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There are essentially two kinds of non-inferiority hypotheses in an active control trial:
fixed margin and ratio hypotheses. In a fixed margin hypothesis, the margin is a
prespecified constant and the hypothesis is defined in terms of a single parameter that
represents the effect of the active treatment relative to the control. The statistical
inference for a fixed margin hypothesis is straightforward. The outstanding issue for a
fixed margin non-inferiority hypothesis is how to select the margin, a task that may
not be as simple as it appears. The selection of a fixed non-inferiority margin has been
discussed in a few articles (Chi et al., 2003; Hung et al., 2003; Ng, 1993). In a ratio
hypothesis, the control effect is also considered as an unknown parameter, and the non-
inferiority hypothesis is then formulated as a ratio in terms of these two parameters,
the treatment effect and the control effect. This type of non-inferiority hypothesis has
also been called the fraction retention hypothesis because the ratio hypothesis can be
interpreted as a retention of certain fraction of the control effect. Rothmann et al.
(2003) formulated a ratio non-inferiority hypothesis in terms of log hazards in the
time-to-event setting. To circumvent the complexity of having to deal with a ratio
test statistic, the ratio hypothesis was linearized to an equivalent hypothesis under
the assumption that the control effect is positive. An associated test statistic for this
linearized hypothesis was developed. However, there are three important issues that are
not addressed by this method. First, the retention fraction being defined in terms of
log hazard is difficult to interpret. Second, in order to linearize the ratio hypothesis,
Rothmann’s method has to assume that the true control effect is positive. Third, the
test statistic is not powerful and thus requires a huge sample size, which renders the
method impractical. In this paper, a ratio hypothesis is defined directly in terms of
the hazard. A natural ratio test statistic can be defined and is shown to have the desired
asymptotic normality. The demand on sample size is much reduced. In most commonly
encountered situations, the sample size required is less than half of those needed by
either the fixed margin approach or Rothmann’s method.
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1. INTRODUCTION

The purpose of clinical trials in drug development is usually to demonstrate
that a new treatment is superior to placebo or standard of care. The hypotheses
in such clinical trials involve only one parameter of interest, e.g., treatment effect
(relative to placebo or standard care). For mortality or serious morbidity trials,
ethical reason requires that when there are available known effective treatments
for the disease, investigators should use one of these active treatments instead of a
placebo as the control (Declaration of Helsinki, 2000). Traditionally, in an active
control trial, the objective is to demonstrate that the new experimental treatment
is superior to the active control. However, to require that the new experimental
treatment be superior to control may not always be necessary as when, for example
the experimental treatment offers other advantage over the control, such as better
safety profile, or ease of administration (Temple, 1996; Temple and Ellenberg, 2000).

Generally, two types of hypotheses can be formulated in an active control
non-inferiority trial: a fixed margin hypothesis and a fraction retention hypothesis.
With a fixed margin hypothesis, the margin is specified as a constant. The statistical
inference has been well developed for such a one-parameter fixed margin hypothesis.
The real issue with the fixed margin non-inferiority hypothesis is how to specify
the non-inferiority margin. The selection of a fixed non-inferiority margin has been
discussed in a few articles (Chi et al., 2003; Hung et al., 2003; Ng, 1993). With
a fraction retention hypothesis, the control effect is considered as an unknown
parameter. The hypothesis can be formulated as a ratio of two parameters,
the treatment effect and the control effect. The statistical tests for a fraction
retention hypothesis has recently been developed. For example, Rothmann et al.
(2003) formulated a ratio non-inferiority hypothesis and developed an associated
statistical test for the linearized hypothesis that is equivalent to the original ratio
hypothesis under the assumption that the true control effect is positive. Rothmann’s
method considers the problem within the context of a time-to-event endpoint, and
defines the concept of fraction retention in terms of log-hazard ratio. The major
issues with Rothmann’s method will be discussed later in this section.

A fraction retention non-inferiority hypothesis generally involves two
parameters, a treatment effect �t and a control effect �c. The following ratio
hypothesis is a direct formulation of the non-inferiority fraction retention
hypothesis:

H0 � �t/�c ≥ 1− �0 vs. Ha � �t/�c < 1− �0� (1)

where �0 �0 ≤ �0 ≤ 1� denotes a given level of fraction retention.
The treatment effect �t and the control effect �c have different expressions

for different endpoints. For instance, for a mortality trial with a time-to-event
endpoint, �t and �c are usually expressed as hazard ratios. For a binary endpoint,
�t and �c may represent the odds ratio or relative risk of treatment relative to
control, and control relative to placebo, respectively. Let T , C, and P be the
experimental treatment, control, and placebo, respectively. Rothmann et al. (2003)
used logHR�T/C� (i.e., �t) and logHR�P/C� (i.e., �c) to express the treatment effect
relative to the active control and the control effect relative to placebo, respectively.
Although it is difficult to interpret clinically, it avoids mathematics difficulties in the
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statistical inference. In this paper, we also consider a mortality trial with a time-to-
event endpoint and use HR�T/C�− 1 (i.e., �t) and HR�P/C�− 1 (i.e., �c) to express
the treatment effect relative to the active control and the control effect relative to
placebo, respectively, which are clinically more interpretable.

In hypothesis (1), since it is difficult to draw statistical inference directly on
such ratio hypothesis, a transformation of the ratio hypothesis is often considered.
If we assume that �c > 0, the transformation is straightforward. The non-inferiority
hypotheses (1) can be transformed into:

H0 � �t − �1− �0��c ≥ 0 vs. Ha � �t − �1− �0��c < 0� (2)

For the non-inferiority hypothesis in (2), the following test statistic can be used.

Z∗
R = �̂t − �1− �0��̂c√

SE2��̂t�+ �1− �0�
2SE2��̂c�

� (3)

where �̂t and �̂c are the estimates of �t and �c, respectively, and SE��̂t� and SE��̂c�
are the standard errors of �̂t and �̂c, respectively. Since �̂t and �̂c are based on
data collected from the concurrent trial and historical trial(s), respectively, they are
independent and Z∗

R is asymptotically normally distributed.
For a time-to-event endpoint, Rothmann et al. (2003) define the fraction

retention of control effect to be retained by the experimental treatment as

�R = logHR�P/C�− logHR�T/C�

logHR�P/C�
� (4)

where T�C, and P represent experimental treatment, control, and placebo,
respectively, and logHR�P/C� is assumed to be positive. Furthermore, it is assumed
that the constancy assumption holds, that is, the control effect has not changed
over time. This assumption may not necessarily hold true in general due to
changing standard of care or medical practice, such as the standard therapy for
treating patient with the disease under consideration. However, all methods would
implicitly or explicitly require such assumptions, unless data are available to provide
appropriate adjustment.

Based on definition (4), the non-inferiority hypothesis of interest can be
defined as

H0 � �R ≤ �0 vs. Ha � �R > �0� (5)

where �0 is the level of fraction retention desired. Though �0 is defined as the
level of fraction retention in many papers, �0 also depends on the definition of
�R. For instance, �0 in non-inferiority ratio hypothesis and �0 in Rothmann’s non-
inferiority linearized hypothesis are different as shown in Chi et al. (2003).

Under the assumption that the control effect is positive, the hypothesis in (5)
is equivalent to

H0 � logHR�T/C�− �1− �0� logHR�P/C� ≥ 0

vs. Ha � logHR�T/C�− �1− �0� logHR�P/C� < 0�
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Rothmann et al. (2003) developed a statistical test for the above hypothesis, which
is analogous to Z∗

R, except the estimates of the hazard ratios are replaced by the
estimates of the log hazard ratios. A similar test is also proposed for relative risk by
Holmgren (1999) and Hasselblad and Kong (2001).

The linearized non-inferiority hypothesis based on the fraction retention
concept greatly reduces the mathematical difficulties encountered in deriving the
distributional properties of the test statistic associated with the ratio non-inferiority
hypothesis. There are three major issues with this hypothesis: 1) The ratio is defined
based on a log transformation of a hazard ratio. Clinically, it is difficult to interpret.
2) The hypothesis requires a key assumption that active control is truly effective.
This assumption leads to the inflation of false positive rate of the trial (Chen
et al., 2004). 3) The statistical test is not powerful and imposes a large sample size
requirement.

In the following section, fraction retention will be defined directly in terms of
the hazard ratio and an associated ratio test statistic will be defined. The proof of
the asymptotic normality of this ratio test statistic will be given in the Appendix.

2. NON-INFERIORITY HYPOTHESIS AND STATISTICAL INFERENCE

In this section, a fraction retention non-inferiority ratio hypothesis and the
associated statistical test are established for a time-to-event endpoint. Analogous
methods may be developed for other endpoints, such as odds ratio or relative risk.

A. Fraction Retention Hypothesis

Let the capital letters T�C, and P denote, respectively, the effects of
experimental treatment, active control, and a reference “placebo” or “standard
therapy” and HR for hazard ratio. The definition of a fraction retention of active
control effect is given below.

� = �HR�P/C�− 1	− �HR�T/C�− 1	
HR�P/C�− 1

� (6)

The non-inferiority ratio hypothesis based on fraction retention can be
formulated as follows.

H0 � � ≤ �0 vs. Ha � � > �0� (7)

where �0 > 0 is a specified fixed level of the relative fraction of retention desired.
The statistical inference for the fraction retention hypothesis in (7) is usually

difficult because of a lack of acknowledge about the distributional properties of the
associated test statistic. We propose a ratio test statistic in this paper to directly test
the fraction retention ratio hypothesis in (7) with the desired power.

If �0 = 1, then the fraction retention non-inferiority hypothesis in (7)
becomes

H0 � � ≤ 1 vs. Ha � � > 1� (8)
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When we assumed that HR�P/C� > 1, i.e., the control treatment is truly effective,
the non-inferiority ratio hypothesis in (8) is equivalent to

H0 � HR�T/C� ≥ 1 vs. Ha � HR�T/C� < 1� (9)

The above hypothesis in (9) is a superiority hypothesis to compare the experimental
treatment T to the control C.

If �0 = 0, from the definition of fraction retention and the assumption that
HR�P/C� > 1, the non-inferiority ratio hypothesis in (7) is equivalent to

H0 �
HR�T/C�

HR�P/C�
≥ 1 vs. Ha �

HR�T/C�

HR�P/C�
< 1� (10)

Under the constancy assumption that the control effect has not changed over time,
the above hypothesis in (10) can be viewed as a surrogate superiority hypothesis to
compare the experimental treatment T relative to a virtual placebo P:

H0 � HR�T/P� ≥ 1 vs. Ha � HR�T/P� < 1� (11)

So, under the assumption that the control is truly effective and the assumption
of constancy, the non-inferiority ratio hypothesis in (7) becomes a superiority
hypothesis for testing the new treatment against the control when �0 = 1. It becomes
a superiority hypothesis for testing the new treatment against a virtual placebo when
�0 = 0. For appropriate choices of 0 < �0 < 1, the hypothesis in (7) becomes either
an equivalence hypothesis for showing the equivalence between the new treatment
and the control, or a non-inferiority hypothesis for showing the non-inferiority of
the new treatment to the control.

B. Ratio Test Statistic

Let ĤR�T/C� and ĤR�P/C� be the observed hazard ratios of treatment effect
relative to control and placebo effect relative to control, respectively. Obviously, the
fraction retention � can be estimated by

�̂ = ĤR�P/C�− ĤR�T/C�

ĤR�P/C�− 1
� (12)

Thus, a natural test statistic for the fraction retention hypothesis in (7) can be
defined as follows.

Z∗ = �̂− �0

SE��̂�
� (13)

where SE��̂� =
√

1
�ĤR�P/C�−1�2

�s2x + �1− �0�
2s2y 	 is the standard error of �̂ under the

null hypothesis H0 in (7), and where sx = SE�ĤR�T/C�� and sy = SE�ĤR�P/C�� are
the standard errors of ĤR�T/C� and ĤR�P/C�, respectively.
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Since � = 1− HR�T/C�−1
HR�P/C�−1 is a kind of ratio of two parameters HR�T/C� and

HR�P/C� and Z∗ is defined to directly test the ratio hypothesis in (7), Z∗ is
called a ratio test statistic. Hasselblad and Kong (2001) and Fisher et al. (2001)
discussed similar ratio test statistics. However, they did not discuss the distributional
properties of their ratio test statistics. In the later section of this paper, we will
prove that Z∗ has the asymptotic standard normal distribution under the null
hypothesis H0 in (7). To do so, we develop a tool based on the use of the logarithmic
transformation and a sequence of interim statistics Z∗

k for the ratio hypothesis
in (7), where k is a prespecified additive constant in each statistic. Then, Z∗ is the
limiting statistic based on Z∗

k such that Z∗ has the optimal power. Since each Z∗
k

is asymptotically normally distributed, Z∗ has an asymptotic normal distribution
under the null hypothesis H0 in (7). Our simulation results show that Z∗ converges
to the standard normal with a relatively good convergence rate.

Since Z∗ has the asymptotic standard normal distribution under the null
hypothesis H0 in (7), H0 can be rejected for one-sided test if z∗0 > c1−
, where z∗0
is the observed value of Z∗� c1−
 = �−1�1− 
� is the critical value of normal test
under the null hypothesis H0 with the significance level 
, and ��·� is the cumulative
probability function of the standard normal.

C. Asymptotic Normality of Z∗

In this section, we will derive the theoretical probability distribution of Z∗.

Theorem 1. Z∗ has the asymptotical standard normal distribution.

Z∗ = �̂− �0

SE��̂�
−→ N�0� 1�� (14)

where SE��̂� =
√

1
�ĤR�P/C�−1�2

�s2x + �1− �0�
2s2y 	.

The detailed proof of Theorem 1 is given in the Appendix. Though we have
proved that Z∗ has the asymptotic standard normal distribution under the null
hypothesis H0 in (7), for a small sample size, the convergence may be somewhat
slow. In this section, we will report some simulation results for the normality of Z∗.

Table 1 summarizes the simulation results for the Xeloda trials (the detailed
data can be found in the next section), where the simulation runs is 100,000 and
p is the proportion of the simulation runs that passed the Shapiro-Wilk normality
test. In the simulation study, two independent log-normal random variables for
�̂ are generated based on the values of the Xeloda trials and the assumptions
of Theorem 1 that ĤR�T/C� and ĤR�P/C� are independent and have log-normal

Table 1 Simulation results for normality of Z∗ (simulation runs = 100,000)

NOE 400 600 800 1000 1200 1400 1600 1800 2000

p 50.5% 68.2% 80.9% 88.9% 93.8% 96.6% 98.2% 99.1% 99.6%
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distribution. From Table 1, if the number of events (NOE) is equal to or greater
than 1000, we will have 89% probability of passing the Shapiro-Wilk normality test.
Figure 1 shows the QQ-plot of Z∗ for NOE = 1000. Table 1 and Figure 1 show that
Z∗ converges relatively quickly to the standard normal distribution.

Although Table 1 shows a large sample size (>1000 events), which would
be required to ensure reasonable normality, in practice, non-inferiority trials often
demand sample sizes that well exceed the numbers shown in this table. Therefore,
the normality assumption should be readily satisfied.

D. Power and Sample Size

Let �0 and �a be the standard deviations of �̂ under the null and alternative
hypotheses in (7), respectively. At the design stage, the probability of type II error
associated with Z∗ test is given below.

 = �

(
�0 − �a + �0c1−


�a

)
� (15)

To determine the sample size for a non-inferiority trial at the design stage,
we assume that the standard deviations of �̂ under the null and alternative
hypotheses are the same, i.e., �0 = �a. Thus, from (15),

c = c1−
 +
�0 − �a

�a

�

Figure 1 QQ Plot of Z∗ with standard normal �NOE = 1000�.
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where �a =
√

1
�HR�P/C�−1�2 ��

2
x + �1− �a�

2�2
y�	, and where �2

x and �2
y are the variances

of ĤR�T/C� and ĤR�P/C�, respectively. By the delta method, the variances can be
approximately equal to

�2
x ≈ HR2�T/C�var�log ĤR�T/C���

�2
y ≈ HR2�P/C�var�log ĤR�P/C���

Thus, under the alternative hypothesis,

�2
x + �1− �a�

2�2
y =

��0 − �a�
2�HR�P/C�− 1�2

�c − c1−
�
2

�

Let nx1 and nx2 denote the number of events in the experimental treatment
and active control arms in the concurrent trial, respectively, and E denote the
expected values. The asymptotic standard deviation of the log-hazard ratio in the
concurrent trial can be estimated by

√
1

E�nx1�
+ 1

E�nx2�
. Fleming and Harrington (1991)

gave a lower bound for the estimated standard error, which is
√

1
E�nx1�

+ 1
E�nx2�

≥ 2√
nx
,

where nx = nx1 + nx2. Thus, the sample size required for the current trial may be
estimated by

nx ≥
4 · �c − c1−
�

2��1− �a�ĤR�P/C�+ �a	
2

��a − �0�
2�ĤR�P/C�− 1�2 − �c − c1−
�

2�1− �a�
2s2y

� (16)

An example about the sample size requirements can be found in the next
section. It shows that the ratio approach based on Z∗ requires a smaller sample size
than the fixed margin approach based on the point estimate of the control effect.

3. EXAMPLE

In this section, we will use two Xeloda trials (FDA, 2001) as examples to
illustrate the design and analysis of non-inferiority trial with the non-inferiority
ratio hypothesis and statistical inference proposed in this paper. There were two
randomized trials of about 600 patients, each comparing Xeloda with 5-FU+ LV.
For each trial, the efficacy criterion was a demonstration that Xeloda had a greater
than 50% retention of the survival effect of 5-FU+ LV relative to 5-FU alone.

Table 2 Survival results in two Xeloda clinical trials

Study NOE n HR�T/C� SE�HR� 95% CI�HR� SE�logHR�

SO14695 378 605 0.9964 0.0865 (0.8405, 1.1812) 0.0868
SO14796 386 602 0.9191 0.0797 (0.7754, 1.0893) 0.0867
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Table 3 Meta-analysis results from 10 published papers

Study HR�P/C� SE�HR� 95% CI�HR� logHR SE�logHR�

10-papers 1.2638 0.0948 (1.0910, 1.4639) 0.2341 0.0750

Table 2 summarizes survival results for each trial based on the intent-to-treat
populations.

To assess the control effect for Xeloda trials, 10 published papers based on
randomized trials were selected, in which the control, 5-FU+ LV, was compared
with 5-FU alone. Although 5-FU alone may have a slightly better survival effect
than a true placebo, there is no study reporting this conjecture. Table 3 summarizes
survival results based on the meta-analysis of the 10 published papers.

For consistency, we use the following notations in the tables. T = Xeloda,
C = 5-FU + LV , and P = 5-FU . We also use the delta method to calculate the
standard error of log-hazard ratio that SE�logHR� ≈ HR−1SE�HR�.

In the FDA review report (2001), the efficacy criterion was a demonstration
that Xeloda had a greater than 50% retention of the survival effect of 5-FU+LV
relative to 5-FU alone, i.e., the null fraction retention hypothesis was � ≤ 50%
in each trial. The non-inferiority analyses are summarized in Table 4. The study
power is calculated based on �a = 1, which corresponds to equivalence between the
experimental treatment and active control in the alternative hypothesis. The results
of efficacy analysis are very close to the FDA review report. However, the study
power of the proposed ratio test is much larger than Rothmann’s method.

Table 5 lists the required number of events for different alternative hypotheses
where the control effect (HR�P/C�) is assumed to be the estimated value 1.2638 and
the associated standard error is assumed to be the estimated value 0.0948. Table 5
also summarizes the sample size requirement by different approaches: fixed margin
approach based on the estimates of lower 95% confidence limit (95% LCL), fixed
margin approach based on the point estimate of the control effect, Rothmann’s
method based on the test statistic Z∗

R, and the ratio test based on the test statistic Z∗.
It shows that both fixed margin approaches based on the estimates of 95% LCL and
Rothmann’s method based on Z∗

R require a huge sample size. The ratio approach
based on Z∗ requires a much smaller sample size than the fixed margin approach

Table 4 Non-inferiority analysis for two Xeloda clinical trials (�0 = 50%� �a = 1)

Study z∗0 �̂ p-value Power 95% CI of �̂

SO14695 1.3741 101.4% 0.0847 26.17% �39�9%� 163%�

SO14796 2.2957 130.7% 0.0109 62.34% �72�9%� 188%�



160 WANG ET AL.

Table 5 Number of events required for Xeloda trials (power = 80%, 
 = 0�05)

�0 = 50%

Fixed margin Fixed margin Rothmann Ratio
�a HR�T/C� �95% LCL) (point est.) method test

0�90 1�024 24984 3278 15299 3171
0�95 1�012 19652 2558 7641 2316
1 1 15846 2045 4799 1805
1�05 0�988 13037 1668 3374 1465
1�10 0�977 10905 1384 2537 1222
1�15 0�965 9249 1163 1995 1041
1�20 0�954 7939 990 1619 901
1�25 0�943 6884 851 1346 789
1�30 0�932 6022 737 1140 697
1�35 0�921 5310 644 980 621
1�40 0�894 4715 567 853 557

based on the point estimate of the control effect. More discussion about these
approaches can be found in the next section.

4. DISCUSSION

In the design of a non-inferiority trial, either a fixed margin or a ratio
hypothesis may be formulated. A fixed margin hypothesis may be preferred by some
because it can be easily understood and a standard statistical test can be applied.
However, the question is how to select an appropriate margin. If the margin is
selected inappropriately, one may conclude that a treatment that is actually worse
than placebo is non-inferior to the active control. Now to choose the fixed margin
appropriately, one needs to have some information on the control effect. If the
margin is defined in terms of the estimate of the control effect based on some
historical studies, then the standard statistical inference may not be valid, since the
margin itself is variable. This is precisely the reason that led to the development
of Rothmann’s method. However, as discussed earlier, Rothmann’s method has
its own share of issues. The first issue is the difficulty of interpreting the fraction
retention because it is defined in terms of log hazard. The second issue is its lack
of power, resulting in impractical demands on sample size. Our proposed method
defines the fraction retention directly in terms of the hazard, and thus it becomes
easier to interpret the level of retention desired. In most commonly encountered
situations, our proposed method enjoys a significant reduction in the sample size
required when compared to either the fixed margin approach or Rothmann’s
method. Even then, the sample size required is still very large.

As we have discussed earlier, the ratio hypothesis (7) becomes a superiority
hypothesis for testing the new treatment against the control when �0 = 1. It becomes
a superiority hypothesis for testing the new treatment against a virtual placebo when
�0 = 0. For appropriate choices of 0 < �0 < 1, the hypothesis in (7) becomes either
an equivalence hypothesis for showing the equivalence between the new treatment
and the control, or a non-inferiority hypothesis for showing the non-inferiority
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of the new treatment to the control. Based on the Xeloda examples, it seems to
suggest that �0 = 0�5, i.e., a 50% retention, would correspond to a requirement
for demonstrating equivalence, while �0 = 0�35− 0�40 would correspond to a
requirement for demonstrating non-inferiority. In view of the power calculation,
the 50% retention may be a reasonable level for demonstrating equivalence, while
a 35% to 40% retention would be appropriate for demonstrating non-inferiority.
With these levels, it would become possible to carry out non-inferiority trials due to
the reasonable sample sizes required. A subsequent paper should be able to provide
some insight and guidance in this regard.

There is one other important point that needs to be mentioned. As we
indicated earlier, in the ratio hypothesis (7), �0 = 0 would correspond to a surrogate
superiority hypothesis (10) for demonstrating the superiority of the new treatment
to a virtual placebo. This surrogate superiority hypothesis is the active control trial
equivalent of the traditional placebo control trial where the new treatment is asked
to show superiority to the placebo. This kind of surrogate hypothesis would permit
the demonstration of the effectiveness of a new treatment in an active control trial.
Of course, it presumes that there are adequate and well-controlled historical studies
available demonstrating the effectiveness of the control. The necessary statistical
tools for testing the surrogate superiority hypothesis (against a virtual placebo)
will be discussed in a separate paper.

Rothmann has discussed the relationship between the fraction retention
method and the fixed non-inferiority margin. He demonstrated that for a given level
of retention and historical data on the control, there is a corresponding margin that
can be calculated that would give rise to a corresponding fixed margin hypothesis.
This approximate fixed margin can similarly be derived from our ratio test as
follows.

From the definitions of Z∗ and �̂, we have

Z∗ = −�ĤR�T/C�− 1�+ �1− �0��ĤR�P/C�− 1�

2
√
s2x + �1− �0�

2s2y

� (17)

where sx is the standard error of �ĤR�T/C�− 1�.
Thus, for a test with one-sided significance level 
 and a 1:1 randomization,

by the convergence theory, the corresponding two confidence interval testing
procedure that rejects the fixed margin null hypothesis when the 100�1− 2
�%
two-sided confidence interval for HR�T/C� lies entirely beneath the cutoff, which is
approximating given by the following

1+ c1−
sx + �1− �0��ĤR�P/C�− 1�+ 2c

√
s2x + �1− �0�

2s2y � (18)

As discussed above, the fixed margin non-inferiority hypothesis using this
margin derived from the ratio test can be viewed roughly as the fixed margin
equivalent of our ratio test. However, as we have mentioned earlier, this margin is
not really a fixed constant since it depends on the trial data. It should also be noted
that this rough equivalence can only be done in the setting of time-to-event endpoint
due to the availability of the approximation used for sx.
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APPENDIX. PROOF OF THEOREM 1

Before we derive the probability distribution of Z∗, we need to define an
interim statistic based on the logarithmic transformation.

Z∗
k =

log��̂+ k�2 − log��0 + k�2

SE�log��̂+ k�2�
� (19)

where SE�log��̂+ k�2� =
√

4
��0+k�2�ĤR�P/C�−1�2

�s2x + �1− �0�
2s2y 	.

In the statistic Z∗
k , k is a specified additive constant that is usually chosen as

a nonnegative integer. Berry (1987) proposed the transformation log�x + k� for a
parametric analysis such that the subsequent analysis is robust against heavy-tailed
alternatives. In this paper, we use Z∗

k to derive the probability distribution of the
ratio test statistic Z∗. For this purpose, Z∗

k is only an interim statistic. However, Z∗
k

may also be used for the testing of the ratio hypothesis in (7) where the power of
Z∗

k is monotonically increasing and is less than the power of Z∗. In order to focus
on Z∗, the discussion of Z∗

k is not being considered in this paper.

Lemma 1. For a fixed k� log��̂+ k�2 has an asymptotic normal distribution and

Z∗
k =

log��̂+ k�2 − log��0 + k�2

SE�log��̂+ k�2�
−→ N�0� 1�� �O�N−1/2��

where SE�log��̂+ k�2� =
√

4
��0+k�2�ĤR�P/C�−1�2

�s2x + �1− �0�
2s2y 	 is the standard error of

log��̂+ k�2 under the null hypothesis H0 in (7).

Hence, Z∗
k has the asymptotic standard normal distribution under the null

hypothesis H0 in (7). From the definitions of Z∗
k and Z∗, we have the following result.

Lemma 2. Z∗ is the limit of Z∗
k when k → �.

Z∗
k =

1
A
log

(
�̂+ k

�0 + k

)�0+k

−→ �̂− �0
A

= Z∗� when k → �

where the convergence is under the probability distribution and A is the standard error
of �̂

dg

dt

′
�������

dg

dt
��� = 4

��+ k�2�HR�P/C�− 1�2

×��2
1HR2�T/C�− 2��1�2�1− ��HR�T/C�HR�P/C�

+ �2
2�1− ��2HR2�P/C�	�

where � is the correlation coefficient between �̂1 and �̂2.



RATIO TEST IN NON-INFERIORITY TRIALS 163

Since the control treatments are different in the concurrent trial and non-
concurrent trials, �̂1 and �̂2 are usually assumed to be independent. That is, � = 0 in
practice and then, by Slutsky’s theorem and the definition of rate of convergence,

log��̂+ k�2 − log��+ k�2√
dg

dt

′
�������dg

dt
���

−→ N�0� 1�� �O�N−1/2���

Since dg

dt

′
�������dg

dt
��� is the variance of log��̂+ k�2 and

√
dg

dt

′
�������dg

dt
���√

dg

dt

′
��̂����̂� dg

dt
��̂�

−→ 1 with probability 1�

the result in Lemma 1 follows from Slutsky’s theorem under the null hypothesis H0

in (7).

REFERENCES

Berry, D. (1987). Logarithmic transformations in ANOVA. Biometrics 43:439–456.
Brittain, E., Lin, D. (2003). Non-Inferiority Trials of Antibiotic Therapy. FDA-Industry

Workshop.
Campbell, G., Yue, L. (2003). Active Control Non-Inferiority Studies in Medical Devices. FDA-

Industry Workshop.
Chi, G. Y. H., Chen, G., Rothmann, M., Li, N. (2003). Active control trials. Encyclopedia

of Biopharmaceutical Statistics 9–15.
Chen, G., Wang, Y. C., Chi, G. Y. H. (2004). Hypotheses and type I error in active control

non-inferiority trials. Journal of Biopharmaceutical Statistics 14(2):301–303.
Ellenberg, S. S., Temple, R. (2000). Placebo-controlled trials and active-control trials in the

evaluation of new treatments—Part 2: Practical issues and specific cases. Annals of
Internal Medicine 133:464–470.

FDA. (2001). Medical-Statistical Review for Xeloda (NDA 20-896). FDA Division of Freedom
of Information, Rockville, MD, dated 23 April, 2001.

Fisher, L. D., Gent, M., Buller, H. R. (2001). How would a new agent compare with placebo?
a method illustrated with clopidogrel, aspirin, and placebo. American Heart Journal
141:26–32.

Fleming, T. R., Harrington, D. (1991). Counting Processes and Survival Analysis.
New York: Wiley.

Hasselblad, V., Kong, D. F. (2001). Statistical methods for comparison to placebo in active-
control trials. Drug Information Journal 35:435–449.

Hauck, W., Anderson, S. (1999). Some issues in the design and analysis of equivalence trials.
Drug Information Journal 33:109–118.

Hauschke, D., Kieser, M., Diletti, E., Burke, M. (1999). Sample size determination for
proving equivalence based on the ratio of two means for normally distribution data.
Statistics in Medicine 18:93–105.

Holmgren, E. B. (1999). Establishing equivalence by showing that a prespecified percentage
of the effect of the active control over placebo is maintained. Journal of
Biopharmaceutical Statistics 9(4):651–659.



164 WANG ET AL.

Hung, H. M. J., Wang, S. J., Tsong, Y., Lawrence, J., O’Neill, R. T. (2003). Some
fundamental issues for non-inferiority testing in active controlled trials. Stat. Medicine
22:213–225.

Koch, G. G., Tangen, C. M. (1999). Nonparametric analysis of covariance and its role in
non-inferiority clinical trials. Drug Information Journal 33:1145–1159.

Ng, T. H. (1993). A specification of treatment difference in the design of clinical trials with
active controls. Drug Information Journal 27:705–719.

Pigeot, I., Schafer, J., Rvhmel, J., Hauschke, D. (2001). Assessing the therapeutic equivalence
of two treatments in comparison with a placebo group. Statistics in Medicine
22:883–899.

Rothmann, M., Li, N., Chen, G., Chi, G. Y. H., Temple, R., Tsou, H. H. (2003). Design
and analysis of non-inferiority mortality trials in oncology. Statistics in Medicine
22:239–264.

Temple, R. (1996). Problem in interpreting active control equivalence trials. Accountability in
Research 4:267–275.

Temple, R., Ellenberg, S. S. (2000). Placebo-controlled trials and active-control trials in the
evaluation of new treatments—Part 1: Ethical and scientific issues. Annals of Internal
Medicine 133:455–463.

Wang, S. J., Hung, H. M. (2003). TACT method for non-inferiority testing in active
controlled trials. Statistics in Medicine 22:227–238.

Walton, M., Gupta, S. (2003). Non-Inferiority Margin Setting: Thrombolytics for Acute MI
Example. FDA-Industry Workshop.

White, H. D. (1998). Thrombolytic therapy and equivalence trials. J. Am. Coll. Cardiol.
31:494–496.

World Medical Association. (2000). Declaration of Helsinki. Ethical principles for medical
research involving human subjects. Journal of the American Medical Association
284:3043–3045.


