 1 0, 1 1 1 08, 1 06, 1 1 1 1 1

#
i C

(k)
j (d2) j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9

i = 0 1 1 1 1 07, 1 07, 1 1 1 1 0, 1
i = 1 9 9 9 2, 03, 7 03, 7, 03, 2 03, 7, 03, 2 2, 03, 7 9 0, 9 9
i = 2 36 36 15, 0, 21 0, 21, 0, 14, 03, 1 1, 03, 35 1, 03, 35 0, 21, 0, 14, 03, 1 0, 15, 0, 21 36 36
i = 3 84 56, 28 28, 49, 0, 7 7, 0, 42, 28, 02, 7 7, 02, 28, 49 7, 02, 28, 49 0, 7, 0, 42, 28, 02, 7 28, 49, 0, 7 56, 28 84
i = 4 119, 7 91, 35 42, 56, 0, 28 21, 28, 0, 56, 21 02, 21, 84, 02, 21 03, 21, 84, 02, 21 21, 28, 0, 56, 21 42, 56, 0, 28 91, 35 119, 7
i = 5 119, 7 91, 35 42, 56, 0, 28 21, 28, 0, 56, 21 03, 21, 84, 02, 21 02, 21, 84, 02, 21 21, 28, 0, 56, 21 42, 56, 0, 28 91, 35 119, 7
i = 6 84 56, 28 28, 49, 0, 7 0, 7, 0, 42, 28, 02, 7 7, 02, 28, 49 7, 02, 28, 49 7, 0, 42, 28, 02, 7 28, 49, 0, 7 56, 28 84
i = 7 36 36 0, 15, 0, 21 0, 21, 0, 14, 03, 1 1, 03, 35 1, 03, 35 0, 21, 0, 14, 03, 1 15, 0, 21 36 36
i = 8 9 0, 9 9 2, 03, 7 03, 7, 03, 2 03, 7, 03, 2 2, 03, 7 9 9 9
i = 9 0, 1 1 1 1 07, 1 07, 1 1 1 1 1

#
i C

(k)
j (d10) j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9

i = 0 1 1 1 1 014, 1 1 1 1 0, 1 1
i = 1 9 9 9 1, 06, 8 9 07, 8, 06, 1 9 1, 8 9 8, 1
i = 2 36 36 8, 02, 28 36 07, 8, 28 36 04, 28, 02, 8 36 28, 8 36
i = 3 84 28, 56 84 03, 28, 02, 56 84 07, 56, 28 84 0, 56, 02, 28 84 84
i = 4 112, 14 126 14, 56, 02, 56 126 06, 56, 56, 05, 14 126 14, 03, 56, 02, 56 126 56, 70 126
i = 5 126 56, 70 126 14, 03, 56, 02, 56 126 06, 56, 56, 05, 14 126 14, 56, 02, 56 126 112, 14
i = 6 84 84 0, 56, 02, 28 84 07, 56, 28 84 03, 28, 02, 56 84 28, 56 84
i = 7 36 28, 8 36 04, 28, 02, 8 36 07, 8, 28 36 8, 02, 28 36 36
i = 8 8, 1 9 1, 8 9 07, 8, 06, 1 9 1, 06, 8 9 9 9
i = 9 1 0, 1 1 1 1 014, 1 1 1 1 1
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