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Abstract

A long-standing problem concerning the iterative analysis of orthogonal

saturated designs has been resolved. Consider an unreplicated factorial design

yielding independent, normally distributed estimators of k parameters but no

independent variance estimator. Many authors have proposed iterative step-

down tests for the analysis of such designs. In essence, the first such methods

were proposed by Birnbaum [3] and Daniel [4]. It is well known that iterative

methods are more powerful than corresponding closed step-down tests (see Voss

[12]), and so the iterative tests are more popular. This popularity has grown

despite lack of a proof that the iterative methods strongly control the family-

wise error rate, while some corresponding closed step-down tests with modestly

less power have been known to provide such control. Venter and Steele [11]

claimed that certain iterative step-down tests strongly control error rates, but

they failed to provide a proof. Recently Holm, Mark and Adolfsson [5] provided

the first iterative step-down test for analysis of orthogonal saturated designs

shown to strongly control the familywise error rate. Using the same technical
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approach, but without the need for explicit consideration of coverage bounds,

we establish strong control of the familywise error rate for a large class of iter-

ative step-down tests, including the iterative tests of Zahn [19, 20] and Ventor

and Steel [11], iterative variations on the tests of Daniel [4], Birnbaum [3], Voss

[12], Voss and Wang [14], Lenth [8] and Ye, Hamada and Wu [18], and a gen-

eralization of the Holm, Mark and Adolfsson [5] test for orthogonal saturated

designs. Also included are the iterative step-down tests of Langsrud and Naes

[6] for nearly saturated designs. Since our approach does not explicitly involve

coverage bounds, implementation is relatively simple. Also, the normality as-

sumption can be relaxed.

1 Introduction

The analysis of data collected using an orthogonal saturated design in an important

problem in statistics, since such designs include commonly used orthogonal fractional

factorial designs. Building upon a specific step-down test and result of Holm, Mark

and Adolfsson [5], we establish strong control of the familywise error rate for a large

class of iterative step-down tests. This resolves an important and long-standing

problem.

We now pose the problem as it typically arises—namely, for normally distributed

estimators—though strong control of error rates is established in Section 2 for a

broader class of distributions.

The standard problem is as follows. Let θ̂i ∼ N(θi, a2
i σ

2), i = 1, . . . , k, be k

independent normal estimators, with constants ai known but σ2 unknown. The

methods to be considered work best under effect sparsity—namely, when most of

the effects θi are zero—but in practice one knows neither how many effects are zero

nor which ones. Complicating matters, saturated designs provide no error degrees

of freedom, so assume there is no independent variance estimator. The objective is

to simultaneously test the hypotheses H0i : θi = 0 for i = 1, . . . , k, and we require a

testing procedure that strongly controls the simultaneous or familywise error rate—

namely, that controls the probability of making any false assertions to be at most α

under all parameter configurations θ = (θ1, . . . , θk). Henceforth assume without loss

of generality that each ai = 1; otherwise one could equivalently consider estimators

θ̂i/ai ∼ N(θi/ai, σ2).
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Daniel [4] and Birnbaum [3] were perhaps the first to consider this problem.

Daniel proposed the iterative use of half-normal plots. Given the half-normal plot of

the k effect estimates, if the effect with largest estimate is deemed to be significantly

nonzero, Daniel advocated setting aside that estimate to evaluate the rest. Thus,

one would redraw the half-normal plot for the remaining k − 1 estimates, and use

this plot to assess significance of the largest of the remaining k − 1 estimates as

if there had only been k − 1 estimates. This process is iterated until the largest

remaining estimate is not considered significantly nonzero. Daniel [4] and Birnbaum

[3] also each discussed tests for one nonzero effect, and these tests could be applied

iteratively.

In efforts to formalize the subjective graphical method of Daniel [4], various step-

down tests have been proposed, including tests by Zahn [19, 20], Voss [12], Ventor

and Steel [11], Langsrud and Naes [6], Al-Shiha and Yang [2], Ye, Hamada and Wu

[18], and Voss and Wang [14].

Voss [12] provided the first step-down test known to strongly control the family-

wise error rate in this setting, and his method was generalized by Voss and Wang [14]

to include adaptive tests. These tests strongly control error rates because they are

step-down shortcuts to closed tests, closed tests having been introduced by Marcus,

Peritz, and Gabriel [9]. Voss observed that his test would have more power if applied

iteratively, but he was unable to establish strong control of the familywise error rate

for the iterative version of his procedure. Iterative testing has also been advocated

by Zahn [19, 20], Ventor and Steel [11], and Al-Shiha and Yang [2]. Ventor and

Steel [11] proposed the use of iterative step-down tests for enhanced power over

certain closed tests. They claimed their iterative step-down tests provided strong

control of the simultaneous error rate, but they failed to provide a proof. They did

observe that their claim was true if the effects were all zero or infinite, but it has

remained an open problem to establish this result for all parameter configurations.

Ye, Hamada and Wu [18] proposed applying the adaptive test of Lenth [8] iteratively

and stepping down, but it remains open to show that the tests of Lenth [8] or Ye,

Hamada and Wu [18] strongly control the familywise error rate because of a lack of

monotonicity in the way their tests are adaptive.

For the various multiple testing procedures proposed for this setting, critical

values are typically computed under the (complete) null distribution—namely, when
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all k effects are zero—and the usual presumption is that this is sufficient to control

the probability of making any false assertions under all parameter configurations.

This has remained an open problem however, except in the case of closed step-

down tests. When the step-down shortcut for a closed test is valid, error rate is still

strongly controlled, due in part to the fact that each critical value in the closed step-

down test is computed using k estimators under the null distribution. In contrast,

when the maximum estimate is tested iteratively, each time an assertion is made

the next critical value is computed using one less estimator. Consequently, critical

values are sharper so power is increased, but the test is not closed so error rate

control needs to be established in another fashion.

Holm, Mark and Adolfsson [5] provided a new step-down test for analysis of

orthogonal saturated designs that is remarkable for a number of reasons. The test

dovetails very nicely with the half-normal plot, which is commonly used for the

subjective analysis of the estimates in this setting. Their test is an adaptive pro-

cedure that provides strong familywise control of error rates, and the only other

inference procedures known to be adaptive and provide strong familywise control of

error rates are the confidence intervals of Wang and Voss [15, 16] and corresponding

tests of Voss and Wang [14]. The procedure is based on coverage bounds for order

statistics of the estimates, an approach to analysis of such data that has perhaps

not been considered since Birnbaum [3]. Most importantly for the purpose of this

paper, Holm, Mark and Adolfsson [5] provide a new line of proof that their step-

down test controls the familywise error rate over all parameter configurations. It is

this line of proof, sketched in their appendix, that we exploit in the current paper

to resolve a long-standing problem. Specifically, using the same technical approach,

we establish strong control of the familywise error rate for a much larger class of

iterative step-down tests for analysis of orthogonal saturated designs, (see Section

2, Theorem 1). Furthermore, the result is obtained without explicit consideration of

coverage bounds, greatly simplifying implementation. Then in Section 3 we apply

Theorem 1 to establish strong control of the familywise error rate for several itera-

tive step-down tests and iterative versions of other tests proposed in the literature.

Methods covered for the analysis of orthogonal saturated designs include the itera-

tive step-down tests of Zahn [19, 20] and Venter and Steel [11], iterative versions of

tests proposed by Daniel [4], Birnbaum [3], Voss [12], Voss and Wang [14], iterative
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variations on the adaptive methods proposed by Lenth [8] and Ye, Hamada and Wu

[18], as well as a generalization of the method of Holm, Mark and Adolfsson [5]. Also

covered is the iterative step-down test of Langsrud and Naes [6] for the analysis of

nearly-saturated orthogonal designs.

2 Step-down tests

In this section we establish strong control of the familywise error rate for a large

class of iterative step-down tests, including that of Holm, Mark and Adolfsson [5],

but relaxing the usual normality assumption. First we introduce some notation.

Let Xi ∼ (1/σ)f(xi/σ; θi/σ), i = 1, . . . , k, be independently distributed random

variables, for f(t; θi) a pdf with positive support. For example, in the standard set-

ting, Xi is typically the absolute value or square of the ith of k normally distributed

estimators θ̂i, each scaled to have common variance σ2. Let [1], [2], . . . , [k] be the

random indices such that X[1] < X[2] < · · · < X[k].

Consider as test statistics

Ti =
X[i]

gi(X[1], . . . , X[i])
, i = 2, . . . , k,(1)

where the gi(t1, . . . , ti), i = 2, . . . , k, are positive functions with the following prop-

erties.
(i) (scale-equivariant) gi(at1, ..., ati) = agi(t1, ..., ti) for any a > 0;

(ii) (exchangable) gi(t1, ..., ti) = gi(tj1 , ..., tji) for any permutation (j1, ..., ji) of

(1, ..., i);

(iii) (non-decreasing) si ≤ ti for i = 1, . . . , k implies gi(s1, ..., si) ≤ gi(t1, ..., ti).

Obtain the critical values ci, i = 2, . . . , k, as follows. Let Y1, . . . , Yi be indepen-

dent, each with pdf f(y; 0). For the corresponding order statistics Y(1) < · · · < Y(i),

let ci be the upper-α quantile of the distribution of

Ci = Y(i)/gi(Y(1), . . . , Y(i)).

Note that Ci is a function of i order statistics, not k. Consider the following test

procedure.
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Iterative step-down test.
Step 1. If Tk ≤ ck then make no assertions and stop; else assert θ[k] 6= 0 and

continue.

Step 2. If Tk−1 ≤ ck−1 then stop; else assert θ[k−1] 6= 0 and continue.
...

...

Step k − 1. If T2 ≤ c2 then stop; else assert θ[2] 6= 0 then stop.

So, if the procedure stops at step j < k−1, then exactly j−1 effects are asserted

to be nonzero, and no other assertions are made. If it stops at step k−1, either k−2

or k − 1 assertions are made, depending on whether one asserts θ[2] 6= 0. Clearly,

θ[1] 6= 0 is never asserted.

Additional notation is needed for the following theorem. For Xθ ∼ f(x; θ) and

fixed c > 0, let Xθc have the conditional distribution of Xθ/c given Xθ ≤ c. Also,

let U ¹ V denote that U is stochastically less than or equal to V , or equivalently,

that FU (x) ≥ FV (x) for all x, where FU is the cdf of U .

Theorem 1 Let Xi ∼ (1/σ)f(xi/σ; θi/σ) be independent with positive support, for

i = 1, . . . , k. Furthermore, for Xθ ∼ f(x; θ), suppose:

(i) X0c ¹ Xθc for any θ 6= 0 and c > 0, and

(ii) X0d ¹ X0c for any d > c > 0.

The above iterative step-down test strongly controls the probability of making any

false assertions to be at most α under all parameter configurations θ = (θ1, . . . , θk)

and for all σ.

Proof of the theorem uses the following lemma.

Lemma 1 Suppose h(t1, ..., tk) is an exchangable function and Ui ¹ Vi (i = 1, ..., k)

are independent. If h(t1, ..., tk) is nonincreasing, then h(V1, . . . , Vk) ¹ h(U1, . . . , Uk).

Lemma 1 was independently discovered by Alam and Rizvi [1] and Mahamunulu

[10], rediscovered by Voss [13], and stated in essentially the above form by Wu and

Wang [17].

Lemma 2 (Lehmann [7], p. 112) If U ¹ V , then E[h(U)] ≤ E[h(V )] for any

nondecreasing function h().
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Proof of Theorem. The test statistics Ti in equation (1) are scale-invariant,

so without loss of generality assume σ = 1. Consider any parameter vector θ =

(θ1, . . . , θk), and corresponding independent random variables Xi ∼ f(xi; θi), i =

1, . . . , k. Let I = {1, . . . , k} denote the index set for all k effects. Assume at least

one θi is zero; otherwise the theorem follows trivially. Let I0 = {ij : θij = 0, j =

1, . . . , m} be the nonempty set of indices of the null effects for given θ, so m = |I0|
denotes the number of null effects, m ≥ 1. Also for any nonnegative integer n,

let Y = (Y1, . . . , Ym+n−1) be a vector of i.i.d. random variables, each Yi with pdf

f(y; 0), with corresponding order statistics Y(1) < · · · < Y(m+n−1). Let Y |c denote

the distribution of Y given Yi < c for i = 1, . . . , m + n− 1. Also, let Y(m+n) denote

the maximum of m + n i.i.d. random variables, each with pdf f(y; 0).

Let Z = maxi∈I0 Xi denote the largest estimator of the m null effects, N the

number of non-null effects with estimate less than Z, and ω = {i ∈ I : Xi < Z}, so

ω = {[1], . . . , [m + N − 1]}. Note that Z, N and ω are random and unobservable.

Clearly, Z = X[m+N ]. Let pθ(n, ω) denote the joint probability mass function of

(N, ω). Also, let φ(x) = I{x>0} denote an indicator function. Then

Pθ(any false assertions) = Pθ(assert θij 6= 0 for some j ≤ m)

≤ Pθ

[
Z/gm+N (X[1], . . . , X[m+N−1], Z) > cm+N

]

=
k−m∑

n=0

∑
ω

pθ(n, ω)× Pθ

[
Z/gm+N (X[1], . . . , X[m+N−1], Z) > cm+n | N, ω

]

=
k−m∑

n=0

∑
ω

pθ(n, ω)× EZ

{
EX|Z,N,ω;θ [φ()]

}
,

where φ() = φ
(
gm+n(X[1]/Z, . . . , X[m+n−1]/Z, 1)−1 − cm+n

)

≤
k−m∑

n=0

∑
ω

pθ(n, ω)× EZ

{
EY |Z,N,ω [φ()]

}
,

where φ() = φ
(
gm+n(Y1/Z, . . . , Ym+n−1/Z, 1)−1 − cm+n

)

=
k−m∑

n=0

pθ(n)× EZ

{
EY |Z,N [φ()]

}
,

≤
k−m∑

n=0

pθ(n)× EY(m+n)

{
EY |Y(m+n),N [φ()]

}
,

where φ() = φ
(
gm+n(Y1/Y(m+n), . . . , Ym+n−1/Y(m+n), 1)−1 − cm+n

)
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=
k−m∑

n=0

pθ(n)× E(Y(1),...,Y(m+n)) [φ()] ,

where φ() = φ
(
Y(m+n)/gm+n(Y(1), . . . , Y(m+n−1), Y(m+n))− cm+n

)

=
k−m∑

n=0

pθ(n)× α = α

The first inequality follows because Z/gm+N (X[1], . . . , X[m+N−1], Z) > cm+N is

necessary for any false assertion to occur.

The second inequality follows from Lemma 1 and condition (i) of the theorem

because, for a given (Z, N, ω), φ() is a non-increasing function of Xi/Z for each

i ∈ ω, which contains m+n−1 elements, each Xi/Z (given Xi < Z) is stochastically

smallest at θi = 0 by (i), the Xi’s are independent, and g() is exchangable.

The third inequality is a consequence of Lemmas 1 and 2 and condition (ii) of the

theorem, as follows. For a given (N, Z), and given Yi < Z for i = 1, . . . , m + n− 1,

φ() is a non-increasing function of the Yi/Z, which are independent, and which are

stochastically non-increasing in Z by condition (ii), so φ() is stochastically non-

decreasing in Z by Lemma 1. Thus, EY |Zφ() is non-decreasing in Z. Since Z ¹
Y(m+n), the inequality follows from Lemma 2, 2

Theorem 1 will now be shown to include the standard cases under normality.

Lemma 3 (Holm, Mark and Adolfsson [5], Wu and Wang [17]. Let Xθ = |θ + Zσ|
(a folded normal random variable) for Z ∼ N(0, 1) and σ > 0 or let Xθ = (θ+Zσ)2.

Then

(i) X0c ¹ Xθc for any θ 6= 0 and c > 0, and

(ii) X0d ¹ X0c for any d > c > 0.

Corollary 1 Theorem 1 holds for Xi = |θ̂i/ai| or Xi = (θ̂i/ai)2, if θ̂1, . . . , θ̂k are

independent with θ̂i ∼ N(θi, a
2
i σ

2), for known nonzero constants ai. (The critical

value ci corresponding to Ti is obtained using independent folded standard normal

or χ2
1 random variables Y1, . . . , Yi.)

In the above corollary, the estimators θ̂i/ai ∼ N(θi/ai, σ
2) are necessarily scaled

to have common variance, but testing θi/ai = 0 is equivalent to testing θi = 0.
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The proof of Theorem 1 closely follows that of Theorem 1 of Holm, Mark and

Adolfsson [5], but our result enjoys advantages of generality, simplicity, and rigor.

Concerning generality, their result is for a specific method of analysis of absolute

normals, whereas the theorem here applies to a wide class of methods, as will be

demonstrated in Section 3, and under relaxed distributional assumptions. Con-

cerning simplicity, their method focuses and explicitly relies on the use of coverage

bounds for values in an ordered random sample, whereas the method here does not—

a conceptual simplification that greatly simplifies implementation. In addition, we

have made the proof rigorous.

Theorem 1 very much depends on the independence of the estimators, since

Lemma 1 does.

Theorem 1 also hinges very much on theorem conditions (i) and (ii). By Corollary

1, these conditions hold for absolute or squared normal estimates, scaled to have

common variance. It is natural to ask, for what other families f(x; θ) of densities

with positive support do conditions (i) and (ii) hold. The following lemmas shed

some light on this question.

Lemma 4 Consider f(x; θ), x > 0. If f(x; 0)/f(x; θ) is non-increasing in x for

each θ 6= 0, then X0c ¹ Xθc for any constant c > 0.

Proof. For X ∼ f(x) with cdf F (x), and for any constant c > 0, Xc ∼ cf(cx)/F (c),

x > 0. Since f(x; 0)/f(x; θ) is non-increasing in x for each θ 6= 0, it follows that

fc(x; 0)/fc(x; θ) is non-increasing in x for each θ 6= 0, for fc the density of Xc. The

result follows. 2

So, a monotone likelihood ratio property for the family f(x; θ) is sufficient for

(i) of Theorem 1. Unfortunately, as will be seen next, the corresponding sufficient

condition for (ii) is a density ratio property of the null distribution, not of the family.

Lemma 5 Consider X ∼ f(x), x > 0. Any of the followings is sufficient for

X0d ¹ X0c for any d > c > 0.

(i) f(dx)/f(cx) is non-increasing in x for any d > c > 0;

(ii) cf ′(cx)/f(cx) is non-increasing in c for all x.
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Proof. Let f(x) and F (x) denote the pdf and cdf of X, respectively, and fc(x) the

pdf of X0c. Then fd(x)/fc(x) = [dF (c)/(cF (d)][f(dx)/f(cx)]. Hence, f(dx)/f(cx)

nonincreasing in x implies fd(x)/fc(x) nonincreasing in x, so X0d ¹ X0c, establishing

(i).

To prove (ii), consider r(x) = f(dx)/f(cx) for any d > c > 0. Then r(x) is

nonincreasing for all d > c > 0 if r′(x) ≤ 0 which follows if cf ′(cx)/f(cx) is non-

increasing in c for all x. 2

The following characterizes property (ii) of the theorem.

Lemma 6 Consider X ∼ f(x), x > 0. Then X0d ¹ X0c for any d > c > 0 if and

only if F (cx)/F (c) is nondecreasing in c for all 0 < x < 1.

Proof. The cdf of Xc is Fc(x) = F (cx)/F (c), for 0 < x < 1. 2

In the next section, several step-down tests proposed in the literature, variations

on such tests, and iterative variations on other tests, are shown to strongly control

the familywise error rate as a consequence of Theorem 1.

3 Applications to specific iterative step-down tests

Many step-down procedures have been proposed in the literature for the analysis of

saturated or nearly saturated orthogonal designs, without a proof that they provide

strong control of the familywise error rate. Many of these, or applicable variations on

these, do provide strong control of the familywise error rate by virtue of Theorem

1, as noted in this section. To simplify the presentation in this section, consider

normally distributed estimators θ̂i ∼ N(θi, σ
2).

3.1 Tests of Zahn [19, 20] and Venter and Steel [11]

Iterative step-down methods based on either absolute estimates Xi = |θ̂i| or squared

estimates Xi = θ̂2
i were considered by Zahn [19, 20] and Venter and Steel [11].

Tests of Daniel [4] and Birnbaum [3] for the effect with largest estimate, if applied

iteratively, are special cases of the tests of Zahn [19, 20]. Each of these methods
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uses test statistics of the form

Ti = X[i]/

[
i∑

h=1

ahiX[h]

]
,

for prespecified nonnegative constants ahi not all zero. In each case, the critical value

ci for Ti is obtained as the upper-α quantile of the null distribution of Ti as a function

of only i independent folded standard normal or χ2
1 random variables Y1, . . . , Yi. The

folded normal distribution is used for analysis of the absolute estimates Xi = |θ̂i|
and the Chi-squared distribution for analysis of the squared estimates Xi = θ̂2

i .

Corollary 2 The iterative step-down tests of Zahn [19, 20] and Venter and Steel

[11] each provides strong control of the familywise error rate.

3.2 Tests of Voss [12] and Voss and Wang [14]

Voss [12] proposed a closed step-down procedure that simultaneously tests the hy-

potheses H0i : θi = 0, i = 1, 2, . . . , k, using for example the test statistics

Ti = X[i]/

[
ν∑

h=1

X[h]/ν

]
(2)

for fixed ν < k, using either absolute estimates Xi = |θ̂i| or squared estimates

Xi = θ̂2
i . Critical values for a closed step-down test depend on the distribution of

all k estimators whereas, as noted by Voss [12], the corresponding iterative test uses

sharper critical values ci that depend on the distribution of only i estimators. In

particular, consider the iterative step-down test using test statistics

Ti = X[i]/

[
νi∑

h=1

X[h]/νi

]
(3)

for prespecified integers νi ≤ i for i = 2, . . . , k, where the critical value ci for Ti is

obtained as the upper-α quantile of the distribution of Ti = Y(i)/
[∑νi

h=1 Y(h)/νi

]
as

a function of independent folden standard normal or χ2
1 random variables Y1, . . . , Yi

as appropriate.

Voss and Wang [14] generalized the test of Voss [12] to include adaptive test

statistics. In particular, for each test statistic Ti in equation (2), the denominator[∑ν
h=1 X[h]/ν

]
could be replaced by the minimum of multiple functions aj

[∑νj

h=1 X[h]/νj

]
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indexed by j, for prespecified constants aj and integers νj . Voss and Wang [14]

showed that familywise error rate is still strongly controlled in this case. As a vari-

ation on this, consider the iterative, adaptive, step-down test obtained by replacing

the denominator of Ti in equation (3) by the minimum of multiple functions of the

form aij

[∑νij

h=1 X[h]/νij

]
indexed by j, for prespecified constants aij > 0 and integers

νij ≤ i.

Corollary 3 The above iterative variations on the step-down tests of Voss [12] and

Voss and Wang [14] provide strong control of the familywise error rate.

3.3 Langsrud and Naes’ [6] test for nearly saturated designs

Langsrud and Naes [6] considered a similar iterative step-down test based on the

squared estimates Xi = θ̂2
i but incorporating an independent estimator σ̂2 = SSE/ν

based on ν error degrees of freedom. Their method uses test statistics of the form

Ti = X[i]/

[(
νi∑

h=1

X[h] + SSE

)
/(νi + ν)

]
,

for prespecified value of νi < i. Introducing the independent variance estimator

in the denominator of each test statistic introduces no technical difficulties with

respect to stochastic ordering. The critical value ci for Ti is obtained as the upper-α

quantile of the null distribution of Ti as a function of i independent χ2
1 random

variables Y1, . . . , Yi and an independent variance estimator σ̂2, where νσ̂2/σ2 ∼ χ2
ν .

Corollary 4 The iterative step-down test of Langsrud and Naes [6] provides strong

control of the familywise error rate.

3.4 A generalization of Holm, Mark and Adolfsson’s [5] test

In this paper we generalize the result of Holm, Mark and Adolfsson [5], who pro-

vided an adaptive step-down test based on the absolute estimates Xi = |θ̂i|. As we

interpret it, their method in essence uses test statistics of the form

Ti = X[i]/

[
min
h≤i

ahiX[h]

]
,(4)

for prespecified constants ahi > 0; h = 1, . . . , i; i = 1, . . . , k. The constants ahi are

implicitly determined in their method when they obtain coverage bounds for order
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statistics of a random sample. Each ghi(X[1], . . . , X[i]) = ahiX[i] in the denominator

of Ti in equation (4) is an exchangable, nondecreasing function of (X[1], . . . , X[i]), and

so is the minimum gi(X[1], . . . , X[i]) = minh≤i ghi(X[1], . . . , X[i]) of such functions,

used as the denominator of Ti. They choose the constants ahi based on consideration

of one-sided coverage bounds for estimates, but that is beside the point here.

Using gi(X[1], . . . , X[i]) = minh≤i ahiX[h] makes the method adaptive, since which

order statistic X(h) = X[h] yields the denominator ahiX[h] of Ti is random, depending

on the data. Wang and Voss [16] and Voss and Wang [14] made similar use of the

minimum function to establish adaptive confidence intervals and step-down tests,

respectively, providing strong control of familywise error rates. By this approach,

one can generalize the method of Holm, Mark and Adolfsson [5] as follows. Consider

as test statistics

Ti = X[i]/

[
min
h∈Hi

ghi(X[1], . . . , X[i])
]

,(5)

where Hi is the index set for a collection of functions for each i, and each ghi is of the

form ghi(X[1], . . . , X[i]) =
∑i

j=1 ahijX[j] for nonnegative constants ahij not all zero

for each hi. This extension allows the denominator to involve linear combinations

of the X[j] rather than simply a multiple of one of these.

In each of these variations, the critical value ci for Ti is obtained as the upper-α

quantile of the null distribution of Ti as a function of i independent folded standard

normal random variables Y1, . . . , Yi. Alternatively, one could use the squared esti-

mators Xi = θ̂2
i to compute the test statistics, in which case the critical value ci

would be computed from independent χ2
1 random variables Y1, . . . , Yi.

Corollary 5 The generalization of the iterative step-down test of Holm, Mark and

Adolfsson [5] in equation (5) provides strong control of the familywise error rate.

3.5 Iterative Lenth-like tests

Lenth [8] provided a “quick and easy” adaptive method of analysis of unreplicated

factorials that has spurred great interest in adaptive methods of analysis of such

designs. Using the absolute estimates Xi = |θ̂i|, Lenth’s method is as follows. First

compute an initial estimate of σ as σ̂0 = 1.5 ×median {X1, . . . , Xk}. Then obtain

a second, adaptive estimate as σ̂ = 1.5 × median {Xi : Xi ≤ 2.5σ̂0}. Approximate

inferences are based on (θ̂i − θi)/σ̂. Ye, Hamada and Wu [18] proposed applying
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Lenth’s [8] method stepping down iteratively. It remains an open problem to show

that either Lenth’s [8] method or the variation of Ye, Hamada and Wu [18] provides

strong control of the familywise error rate, because of the non-monotone way in

which their denominators are adaptive. However, consider applying the iterative

step-down test of Section 2 as follows.

Use as test statistics

Ti = X[i]/
[
1.5×median {X[1], . . . , X[i]}

]
.

Obtain the critical value ci for Ti as the upper-α quantile of the null distribution of Ti

as a function of i independent folded standard normal random variables Y1, . . . , Yi.

Corollary 6 The above iterative step-down test, a variation on Lenth’s [8] adaptive

test, provides strong control of the familywise error rate.

One would anticipate this variation to have similar operating characteristics to

the methods of Lenth [8] and Ye, Hamada and Wu [18], but with the additional

guarantee that the familywise error rate is strongly controlled. One could say that

iterating a non-adaptive method makes it adaptive, since any very large effects are

highly likely to be asserted nonzero, in which case they would have no impact on

the analysis of the other effects.

4 Closing remarks

Recently Holm, Mark and Adolfsson [5] provided the first iterative step-down test

for analysis of orthogonal saturated designs with a proof that the familywise error

rate is strongly controlled over all parameter configurations. Using an essential as-

pect of their technical approach, we have established strong control of the familywise

error rate for a large class of iterative step-down tests, including a generalization

of the Holm, Mark and Adolfsson [5] test, a number of other iterative step-down

tests proposed in the literature, and variations on other multiple tests proposed in

the literature. While the results presented here generalize those of Holm, Mark and

Adolfsson [5] to a much broader class of test statistics, this is achieved without the

explicit consideration of coverage bounds that seems fundamental to their method-

ology, providing a simplification of both the theory and the implementation. The
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results also apply to certain step-down tests for the analysis of nearly saturated

designs. Furthermore, the usual normality assumption has been relaxed.
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