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1. Generalized Wordtype Pattern

Wordtype Pattern

e For a regular 2(1+2)=k design D containing 11 Group | factors and Iy
Group Il factors, let A;, i, (D) be the number of words in the defining
contrast subgroup containing 7; Group | factors and i5 Group |l factors.
Zhu (Ann, 2003) called [A;, ;,(D)] the wordtype pattern of D.

o A=), ., _iAi i, is just the popular wordlength pattern of D.
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Generalized Wordtype Pattern

e For a factorial (n;s1---S1,, 81,41 Si,41,)-design D, let
Rp=Rg X--- xRSll, RH:RSZ1+1 X v xRSll+l2 and R = Ry X Rjy.
Following the similar notations of Xu and Wu (Ann, 2001), define

Bil,iQ(D) = n? Z ’XU<D)‘27 (1)

wt(u1 )Zil ,wt(UQ)ZiQ

where v = (u1,u2), u1 € Ry, u2 € Ry, xu(D) = > ,cp Xu(x), the
above summations are over all u € R = R; X Rjy with
wt(uy) = 11, wt(ug) = 42, and {x,u € R} are the given orthonormal

contrasts.

e Similarly, [B;, i, (D)] is called the generalized wordtype pattern of design
D.
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o Ai(D) = 1s,—i Bii,(D) is just the generalized wordlength pattern.

e The generalized wordtype pattern is the MacWilliams transform of the

double distance distribution, that is,

Bil,i2(D> = E; (D)

11,12
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2. Consulting Design Theory

2.1. Regular Symmetrical Factorial Designs

Let H, be the regular saturated design with st runs. An s*~ (%) design D
can be considered as a set of n columns in H;. H; = [D, D]. D is called the
complementary design of D. Then Tang and Wu (Ann, 1996) and Suen,
Chen and Wu (Ann, 1997) showed that sequentially minimizing

Ai(D), 1=3,...,n
Is equivalent to sequentially minimizing
(=1)'4;(D), i=3,...,f, (2)
where f =L;—nand L; = (s* —1)/(s — 1).
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2.2. Regular Mixed-level Factorial Designs

(s")s™ Factorial Designs

Consider an (s")s™ factorial design D = [Dg, D7] in s runs, involving one
s"-level factor (r > 2), grouped by the L, s-level factors, and n s-level

factors.

Wu and Zhang (Biometrika, 1993) partitioned the words of the same length
of D = |Dy, Dr| into two types, type 0 and type 1, depending on whether
they contain any factor in Dy and suggested the following ordering of

wordlength pattern:

{Ai0, Ai1}a<i<nti- (3)
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H; = (Dy,Dr,Dg)

Is a column partition of H; after several column permutations such that
D = [Dy, Dr|.
Dr = [Do, Dg)

is called the consulting design of D, which corresponds to an (s")s/ design,

where f = Ly — L, — n.
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Mukerjee and Wu (Sinica, 2001) showed that sequentially minimizing
{A30(D),A31(D),As0(D),As1(D)} is equivalent to sequentially
minimizing

—G3(DR), =G3(Dq), Ga(Dr), G4(Dq),
where G;(Q) = (s — 1)1 #{B : wt(B) = 1,QB =0} [ = 4;(Q)].
Ai and Zhang (Statist Papers, 2005) further showed that sequentially
minimizing {A;0(D), A;1(D)} fori=3,...,n+ 1 is equivalent to

sequentially minimizing
{(=1)"[4i0(DR) + 4i1(DRr)], (—1)"A; 0(DRr)}s<i<f+1. (4)

(s")?s"™ Factorial Designs

Consider an (s")%s™ factorial design D = [Dq1, Do2, D;] in s! runs, involving
two s"-level factor (r > 2), grouped by the mutually exclusive 2L, s-level
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factors, and n s-level factors. The ordering of wordlength pattern is as
follows:

{A;0,Ai1,Ai2}3<i<nt2. (5)

H; = (Do1, Doz, D1, Dg) is a column partition of H; after several column
permutations such that D = [Dy1, Dgs, Dr].

Dpgr = |Do1, Doz, Dg]

is called the consulting design of D, which corresponds to an (s")%s/ design,
where f = L; — 2L, — n.
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Ai and Zhang (Statist Papers, 2005) showed that sequentially minimizing
{A4io(D), Ain(D), Ai2(D)}, i =3,...,n+2,
Is equivalent to sequentially minimizing

{(=1)1 20 Aiu(Dr), (~1)72450(Dg) + Aia(Dr)),

| (6)
(—1)*A;0(Dr)

3<i<f+2.
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2.3. Blocked Regular Mixed-level Factorial Designs

For a blocked regular (s”~ ("% : s¥)-design, Zhang and Park (JSPI, 2000)
and Ai and Zhang (Canad J Statist, 2004) suggested the ordering of
wordlength pattern as:

AgaAgaAiaAgaAgvAga (7)
Consider a blocked regular ((s7)s" : s¥)-design D = [Dpg, Do, D7) in s*
blocks.

H; = |Dp, Do, Dy, Dg] is a column partition of H; after several column
permutations.

Dr = |Dp, Dy, Dg)|

is called the consulting design of D, which corresponds to an
((s")s! : s¥)-design, where f = L; — L, — L, —n.
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Ai and Zhang (JSPI, 2004) showed that sequentially minimizing the first six
terms

Ag,O(D)a Ag,l (D)7 AS,O(D)a Ag,l (D)7 AZ,O(D)v Afl,l(D)a

Is equivalent to sequentially minimizing the following six terms of D pg:

—[Aj oD (DRr) + Ag,O(DR> T Ag,1(DR)],
—[A50(DR) + A34(Dr)],

_AQ,O(DR) + Ag,1<DR)]7 Ag,o(DR)a

:AZ,O(DR) T Afu(DR) + Ag,o(DR) + Ag,1<DR)]7

:AEL,O(DR) T Ag,o(DR)]- (8)

)+A31
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Note that Chen and Cheng (Ann, 1999) considered blocked regular

two-level designs and suggested a new mixed ordering.

Remark: Similar result for blocked regular ((s")(s™2)s" : s*)-designs.

Nankai University, July 9-13, 2006
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2.4. Blocked Nonregular Factorial Designs

For unblocked symmetrical case, H = (D, D). Xu and Wu (Ann, 2001)
showed that sequentially minimizing A;(D), ¢ = 3,...,n is equivalent to
sequentially minimizing (—1)*A4;(D), i =3,..., f.

Let H be a saturated OA(N,sP,2). H = (Dp,Dp,D¢) is a column
partition of H after several column permutations such that Dt consists of
the n treatment factors and Dp consists of the r independent block
columns. Thus the blocked (IV, s™ : s")-design D can be viewed as the
matrix (D7, D). The matrix Dr = (D¢, Dp) corresponding to a blocked
(N, sP~"~" : s")-design is called the blocked consulting design of D in H.

Nankai University, July 9-13, 2006 13
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Wi(D) = (A7(D), A5(D), A3(D), A4 (D), A5(D), A3(D),...),

Ai and Zhang (Canad J Statist, 2004) showed that sequentially minimizing
the components of the combined GWP W1 (D) of D is equivalent to

sequentially minimizing the following components of Dp:

{—AY(Dgr),—As3(DRg), A5(DR), A4(Dr), —As(Dg),
—[A%(DR) + A3(Dr)], As(DRg), . . .}. (9)

Note that the above general rule no longer holds for blocked nonregular

mixed-level designs. Nevertheless, the following weak result can be obtained
from Xu (Sinica, 2003):

AL(D) = —A3(Dpg) + constant. (10)
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2.5. Designs with Multiple Groups of Factors

Let H be a saturated OA(N, slll sh',2).
H = (D17D27D3>

Is a column partition of H after several column permutations such that
D = |D1, Ds).
Dg = |D1, D3]

corresponding to a new (IV; 831,3;”_12)—design is called the consulting design

of D in H. Let

0, (T,n,m,s) =s ™ Pi(T — k;n,s)P.(5;m,s).
J
k=0

Nankai University, July 9-13, 2006 15



The 2006 International Conference on DOE

Then
i J2
51 4 (D) = constant + S: S: Cj1 ik ka2 Blr ko (Dr), (11)
k1=0 ko=0
where

l1

Cir ok =510 Y Ojp iy (N = s14)s3 ", Lo, m — I, 87)
1=0
le (i; ll, Sl)Pi(kl; ll, 81).
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3. Selection of Optimal Single Arrays

A symmetrical single array D = (D1, D2) with N runs, in which the first [;
group | factors are the noise factors and the rest [o group |l factors are the
control factors, is a factorial (N; s't, s'2)-design. Similar to Wu and Zhu
(Technometrics, 2003), we assume that all effects with order > 3 are
negligible.

Define the index vector J = (J1, Jo, J3, J4, J5, Jg), where

Ji = B1.5(D) + Bo1(D) + Baa(D), Jo = 3By 5(D) + 3By 5(D) + By 2(D),
J3 = By1(D) + 3Bs3.1(D) + 3B3.0(D), Jy = By4(D), J5 = Bao(D), and
Jo = B4o(D). Then the generalized minimum J-aberration (GMJA)
criterion is to sequentially minimize J; for: =1,...,6.

An (N; 21 22) single array D has GMJA within the class of designs derived

Nankai University, July 9-13, 2006 17
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from Hadamard matrices of order N if and only if its consulting design Dg is
the unique (N; 20, 2V=1=(li+2))_design that sequentially minimizes the first
i (1 <14 < 6) components in the following sequence:

Y iBjx(Dg) + [B22(Dg) + 3B3.1(Dg) + 6B1o(Dg)),

j+k=3
~ D (3+2)Bjx(Dr)~ ) 3jBjx(Dr),
Jj+k=3 Jj+k=4

—[Bg,l(DR) + 3B3,0(DR)] — [3B3,1(DR) + 1234,0(DR)],

Y Bjx(Dr)+ Y Bjx(Dr),

Jj+k=3 j+k=4
[B2,1(DR) + 3B30(DR)] + [B22(DRr) + 3B31(DR) + 6B4,0(DRr)],
Bio(Dr). (12)

Nankai University, July 9-13, 2006 18
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4. An lllustration

As an illustration, Tables 2-4 only tabulates GMJA single arrays derived
from a specific Hadamard matrix of order 16, that is, Hall's OA(16,21°,2) of
type Il given in Appendix 7B of Wu and Hamada (2000), which is shown in
Table 1. Note that the columns Col.(C) and Col.(N) list the control and
noise factor columns, respectively. For comparison, the last column

(J1, J2, J3, Ja, J5, Jg) R presents the aliasing index vectors of minimum
J-aberration regular single arrays in Table C.2 of Wu and Zhu
(Technometrics, 2003).
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Table 1: Hall's OA(16,2'°,2) of type Il
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Table 2: GMJA (16;2!,2!2) single arrays from OA(16,2'%,2) in Table 1

lo Col.(C) Col.(N) (J1,Ja, J3, Ja, J5, J) | (J1, J2, J3, Ja, J5, J6) R
2 2.4 1 000000 000000

3 24,8 1 000000 000000

4 8,10,13,14 1 000000 000000

5 2,8,10,13,14 1 060000 060000

6 2,4,8,10,13,14 1 0120100 0120600

7 2,4,6,8,10,12,15 1 0210300 02101800

8 2-4,6,8,10,12,15 1 1310500 43103000

9 2.6,8,10,12,15 1 2440900 84405400
10 2-6,8-10,13,14 1 36001600 12 60 0 96 0 0
11 2,4,6,8-15 1 47902600 16 79 0 156 0 0
12 2-12,14 1 5107 03800 20 107 0 228 0 0
13 2-14 1 61380550 0 24 138 03300 0
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Table 3: GMJA (16;22,2!2) single arrays from OA(16,2'%,2) in Table 1

l> Col.(C) Col.(N) (J1, Ja, Js, Ja, J5, J6) | (J1, Jo, J3, Ja, J5, J6) R
2 4,8 1,2 000000 000000

3 25,8 1,4 000000 000000

4 811,12,15 1,10 000100 401600

5 1,6-9 2,4 160110 860620

6 1-4,6,7 810 2120320 121201830

7 17 810 3210730 162114230
8 1-7,9 810 5410730 24 4114230
9 1,6-13 2,4 76401030 326416030
10 2-7,9,10,12,15 1,8 99301630 409319630
11 2,3,5-12,14 1.4 12 125 0 25 4 0 52 125 1 150 4 0
12 2,3,5-14 1,4 15 163 0 38 5 0 64 163 1 228 5 0
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Table 4: GMJA (16;23,2!2) single arrays from OA(16,2'%,2) in Table 1

l> Col.(C) Col.(N) (J1,Ja, Js, Ja, J5, J6) | (J1, Jo, J3, Ja, J5, J6) R
2 7,9 128 000000 000000
3 11,13,14 1,812 030000 033000
4 9,11,13,14 1,10,12 160010 873010
5 4,9,11,13,14 1,810 3130020 16 143020
6 2-4,6,11,13 1,10,12 5230130 24273030
7 2-7,9 1,814 7430330 364351830
8 2-7,11,13 1,10,12 10650550 526353050
9 2-7,9,13,15 1,814 14910970 68 91 6 54 7 0
10 2-7,9,10,13,15 1,814 1812901590 84 129 6 90 9 0
11 2,3,5-7,9,10,12-15 1,4,8 24 168 0 25 12 0 108 168 6 150 12 0
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It can be seen that all the single arrays in Tables 2-4 have less or no more

GMJA than the corresponding regular single arrays. Moreover, the
discrepancy between the two index vectors becomes large as the numbers of

control and noise factors increase.
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