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Abstract

In this paper, we propose a new general approach to construct asym-
metrical orthogonal arrays, namely generalized Kronecker product. The
operation is not usual Kronecker product in the theory of matrices but it is
interesting since the interaction of two columns of asymmetrical orthogonal
arrays can be often written out by the generalized Kronecker product. As
an application of the method, some new mixed-level orthogonal arrays of
run sizes 72 and 96 are constructed.
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1. Introduction

An n × m matrix A, having ki columns with pi levels, i = 1, . . . , t, t is an integer,

m =
t∑

i=1
ki, pi 6= pj , for i 6= j, is called an orthogonal array (OA) of strength d and size

n if each n × d submatrix of A contains all possible 1 × d row vectors with the same
frequency. Unless stated otherwise, we consider an orthogonal array of strength 2, using
the notation Ln(pk1

1 · · · pkt
t ) for such an array. An orthogonal array is said to be mixed level

(or asymmetrical ) if t ≥ 2.The proceeding definition also includes the case t = 1, and the
array is usually called a symmetrical orthogonal array, denoted by Ln(pm). For simplicity,
the symmetrical and asymmetrical will only be used when needed.

An essential concept for the construction of asymmetrical orthogonal arrays is that
of difference matrices. Using the notation for additive (or Abelian) groups, a difference
matrix(or difference scheme) with level p is an λp×m matrix with the entries from a finite
additive group G of order p such that the vector differences of any two columns of the array,
say di − dj if i 6= j, contain every element of G exactly λ times. We will denote such an
array by D(λp,m; p), although this notation suppresses the relevance of the group G. In
most of our examples, G will correspond to the additive group associated with a Galois field
GF (p). The difference matrix D(λp,m; p) is called a generalized Hadamard matrix if
λp = m. In particular, D(λ2, λ2; 2) is the usual Hadamard matrix.

If a D(λp,m; p) exists, it can always be constructed so that only one of its rows and
one of its columns contain the zero element of G. Deleting this column from D(λp,m; p),
we obtain a difference matrix, denoted by D0(λp,m− 1; p), called an atom of difference

1



matrix D(λp,m; p) or an atomic difference matrix. Without loss of generality, the
matrix D(λp,m; p) can be written as

D(λp,m; p) =

(
0 0
0 A

)
= (0 D0(λp,m− 1; p)).

The property is important for the following discussions.
For two matrices A = (aij)n×m and B = (bij)s×t both with the entries from group G,

define their Kronecker sum (Shrikhande 1964) to be

A⊕B = (aij ⊕B)1≤i≤n,1≤j≤m,

where each sub-matrix aij ⊕ B of A ⊕ B is obtained by adding aij to each entry of B.
Shrikhande (1964) showed that A⊕B is a difference matrix if both A and B are difference
matrices. And, Zhang(1993) showed that A is a difference matrix if both A⊕B and B are
difference matrices.

Nowadays orthogonal arrays have many important application in statistics, and they
play important roles in coding theory and cryptography.The current emphasis is in the
area of asymmetrical factorial design, or namely asymmetrical orthogonal arrays. Many
new construction methods on the asymmetrical orthogonal arrays have been proposed, but
most of these methods are only or mainly from the construction of symmetrical orthogonal
arrays. Refer to the book by Hedayat et al (1999) for further references.

A new theory or procedure of constructing asymmetrical orthogonal arrays by using
the orthogonal decompositions of projection matrices has been given by Zhang, Lu and
Pang (1999). The first who used it with this objective was Zhang(1989), (1990a), (1990b),
(1991a), (1991b), (1992)and (1993). The idea comes from the theory of multilateral ma-
trices – a mathematical technique to solve the problems of system with complexity. In
general, the procedure of constructing asymmetrical orthogonal arrays in our theory has
been partitioned mainly into five parties: orthogonal-array addition, subtraction, multipli-
cation, division and replacement. The technique, namely generalized Kronecker product
(Definition 1) which belongs to the orthogonal-array multiplication class, has also been
proposed for the construction of asymmetrical orthogonal arrays by Zhang(1993) in the
theory of multilateral matrices. In this paper the technique will be further explained and
extended to construct some new asymmetrical (or mixed-level) orthogonal arrays by using
the orthogonal decompositions of projection matrices.

Section 2 contains the basic concepts and main theorems while in Section 3 we describe
the method of constructions. Some new mixed level OA’s with run sizes 72 and 96 are
constructed in Section 4.

2. Basic Concepts and Main Theorems

In our procedure, an important idea is to find the relationship among difference matri-
ces, projection matrices and permutation matrices. The following notations are used.

Let 1r be the r × 1 vector of 1’s, 0r the r × 1 vector of 0’s, Ir the identity matrix
of order r and Jr,s the r × s matrix of 1’s, also Jr = Jr,r. Of course, the two matrices
Pr = (1/r)1r1T

r = (1/r)Jr and τr = Ir − Pr are projection matrices.
Define

(r) = (0, . . . , r − 1)T
1×r, ei(r) = (0 · · · 0 i

1 0 · · · 0)T
1×r,
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where ei(r) is the base vector of Rr (r-dim vector space) for any i. We can construct two
permutation matrices as follows:

Nr = e1(r)eT
2 (r) + · · ·+ er−1(r)eT

r (r) + er(r)eT
1 (r)

and

K(p, q) =
p∑

i=1

q∑

j=1

ei(p)eT
j (q)⊗ ej(q)eT

i (p), (1)

where ⊗ is the usual Kronecker product in the theory of matrices. The permutation matrices
Nr and K(p, q) have the following properties:

Nr(r) = 1⊕ (r), mod r, and K(p, λp)((λp)⊕ (p)) = (p)⊕ (λp).

Let D = (dij)λp×m be a matrix over an additive group G of order p. Then for any given
dij ∈ G there exists a permutation matrix σ(dij) such that

σ(dij)(p) = dij ⊕ (p),

where the vector (p) is with entries from G. Define H(λp,m; p) = (σ(dij))λp2×mp, where
each entry or submatrix σ(dij) of H(λp,m; p) is a p × p permutation matrix. And Zhang
(1993) has proved that the matrix D = (dij)λp×m over the additive group G is a difference
matrix D(λp,m; p) if and only if

HT (λp,m; p)H(λp,m; p) = λp(Im ⊗ τp + Jm ⊗ Pp).

On the other hand, the permutation matrices σ(dij) are often obtained by the per-
mutation matrices Nr and K(p, q). Furthermore, by the permutation matrices σ(dij) and
K(λp, p), the Kronecker sum (Shrikhande 1964) of difference matrices can be written as

(p)⊕D(λp,m; p) = K(p, λp)[D(λp,m; p)⊕ (p)]

= K(p, λp)(σ(dij)(p))λp2×m

= K(p, λp)(S1(0λp ⊕ (p)), . . . , Sm(0λp ⊕ (p)))

= (Q1((p)⊕ 0λp), . . . , Qm((p)⊕ 0λp)),

where
Qj = K(p, λp)SjK(p, λp)T , Sj = diag(σ(d1j), . . . , σ(drj)), (r = λp), (2)

are permutation matrices for any j = 1, . . . , m and where 0λp⊕ (p) = 1λp⊗ (p) holds for the
additive group associated with Galois Field GF(p). Therefore, both the projection matrices
Pr and τr and the permutation matrices Nr,K(p, q), Qj and Sj(defined in (1) and (2)) are
often used to construct the asymmetrical orthogonal arrays in our procedure.

Definition 1. Let k(x, y) be a map from Ω1 × Ω2 to V , where Ω1 × Ω2 = {(x, y) : x ∈
Ω1, y ∈ Ω2} and Ω1,Ω2, V are some sets. For two matrices A = (aij)n×m with entries from
Ω1 and B = (buv)s×t with entries from Ω2, define their generalized Kronecker product,

denoted by
k⊗, as follows

A
k⊗ B = (k(aij , buv))ns×mt = (k(aij , B))1≤i≤n,1≤j≤m,
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where each submatrix k(aij , B) = (k(aij , buv))s×t of A
k⊗ B is obtained by operating aij to

each entry of B under the map k(x, y).
Unless stated otherwise, we consider the sets Ω1 and Ω2 to be finite, using the vector

notations (p) = (0, 1, · · · , p − 1)T and (q) = (0, 1, · · · , q − 1)T for two example sets. When
V is a row-vector space of m-dimensions, the map k(i, j) can be represented by a pq ×m
matrix D, i.e.,

k : (p)
k⊗ (q) = D = (d(1), . . . , d(pq))

T ,

with k(i, j) = dT
(iq+j+1)( or k(i, j) is the (iq+j+1)th row of D). For this case in the following

discussions, the generalized Kronecker product
k⊗ will only be defined as (p)

k⊗ (q) = D.
Let Ω1 = Ω2 = V = G (a finite multiplicative group) and k(i, j) = ij. Then the

generalized Kronecker product
k⊗ is really the usual Kronecker product in the theory of

matrices, denoted by ⊗. Using the notation for a finite additive (or Abelian ) group G, i.e.,
let Ω1 = Ω2 = V = G (a finite additive group) and k(i, j) = i+ j, the generalized Kronecker

product
k⊗ will be the usual Kronecker sum (Shrikhande (1964)), denoted by ⊕.

Furthermore, if the Ω1,Ω2 and V are additive (or abelian) groups G1, G2 of order λp,
p and a row-vector space of m-dimensions respectively, and if k(i, j) is the (ip + j + 1)th
row of D0(λp,m − 1; p) ⊕ (p)(i.e., the usual Kronecker sum ⊕ of D0(λp,m − 1; p) and (p)

(Shrikhande 1964)), the generalized Kronecker product
k⊗ is really denoted by (λp)

k⊗ (p) =
D0(λp,m− 1; p)⊕ (p), namely normal Kronecker sum.

In general, if the Ω1,Ω2 and V are additive (or abelian) groups G1, G2 of order p, q
and a row-vector space of m-dimensions respectively, and if k(i, j) is the (iq + j + 1)th row

of L(an orthogonal array) for any i, j, the generalized Kronecker product
k⊗ can be only

defined as (p)
k⊗ (q) = L, namely an orthogonal-array product.

The generalized Kronecker product
k⊗ has many properties similar to the usual Kronecker

product ⊗ and the Kronecker sum ⊕(Shrihande 1964). Such as

K(p, q) · (p)
k⊗ (q) = (q)

k⊗ (p), ( if k(i, j) = k(j, i) is a row vector),

(0q ⊕ a)
k⊗ (p) = 0q ⊕ [a

k⊗ (p)],

(a, b)
k⊗ (p) = [a

k⊗ (p), b
k⊗ (p)].

The notations ⊗,⊕,
k⊗ are very useful for the construction of asymmetrical orthogonal arrays

and many other designs.
For example, if define

(2)
k⊗ (2) =




0
1
1
0


 , (4)

k⊗ (2) =




0 0 0
0 1 1
1 0 1
1 1 0


⊕ (2),

and

(3)
k⊗ (3) =




0 0
1 2
2 1


⊕ (3), (6)

k⊗ (3) =




0 0 0 0 0
0 1 1 2 2
1 2 0 1 2
1 0 2 2 1
2 1 2 1 0
2 2 1 0 1



⊕ (3),
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then the following arrays

((2)⊕ 04, 02 ⊕ (4))
k⊗ (2) = (((2)⊕ 02)

k⊗ (2), (02 ⊕ (4))
k⊗ (2)),

((3)⊕ 06, 03 ⊕ (6))
k⊗ (3) = (((3)⊕ 06)

k⊗ (3), (03 ⊕ (6))
k⊗ (3)),

are all orthogonal arrays (Theorem 5).
The array product is an essential operation of the generalized Kronecker product for

constructing asymmetrical arrays.
Definition 2. Let A be an orthogonal array of strength 1, i.e.,

A = (a1, . . . , am) = (T1(0r1 ⊕ (p1)), . . . , Tm(0rm ⊕ (pm))),

where ripi = n, Ti is a permutation matrix for any i = 1, . . . , m. The following projection
matrix,

Aj = Tj(Prj ⊗ τpj )T
T
j , (3)

is called the matrix image (MI) of the jth column aj of A, denoted by m(aj) = Aj for
j = 1, . . . , m. In general,the MI of a subarray of A is defined as the sum of the MI’s of all
its columns. In particular, we denote the MI of A by m(A).

In Definition 2, for a given column aj = Tj(0rj ⊕ (pj)), the matrices Aj defined in
equation (3) are unique though the permutation matrix Tj introduced here is not unique.

If a design is an orthogonal array, then the MI’s of its columns has some interesting
properties which can be used to construct orthogonal arrays. For example, by the definition,
we have

m(0r) = Pr and m((r)) = τr.

Theorem 1. For any permutation matrix T and any orthogonal array L with strength
at least one, we have

m(T (L⊕ 0r)) = T (m(L)⊗ Pr)T T and m(T (0r ⊕ L)) = T (Pr ⊗m(L))T T .

Theorem 2. Let the array A be an orthogonal array of strength 1, i.e.,

A = (a1, . . . , am) = (T1(0r1 ⊕ (p1)), . . . , Tm(0rm ⊕ (pm))),

where ripi = n, Ti is a permutation matrix, for i = 1, . . . , m.
The following statements are equivalent.
(1). A is an orthogonal array of strength 2.
(2). The MI of A is a projection matrix.
(3). The MI’s of any two columns of A are orthogonal, i.e m(ai)m(aj) = 0(i 6= j).
(4). The projection matrix τn can be decomposed as

τn = m(a1) + . . . + m(am) +4,

where rk(4) = n− 1−
m∑

j=1
(pj − 1) is the rank of the matrix 4.

Definition 3. An orthogonal array A is said to be saturated if
m∑

j=1
(pj − 1) = n − 1 (

or,equivalently, m(A) = τn).
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Corollary 1. Let (L,H) and K be orthogonal arrays of run size n. Then (K, H) is
an orthogonal array if m(K) ≤ m(L), where m(K) ≤ m(L) means that the difference
m(L)−m(K) is nonnegative definite.

Corollary 2. Suppose L and H are orthogonal arrays. Then K = (L,H) is also
an orthogonal array if m(L) and m(H) are orthogonal, i.e., m(L)m(H) = 0. In this case
m(K) = m(L) + m(H).

By Corollaries 1 and 2, in order to construct an orthogonal array Ln of run size n,
we should decompose the projection matrix τn into C1 + · · · + Ck such that CiCj = 0 for
i 6= j and find orthogonal arrays Hj such that m(Hj) ≤ Cj for j = 1, 2, · · · , k, because the
array Ln = (H1, · · · ,Hk) is an orthogonal array of run size n. The method of constructing
orthogonal arrays by using the orthogonal decompositions of projection matrices is also
called orthogonal-array addition (Zhang, Lu and Pang 1999).

Definition 4. An orthogonal array Ln is called satisfactory if there doesn’t exist any
orthogonal array K such that (Ln,K) is an orthogonal array.

Theorem 3. (Optimality) Let p, q and r be integers satisfying p, q ≥ 2, n = pqr and
(p, q) = 1 where (p, q) = 1 means the maximal common divisor of p and q is 1. Then there
is no any orthogonal array K of run size n such that m(K) ≤ τp ⊗ Ir ⊗ τq.

These theorems and corollaries can be found in Zhang et al (1991b,1992,1993,1999,2001)
and Pang, Liu and Zhang (2002).

The following Theorem is a main result in our procedure of generalized Kronecker prod-
uct for constructing the asymmetrical orthogonal arrays.

Theorem 4. Let D0(λp,m − 1; p) be an atom of difference matrix D(λp,m; p). Then
D0(λp,m− 1; p)⊕ (p) is an orthogonal array whose MI (defined in (3)) is less than or equal
to τλp ⊗ τp.

Proof. From (3),Theorems 1 and 2 and the construction of Bose and Bush(1952), we
have that

m[(0r ⊕ (p), D0(r,m− 1; p)⊕ (p)] = Pr ⊗ τp + m(D0(r,m− 1; p)⊕ (p))

= Pr ⊗ τp + S1(Pr ⊗ τp)ST
1 + . . . + Sm(Pr ⊗ τp)ST

m

is a projection matrix where the atomic difference matrix D0(r,m−1; p) = (dij)r×(m−1), Sj =
diag(σ(d1j), . . . , σ(drj)), r = λp, is defined in (2) and the MI’s of any two columns of
(0r ⊕ (p), D0(r,m− 1; p)⊕ (p)) are orthogonal,i.e.,

(Pr ⊗ τp)Sj(Pr ⊗ τp)ST
j = 0 and Si(Pr ⊗ τp)ST

i Sj(Pr ⊗ τp)ST
j = 0, (i 6= j).

Thus we now only need to prove that

Sj(Pr ⊗ τp)ST
j ≤ Ir ⊗ τp,

since m(D0(r,m− 1; p)⊕ (p)) ≤ Ir⊗ τp−Pr⊗ τp = τr⊗ τp. In fact,by the matrix properties
Pr ⊗ τp ≤ Ir ⊗ τp, we have

Sj(Pr ⊗ τp)ST
j ≤ Sj(Ir ⊗ τp)ST

j

= diag(σ(d1j)τpσ(d1j)T , . . . , σ(drj)τpσ(drj)T )

= diag(τp, . . . , τp) = Ir ⊗ τp.

This completes the proof.
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Definition 5. Let Ln1 = [Ln1(p
x1
1 ), . . . , Ln1(p

xs
s )] and Ln2 = [Ln2(q

y1
1 ), . . . , Ln2(q

yt
t )] be

two orthogonal arrays. If for given i, j the map kij(s, t) of generalized Kronecker product
kij⊗ is kij : (pi)

kij⊗ (qj) = Hij (an orthogonal array) such that m(Hij) ≤ τpi ⊗ τqj , then we
define the orthogonal-array product of Ln1 and Ln2 as

Ln1

K⊗ Ln2 = [. . . , Ln1(p
xi
i )

kij⊗ Ln2(q
yj

j ), . . .],

where K = {kij ; i = 1, 2, . . . , s, j = 1, 2, . . . , t}.
Theorem 5. Suppose that

Ln1 = [Ln1(p
x1
1 ), . . . , Ln1(p

xs
s )]

and
Ln2 = [Ln2(q

y1
1 ), . . . , Ln2(q

yt
t )]

are two orthogonal arrays. Then the array product of Ln1 and Ln2 , i.e., Ln1

K⊗ Ln2 , is also
orthogonal array whose MI is less than or equal to m(Ln1)⊗m(Ln2).

Proof. Without loss of generality, the orthogonal arrays Ln1 and Ln2 can be written as

Ln1 = [S1(0r1 ⊕ (p1)), . . . , Sm1(0rm1
⊕ (pm1))]

and
Ln2 = [Q1((q1)⊕ 0t1), . . . , Qm2((qm2)⊕ 0tm2

)]

where ripi = n1, tjqj = n2, and Sj , Qj are permutation matrices for any i, j. By Theorems
1 and 2, we have

m(Ln1)⊗m(Ln2) = [
m1∑

i=1

Si(Pri ⊗ τpi)S
T
i ]⊗ [

m2∑

j=1

Qj(τqj ⊗ Ptj )Q
T
j ]

=
m1∑

i=1

m2∑

j=1

(Si ⊗Qj)(Pri ⊗ τpi ⊗ τqj ⊗ Ptj )(Si ⊗Qj)T

is an orthogonal decomposition of projection matrix m(Ln1) ⊗ m(Ln2). If there exists an

orthogonal array Hij such that m(Hij) ≤ τpi ⊗ τqj ,i.e, kij : (pi)
kij⊗ (qj) = Hij for any i, j,

then we have

(. . . , (Si ⊗Qj)(0ri ⊕ (pi)
kij⊗ (qj)⊕ 0tj ), . . .)

is an orthogonal array by Theorems 1 and 2 ,Corollary 1 and Definition 5. The proof is
completed.

By Theorem 4, the orthogonal arrays Hij in Definition 5 can be taken into

D0(pi, ui; qj)⊕ (qj) or (pi)⊕D0(qj , vj ; pi),

For any i, j.
For example, in Definition 1, we can define

(2)
k⊗ (2) = D0(2, 1; 2)⊕ (2), (4)

k⊗ (2) = D0(4, 3; 2)⊕ (2),

(3)
k⊗ (3) = D0(3, 2; 3)⊕ (3), (6)

k⊗ (3) = D0(6, 5; 3)⊕ (3), . . . ,
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where each of the above maps k(i, j)’s can be defined by the corresponding formula.
By Theorem 5, finding all orthogonal arrays H such that m(H) ≤ τp ⊗ τq is also an

essential operation of the generalized Kronecker product for constructing asymmetrical or-
thogonal arrays.If there exists an orthogonal array H such that m(H) = τp ⊗ τq, then the
orthogonal array H is called the interaction of two columns (p ⊕ 0q) and 0p ⊕ (q). Thus
the operation of finding the generalized Kronecker products is similar to that of finding the
interactions in experiment designs.

3. General Methods for Constructing OA’s by Generalized
Kronecker Product

Our procedure of constructing mixed-level orthogonal arrays by using the generalized Kro-
necker product based on the orthogonal decomposition of the projection matrix τn consists
of the following three steps:

Step 1. Orthogonally decompose the projection matrix τn :

τn = T1(A1 ⊗B1)T T
1 + . . . + Tk1(Ak1 ⊗Bk1)T

T
k1

+ C1 + . . . + Ck2 +4
where all Ai, Bj , Cs,4 are projection matrices and all Tt are permutation matrices.

Step 2. Find orthogonal arrays H1
i ,H2

j and Hs from some known orthogonal arrays
such that

m(H1
i ) ≤ Ai,m(H2

j ) ≤ Bj and m(Hs) ≤ Cs.

Step 3. Lay out the new orthogonal array L by Theorem 5,Corollaries 1 and 2:

L = (T1(H1
1

K1⊗ H2
1 ), . . . , Tk1(H

1
k1

Kk1⊗ H2
k1

),H1, . . . , Hk2),

where all
K1⊗ , . . . ,

Kk1⊗ are orthogonal-array products.
In applying Step 1, the following orthogonal decomposition of τn is very useful,

τpq = Ip ⊗ τq + τp ⊗ Pq = τp ⊗ Pq + Pp ⊗ τq + τp ⊗ τq = τp ⊗ Iq + Pp ⊗ τq,

τprq = τp ⊗ Ir ⊗ Pq + Pp ⊗ τrq + τp ⊗ Ir ⊗ τq. (4)

These equations are easy to verify from τp = Ip − Pp, Ppq = Pp ⊗ Pq and Ipq = Ip ⊗ Iq.
The following properties play very useful role in the procedure:
Corollary 3. (Two-factor method ) Let L1

p, L
2
p, L

1
q and L2

q be orthogonal ar-
rays.Then

(L1
p ⊕ 0q, 0p ⊕ L1

q , L
2
p

K⊗ L2
q)

is an orthogonal array.
Proof. The proof follows from Theorem 5 and the orthogonal decomposition of τpq(in

(4)):
τpq = τp ⊗ Pq + Pp ⊗ τq + τp ⊗ τq.

Corollary 4. (Three-factor method) Let n = prq and let Lpr, Lrq and Lq be
orthogonal arrays of run sizes pr, rq and q, respectively. If there exist orthogonal arrays
L

(−)
pr ,L(=)

pr and L
(−)
rq such that m(L(−)

pr ),m(L(=)
pr ) ≤ τp ⊗ Ir and m(L(−)

rq ) ≤ Ir ⊗ τq, then

[Lpr ⊕ 0q, 0p ⊕ L(−)
rq , L(=)

pr

K⊗ Lq]
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and
[L(−)

pr ⊕ 0q, 0p ⊕ Lrq, L
(=)
pr

K⊗ Lq]

are orthogonal arrays.
Proof. The proof follows from Theorem 5 and the orthogonal decompositions of τprq(in

(4)):
τprq = τpr ⊗ Pq + Pp ⊗ [Ir ⊗ τq] + [τp ⊗ Ir]⊗ τq

and
τprq = [τp ⊗ Ir]⊗ Pq + Pp ⊗ τrq + [τp ⊗ Ir]⊗ τq.

On Corollary 4 (Three factor method), it is useful to pay attention to that the two
orthogonal arrays L

(−)
pr and L

(=)
pr in the second constructed array are not necessarily the

same.

4. Constructions of OA’s with Run Sizes 72 and 96

4.1. Construction of OA L72(2
613141)

Since 72 = 18× 2× 2, by Corollary 4 (Three-factor method), we have

[L(−)
36 ⊕ 02, 018 ⊕ (4), L(=)

36 (234)
k⊗ (2)]

is an orthogonal array for any orthogonal arrays L
(−)
36 and L

(=)
36 (234) such that m(L(−)

36 ) ≤
τ18 ⊗ I2 and m(L(=)

36 (234)) = τ18 ⊗ I2.

Now we want to find an OA L
(=)
36 (234) whose MI is equal to τ18 ⊗ I2. Many forms of

orthogonal array L36(235) can be constructed such as Plackett and Burman (1946). Without
loss of generality, the first column can always be supposed to be 018 ⊕ (2). Deleting the
column 018 ⊕ (2) from L36(235), we obtain an orthogonal array in Table 2, denoted by
L

(=)
36 (234), whose MI is equal to τ18 ⊗ I2 since τ18 ⊗ I2 = τ36 − P18 ⊗ τ2.

By Theorem 4, there exists a generalized Kronecker product (2)
k⊗ (2) = (0 1 1 0)T =

(2)⊕ (2), mod 2, i.e., the Kronecker sum (Shrikhande 1964). Therefore by Theorem 5 the
Kronecker sum L

(=)
36 (234)⊕(2) is an OA whose MI is τ18 ⊗ I2 ⊗ τ2.

On the other hand, a new satisfactory orthogonal array L36(22831) which has a 2-level
column 018 ⊕ (2) (in Table 2) can be obtained by an approach similar to that by Zhang et
al (1999) through complicated computing. Deleting the column 018 ⊕ (2) from L36(22831),
we obtain an orthogonal array, denoted by L

(−)
36 (22731), whose MI is less than τ18⊗ I2 since

τ18 ⊗ I2 = τ36 − P18 ⊗ τ2.
By Corollary 4 (Three-factor method), we obtain an orthogonal array L72(2613141) as

follows:
L72(2613141) = [L(−)

36 (22731)⊕ 02, 018 ⊕ (4), L(=)
32 (234)⊕ (2)],

which is satisfactory since 4 = τ72 −m(L72(26131)) ≤ (τ36 −m(L36(22831)))⊗ P2. This or-
thogonal array is new, which is not included in Hedayat et al (1999) and http://sas.techsup/
technote/ts723.html maintained by Warren F.Kuhfeld yet.

Furthermore, replacing the orthogonal array L36(22831) by any one of orthogonal arrays
L36(2x · · ·) which has at least a 2-level column, we will able to construct an orthogonal
array for this family. There are at least 3 new orthogonal arrays for this family which are
included in Table 1.
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4.2. Construction of OA L72(2
2831161121)

Since 72 = 12× 3× 2, by Corollary 4 (Three - factor method), we have

[L(−)
36 ⊕ 02, 012 ⊕ (6), L(=)

36 (228)
k⊗ (2)]

is an orthogonal array for any orthogonal arrays L
(−)
36 and L

(=)
36 (228) such that m(L(−)

36 ) ≤
τ12 ⊗ I3 and m(L(=)

36 (228)) ≤ τ12 ⊗ I3.

Similarly to Section 4.1, we can find an OA L
(=)
36 (228) from L36(31228) (in Table 2) such

that m(L(=)
36 (228)) ≤ τ12 ⊗ I3. Thus the Kronecker sum L

(=)
36 (228)⊕(2) is an OA whose MI

is τ12 ⊗ I3 ⊗ τ2.
On the other hand, there is a saturated orthogonal array L36(312121) which has a 3-level

column 012 ⊕ (3) (Zhang et al 2001). Deleting the column 012 ⊕ (3) from L36(312121), we
obtain an orthogonal array, denoted by L

(−)
36 (311121), whose MI is equal to τ12 ⊗ I3 since

τ12 ⊗ I3 = τ36 − P12 ⊗ τ3.
By Corollary 4 (Three-factor method), we obtain an orthogonal array L72(22831161121)

as follows:

L72(22831161121) = [L(−)
36 (311121)⊕ 02, 012 ⊕ (6), L(=)

36 (228)⊕ (2)],

which is satisfactory since4 = τ72−m(L72(31161121)) ≤ (τ36−m(L36(22831)))⊗τ2. This or-
thogonal array is new, which is not included in Hedayat et al (1999) and http://sas.techsup/
technote/ts723.html maintained by Warren F.Kuhfeld yet.

Furthermore, replacing the orthogonal array L36(312121) by any one of orthogonal arrays
L36(3x · · ·) which has at least a 3-level column, we will also able to construct an orthogonal
array for this family. There are at least 11 new orthogonal arrays of run size 72 for this
family which are included in Table 1.

Similarly, by using orthogonal arrays L36(21861) = [06⊕ (6), L(=)
36 (218)] (in Table 2) and

L36(6x · · ·) = [06 ⊕ (6), L(−)
36 (· · ·)], we can construct the following orthogonal arrays

[L(−)
36 (· · ·)⊕ 02, 012 ⊕ (12), L(=)

36 (218)
k⊗ (2)].

There are at least 7 new orthogonal arrays of run size 72 for this family which are included
in Table 1.

There are lots of asymmetrical orthogonal arrays with moderate run sizes (of course run
size 72) which can be obtained by only using the simple procedures of both the two factor
method and the three factor method. The generalized Kronecker product (or orthogonal-
array product) is more powerful for constructing larger arrays from lesser ones.

4.3. Construction of OA L96(2
12420241)

Consider the three-step procedure of generalized Kronecker product in Section 3. The
following is a recipe for constructing the new orthogonal array L96(212420241) by using the
three-step procedure of generalized Kronecker product for case k1 = 3, k2 = 1 and 4 = 0.

Step 1. Orthogonally decompose the projection matrix τ96. From (4), we have

τ96 = I24 ⊗ τ4 + τ24 ⊗ P4. (5)
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Based on the Abelian group G = {0, 1, 2, 4} of order 4 with the addition table: (4)⊕ (4)T =


0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0


 , consider the particular form of difference matrix D(12, 12; 4) (Zhang

1993,or Zhang,Duan,Lu and Zheng 2002) as follows

D(12, 12; 4) =




0 0 0 1 1 1 2 2 2 3 3 3
0 0 0 2 2 2 3 3 3 1 1 1
0 0 0 3 3 3 1 1 1 2 2 2
1 2 3 1 2 3 1 2 3 1 2 3
1 2 3 2 3 1 2 3 1 2 3 1
1 2 3 3 1 2 3 1 2 3 1 2
2 3 1 1 2 3 2 3 1 3 1 2
2 3 1 2 3 1 3 1 2 1 2 3
2 3 1 3 1 2 1 2 3 2 3 1
3 1 2 1 2 3 3 1 2 2 3 1
3 1 2 2 3 1 1 2 3 3 1 2
3 1 2 3 1 2 2 3 1 1 2 3




,

By Definition 5, we obtain

D(12, 12; 4)
k⊗ (4) = [((4)⊕ 03)

k⊗ (4), T1(((4)⊕ 03)
k⊗ (4)),

T2(((4)⊕ 03)
k⊗ (4)), T3(((4)⊕ 03)

k⊗ (4)) ],

where the map k(i, j) of generalized Kronecker product (4)
k⊗ (4) over above Abelian group

G of order 4 satisfies

k : (4)
k⊗ (4) =




0 0 0
1 2 3
2 3 1
3 1 2


⊕ (4)

=




0 1 2 3 1 0 3 2 2 3 0 1 3 2 1 0
0 1 2 3 2 3 0 1 3 2 1 0 1 0 3 2
0 1 2 3 3 2 1 0 1 0 3 2 2 3 0 1




T

,

and the permutation matrices T1, T2 and T3 are defined as

T1 = diag(σ(1), σ(2), σ(3),K(3, 3)⊗ I4),
T2 = diag(σ(2), σ(3), σ(1), [diag(I3, N3, N

2
3 )K(3, 3)]⊗ I4),

T3 = diag(σ(3), σ(1), σ(2), [diag(I3, N
2
3 , N3)K(3, 3)]⊗ I4),

in which the permutation matrices N3 and K(3, 3) are defined in (1) and σ(j)(4) = j ⊕ (4)
over above Abelian group G of order 4 for j = 0, 1, 2, 3. For example, by the notations of
the permutation matrices I2 and N2 in (1), we can take

σ(0) = I4, σ(1) = I2 ⊗N2, σ(2) = N2 ⊗ I2, σ(3) = N2 ⊗N2.

By Theorems 5 and 2, we obtain

I12 ⊗ τ4 =
3∑

i=0

Ti(τ4 ⊗ P3 ⊗ τ4)T T
i , (6)
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where T0 = I48. By Theorem 5 and (6), an orthogonal decomposition of projection matrix
I24 ⊗ τ4 can be obtained as follows:

I24 ⊗ τ4 = I2 ⊗ [I12 ⊗ τ4]

= I2 ⊗
(

3∑
i=0

Ti(τ4 ⊗ P3 ⊗ τ4)T T
i

)

=
3∑

i=0
(I2 ⊗ Ti) (I2 ⊗ τ4 ⊗ P3 ⊗ τ4) (I2 ⊗ Ti)T ,

=
3∑

i=0
Si(I2 ⊗ τ4 ⊗ P3 ⊗ τ4)ST

i ,

where S0 = I96 and Si = I2 ⊗ Ti, i = 1, 2, 3.
Denoted that Mi = SiK(8, 12) for i = 0, 1, 2, 3. Since K(8, 12)(P3⊗τ4⊗I2⊗τ4)K(8, 12)T =

I2 ⊗ τ4 ⊗ P3 ⊗ τ4, from (5) and above equation we obtain an orthogonal decomposition of
projection matrix τ96 as follows:

τ96 = I24⊗ τ4 + τ24⊗P8 =
3∑

i=1

Mi(P3⊗ τ4⊗ I2⊗ τ4)MT
i +(I2⊗ τ4⊗P3⊗ τ4 + τ24⊗P4). (7)

The above decompositions are orthogonal because of the orthogonality in each step.
Step 2. First, we now want to find an orthogonal array L32(2345) such that its MI is

τ4 ⊗ I2 ⊗ τ4. From (4) and some operations of matrices , we have the following orthogonal
decomposition of the projection matrix τ4 ⊗ I2 ⊗ τ4 :

τ4 ⊗ I2 ⊗ τ4

= (τ2 ⊗ P4 ⊗ τ2 ⊗ P2 + P2 ⊗ τ2 ⊗ P2 ⊗ P2 ⊗ τ2 + τ2 ⊗ τ2 ⊗ P2 ⊗ τ2 ⊗ τ2)
+ (τ2 ⊗ τ2 ⊗ P2 ⊗ τ2 ⊗ P2 + P2 ⊗ τ2 ⊗ τ2 ⊗ P2 ⊗ τ2 + τ2 ⊗ P2 ⊗ τ2 ⊗ τ2 ⊗ τ2)
+ (τ2 ⊗ τ2 ⊗ τ2 ⊗ τ2 ⊗ P2 + τ2 ⊗ P2 ⊗ τ2 ⊗ P2 ⊗ τ2 + P2 ⊗ τ2 ⊗ P2 ⊗ τ2 ⊗ τ2)
+ (τ2 ⊗ P2 ⊗ τ2 ⊗ τ2 ⊗ P2 + τ2 ⊗ τ2 ⊗ P2 ⊗ P2 ⊗ τ2 + P2 ⊗ τ2 ⊗ τ2 ⊗ τ2 ⊗ τ2)
+ (P2 ⊗ τ2 ⊗ τ2 ⊗ τ2 ⊗ P2 + τ2 ⊗ τ2 ⊗ τ2 ⊗ P2 ⊗ τ2 + τ2 ⊗ P4 ⊗ τ2 ⊗ τ2)
+ P2 ⊗ τ2 ⊗ P2 ⊗ τ2 ⊗ P2 + τ2 ⊗ P8 ⊗ τ2 + τ2 ⊗ τ2 ⊗ τ2 ⊗ τ2 ⊗ τ2.

(8)

By Theorem 4 we have m((2) ⊕ (2)) = τ2 ⊗ τ2. If define the general Kronecker product

(2)
k⊗ (2) = (2)⊕ (2), then we can construct an orthogonal array L32(218) whose MI is equal

to τ4 ⊗ I2 ⊗ τ4 as follows

L32(218) = [(4)⊕ 02, (4)
k⊗ (2)]

k⊗ (4),
= [((2)⊕ 04 ⊕ (2)⊕ 02, 02 ⊕ (2)⊕ 02 ⊕ 02 ⊕ (2), (2)⊕ (2)⊕ 02 ⊕ (2)⊕ (2)),

((2)⊕ (2)⊕ 02 ⊕ (2)⊕ 02, 02 ⊕ (2)⊕ (2)⊕ 02 ⊕ (2), (2)⊕ 02 ⊕ (2)⊕ (2)⊕ (2)),
((2)⊕ (2)⊕ (2)⊕ (2)⊕ 02, (2)⊕ 02 ⊕ (2)⊕ 02 ⊕ (2), 02 ⊕ (2)⊕ 02 ⊕ (2)⊕ (2)),
((2)⊕ 02 ⊕ (2)⊕ (2)⊕ 02, (2)⊕ (2)⊕ 02 ⊕ 02 ⊕ (2), 02 ⊕ (2)⊕ (2)⊕ (2)⊕ (2)),
(02 ⊕ (2)⊕ (2)⊕ (2)⊕ 02, (2)⊕ (2)⊕ (2)⊕ 02 ⊕ (2), (2)⊕ 04 ⊕ (2)⊕ (2)),
02 ⊕ (2)⊕ 02 ⊕ (2)⊕ 02, (2)⊕ 08 ⊕ (2), (2)⊕ (2)⊕ (2)⊕ (2)⊕ (2)],

(9)

where 02 = (0, 0)T , (2) = (0, 1)T ,⊕, ... are corresponding to P2, τ2,⊗, ..., respectively.
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By the usual Hadamard product ◦ in matrix theory, we find the each of items in (8)
corresponding to the each of items in (9) having the forms

(A + B + 32A ◦B) and (a, b, a + b), respectively,

where A = m(a), B = m(b) and the addition ′+′ of a + b is the usual modulo 2. From the

method of generalized Hadamard product
h◦= ¦ where h(i, j) = 2i + j (Zhang, Pang and

Wang 2001) , each of the items (a, b, a + b) can be replaced by a 4-level column whose form
is a ¦ b where [(2) ⊕ 02] ¦ [02 ⊕ (2)] = (4). Thus we obtain an orthogonal array L32(2345)
whose MI is equal to τ4 ⊗ I2 ⊗ τ4 and whose form is

L32(2345) = [02 ⊕ (2)⊕ 02 ⊕ (2)⊕ 02, (2)⊕ 08 ⊕ (2),

(2)⊕ (2)⊕ (2)⊕ (2)⊕ (2), D(8, 5; 4)⊕ (4)],

in which the structure of difference matrix D(8, 5; 4) can be obtained by using the definition
of the generalized Hadamard product above ¦ as follows:

D(8, 5; 4) =




0 0 0 0 0
0 1 3 3 2
1 3 3 2 1
1 2 0 1 3
2 2 1 3 3
2 3 2 0 1
3 1 2 1 2
3 0 1 2 0




.

Secondly, we now want to find orthogonal arrays L96(· · ·) such that m(L96(· · ·)) ≤
(I2 ⊗ τ4 ⊗ P3 ⊗ τ4 + τ24 ⊗ P4). Of course, L96(45241) = [M0(03 ⊕ L32(4523)), (24)1 ⊕ 04]
satisfies the condition since m(M0(03⊕L32(4523))) ≤ I2⊗τ4⊗P3⊗τ4 where M0 = K(8, 12)
and m((24)⊕ 04) = τ24 ⊗ P4.

On the other hand, there are also lots of other orthogonal arrays satisfying the condition,
which can be obtained by the generalized Kronecker product similar to above operation,
such as

1.
L

(−)
96 (2947121) = [K(8, 12)(03 ⊕ (8)

k⊗ (4)), L(−)
24 (29121)⊕ 04]

L
(−)
96 (21748) = [K(8, 12)(03 ⊕ (8)

k⊗ (4)), L(−)
24 (21741)⊕ 04]

L
(−)
96 (2103148) = [K(8, 12)(03 ⊕ (8)

k⊗ (4)), L(−)
24 (2103141)⊕ 04]

L
(−)
96 (286148) = [K(8, 12)(03 ⊕ (8)

k⊗ (4)), L(−)
24 (284161)⊕ 04]

where
L24(212121) = [(2)⊕ L4(23)⊕ 03, (L

(−)
24 (29121)],

L24(22041)) = [(2)⊕ L4(23)⊕ 03, L
(−)
24 (21741)],

L24(2133141)) = [(2)⊕ L4(23)⊕ 03, L
(−)
24 (2103141)],

L24(2116141)) = [(2)⊕ L4(23)⊕ 03, L
(−)
24 (284161)]
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and

(8)
k⊗ (4) = D0(8, 7; 4)⊕ (4) =




0 0 0 0 0 0 0
0 1 1 3 2 3 2
1 3 2 1 3 0 2
1 2 3 2 1 3 0
2 2 0 3 3 1 1
2 3 1 0 1 2 3
3 1 2 2 0 1 3
3 0 3 1 2 2 1




⊕ (4).

2.
L

(−)
96 (2114481121) = [L(=)

96 (224481), L(=)
24 (29121)⊕ 04]

L
(−)
96 (2194581) = [L(=)

96 (224481), L(=)
24 (21741)⊕ 04]

L
(−)
96 (212314581) = [L(=)

96 (224481), L(=)
24 (2103141)⊕ 04]

L
(−)
96 (210456181) = [L(=)

96 (224481), L(=)
24 (284161)⊕ 04]

where

L
(=)
96 (224481) = [((2)⊕ 048) ¦ (02 ⊕ (2)⊕ 06 ⊕ (2)⊕ 02) ¦ ((2)⊕ 02 ⊕ (2)⊕ 06 ⊕ (2)),

((2)⊕ (2)⊕ 024) ¦ (04 ⊕ (2)⊕ 03 ⊕ (2)⊕ 02),

((2)⊕ 02 ⊕ (2)⊕ 012) ¦ (02 ⊕ (2)⊕ 012 ⊕ (2)),

((2)⊕ (2)⊕ 06 ⊕ (2)⊕ (2)) ¦ (02 ⊕ (2)⊕ (2)⊕ 06 ⊕ (2)),

((2)⊕ (2)⊕ 012 ⊕ (2)) ¦ (02 ⊕ (2)⊕ (2)⊕ 03 ⊕ (2)⊕ 02),

02 ⊕ (2)⊕ 06 ⊕ (2)⊕ (2), 04 ⊕ (2)⊕ 03 ⊕ (2)⊕ (2)],

and
L24(212121) = [(2)⊕ [04, (2)⊕ 02, 02 ⊕ (2)]⊕ 03, L

(=)
24 (29121)],

L24(22041)) = [(2)⊕ [04, (2)⊕ 02, 02 ⊕ (2)]⊕ 03, L
(=)
24 (21741)],

L24(2133141)) = [(2)⊕ [04, (2)⊕ 02, 02 ⊕ (2)]⊕ 03, L
(=)
24 (2103141)],

L24(2116141)) = [(2)⊕ [04, (2)⊕ 02, 02 ⊕ (2)]⊕ 03, L
(=)
24 (284161)].

The existence of particular forms L
(−)
24 (· · ·) and L

(=)
24 (· · ·) dues to Table 5 in Zhang et al

(2001).
Step 3. By Corollaries 1,2 and (7), we lay out the new orthogonal array

L96(212420241) = [M1(03 ⊕ L32(2345)),M2(03 ⊕ L32(2345)),M3(03 ⊕ L32(2345)),

M0(03 ⊕ L32(2345)), (24)⊕ 04].

By the definition of permutation matrices M0,M1,M2,M3 and the form of orthogonal array
L32(2345), we can change the orthogonal array L96(212420241) into the form

L96(212420241) = [D1(12, 4; 2)⊕ 02 ⊕ (2)⊕ 02, D2(12, 4; 2)⊕ 04 ⊕ (2),

D3(12, 4; 2)⊕ (2)⊕ (2)⊕ (2), D(24, 20; 4)⊕ (4), (24)⊕ 04],
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or the form

L96(212420241) = [(2)⊕ 02 ⊕D1(12, 4; 2)⊕ 02, 02 ⊕ (2)⊕D2(12, 4; 2)⊕ 02,

(2)⊕ (2)⊕D3(12, 4; 2)⊕ (2), (4)⊕D(24, 20; 4), 04 ⊕ (24)].

Thus a new difference matrix D(24, 20; 4) and a normal mixed difference matrix

[D(24, 20; 4), D1(12, 4; 2)⊕ 02, D2(12, 4; 2)⊕ 02, D3(12, 4; 2)⊕ (2)]

also can be drawn out from the orthogonal array over above Abelian group G = {0, 1, 2, 3}
which was observed by Pang, Zhang and Liu (2004).

Furthermore, replacing the sub-array [M0(03 ⊕ L32(2345)), (24) ⊕ 04] in L96(212420241)
by above 96-run orthogonal arrays L

(−)
96 (· · ·), we can construct new mixed-level orthogonal

arrays as follows:

L96(218422121), L96(226423), L96(21931423), L96(21742361),

L96(22041981121), L96(22842081), L96(2213142081), L96(2194206181), · · ·
respectively. These orthogonal arrays are new, which are not included in Hedayat et al
(1999) and http://sas.techsup/technote/ts723.html maintained by Warren F.Kuhfeld yet
(except for the orthogonal array L96(212420241) which is exhibited by author).Many new
orthogonal arrays can also be obtained from above orthogonal arrays by using generalized
Hadamard products (Zhang et al 1991) through complicated computing, such as

L96(212424121), L96(220425), L96(21331425), L96(21142561),

L96(21442181121), L96(22242281), L96(2153142281), L96(2134226181), · · · .
By this method, we conjecture that there also exists an orthogonal array L96(428121).
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Table 1. Orthogonal arrays L72(· · ·) Obtained in Section 4.1 and 4.2
No. Krown OAs L36(· · ·) Obtained OAs L72(· · · 41) Obtained OAs L72(· · · 6x) Obtained OAs L72(· · · 121)

1 L36(235) L72(26841) − −

2 L36(22831)(new) L72(2613141)(new) L72(25661) (new) −

3 L36(22032) L72(2533241) L72(2483161) −

4 L36(2183161) L72(251316141) L72(24662) L72(23631121)

5 L36(21634) L72(2493441) L72(2443361) −

6 L36(21691) L72(2499141) − −

7 L36(21362) L72(2466241) − L72(23161121) (new)

8 L36(21235)(new) L72(2453541)(new) L72(2403461) −

9 L36(211312) L72(24431241) L72(23931161) (new) −

10 L36(2113461)(new) L72(244346141)(new) L72(2393362) L72(22934121)

11 L36(2103861) L72(243386141) L72(2383762) (new) L72(22838121)

12 L36(2103162) L72(243316241) L72(23863) L72(2283161121) (new)

13 L36(293462) L72(242346241) L72(2373363) L72(2273461121)

14 L36(2863) L72(2416341) − L72(22662121) (new)

15 L36(24313) L72(23731341) L72(23231261) −

16 L36(243163) L72(237316341) L72(23264) (new) L72(2223162121) (new)

17 L36(233961) L72(236396141) L72(2313862) L72(22139121)

18 L36(233263) L72(236326341) L72(2313164) (new) L72(2213262121) (new)

19 L36(2231261) L72(2353126141) L72(23031162)(new) L72(220312121)

20 L36(223562) L72(235356241) L72(2303463)(new) L72(2203561121)

21 L36(22181) L72(23518141) − −

22 L36(213862) L72(234386241) L72(2293763)(new) L72(2193861121)

23 L36(213363) L72(234336341) L72(2293264)(new) L72(2193362121) (new)

24 L36(31341) − L72(2283126141) −

25 L36(312121) − L72(22831161121)(new) −

26 L36(3763) − L72(2283664)(new) L72(2183762121) (new)

27 L36(4191) − − −

· · · · · · · · · · · ·
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Table 2. Orthogonal arrays L36(· · ·) used in Section 4.1 and 4.2
No. B1 −B8 B9 −B17 B18 −B26 B27 −B35 CF

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 1 1 1
3 0 1 1 1 0 0 1 1 1 0 0 0 1 0 1 0 1 1 1 1 0 1 0 0 1 0 1 0 0 0 0 1 1 1 0 2 2
4 1 1 0 0 1 0 0 1 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 0 0 1 0 1 1 0 3
5 0 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 4
6 1 1 1 0 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 0 1 0 2 5
7 0 0 1 0 1 1 0 1 0 0 0 1 0 1 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 1 0 0 0
8 1 1 0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 1 0 1 0 1 1 0 0 1 1 1 0 1 0 1 0 0 1 1 1
9 0 1 1 1 0 0 1 1 0 0 1 0 0 1 0 1 1 1 1 0 1 0 1 0 0 1 0 1 1 0 0 0 1 0 1 2 2
10 1 1 0 0 1 0 0 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 0 0 0 1 0 1 0 1 0 0 1 1 0 0 3
11 0 1 1 1 1 1 0 0 1 1 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0 0 1 1 1 4
12 1 1 1 0 1 0 1 0 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1 1 1 0 1 1 0 1 0 0 2 5
13 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 0 0 1 1 1 1 1 0 1 0 0 1 1 1 1 1 0 0
14 1 0 0 1 1 1 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1 1
15 0 1 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 0 0 1 1 2 2
16 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 1 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 0 1 0 3
17 0 0 0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 4
18 1 1 1 0 1 0 1 0 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 0 1 2 5
19 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0
20 1 1 0 1 0 1 0 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 1 0 1 0 0 0 1 1 1 1 1 0 0 1 1
21 0 1 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 0 0 0 0 0 1 1 1 0 0 1 1 1 0 1 0 2 2
22 1 0 1 1 0 0 0 1 0 1 1 1 0 1 0 1 0 0 0 1 0 1 0 1 1 0 1 1 1 0 0 1 1 0 0 0 3
23 0 1 1 1 1 1 0 0 1 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 0 1 0 1 1 0 1 1 4
24 1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 1 1 0 2 5
25 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1 0 1 1 0 0 1 1 1 1 0 1 1 0 0 1 1 1 0 0
26 1 0 0 1 1 1 1 1 1 0 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1
27 0 1 0 0 0 1 1 1 1 1 0 1 1 0 1 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0 1 1 0 0 2 2
28 1 0 1 1 0 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 1 0 3
29 0 0 0 1 1 0 1 0 0 1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 1 4
30 1 0 1 0 0 1 1 0 1 0 0 1 1 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 1 0 1 0 1 2 5
31 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 0 1 1 0 0 1 0 0 1 1 1 1 1 0 0 0 0
32 1 1 0 1 0 1 0 0 1 1 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 1
33 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 2 2
34 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 0 1 1 1 0 1 0 0 3
35 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 4
36 1 0 1 0 0 1 1 0 1 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1 0 0 1 0 0 1 0 1 1 2 5

L36(235) = (B1 −B35) = [018 ⊕ (2), L(=)
36 (234)]

L36(31228) = (CB1B9 −B35) = [012 ⊕ (3), L(=)
36 (228)]

L36(61218) = (FB18 −B35) = [06 ⊕ (6), L(=)
36 (218)]
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No. b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 f c1 c2 c3 c4 c5

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2
2 1 1 1 1 0 0 0 1 0 1 0 1 1 0 1 1 2 2
3 0 1 0 0 1 1 1 1 0 0 0 1 0 0 2 2 1 1
4 1 0 1 1 1 1 0 1 0 0 1 0 1 0 2 2 1 1
5 0 0 0 0 1 0 0 1 1 1 1 1 2 1 1 2 1 2
6 1 0 1 0 0 1 0 0 1 0 1 1 3 1 1 2 1 2
7 0 0 1 1 0 0 1 1 1 0 1 0 2 1 2 1 2 1
8 1 0 0 1 1 0 1 0 1 0 0 1 3 1 2 1 2 1
9 0 1 1 1 0 1 1 0 0 1 1 1 4 2 1 2 2 1
10 1 1 0 0 1 0 1 0 0 1 1 0 5 2 1 2 2 1
11 0 1 1 1 1 1 0 0 1 1 0 0 4 2 2 1 1 2
12 1 1 0 0 0 1 1 1 1 1 0 0 5 2 2 1 1 2
13 0 1 1 0 0 0 0 0 0 0 0 0 2 1 2 2 0 0
14 1 1 0 1 0 0 0 1 0 1 0 1 3 1 2 2 0 0
15 0 1 1 0 1 1 1 1 0 0 0 1 2 1 0 0 2 2
16 1 1 0 1 1 1 0 1 0 0 1 0 3 1 0 0 2 2
17 0 0 0 0 1 0 0 1 1 1 1 1 4 2 2 0 2 0
18 1 1 1 0 0 1 0 0 1 0 1 1 5 2 2 0 2 0
19 0 1 0 1 0 0 1 1 1 0 1 0 4 2 0 2 0 2
20 1 0 1 1 1 0 1 0 1 0 0 1 5 2 0 2 0 2
21 0 0 0 1 0 1 1 0 0 1 1 1 0 0 2 0 0 2
22 1 0 1 0 1 0 1 0 0 1 1 0 1 0 2 0 0 2
23 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 2 2 0
24 1 0 0 0 0 1 1 1 1 1 0 0 1 0 0 2 2 0
25 0 0 0 0 0 0 0 0 0 0 0 0 4 2 0 0 1 1
26 1 0 1 1 0 0 0 1 0 1 0 1 5 2 0 0 1 1
27 0 0 1 0 1 1 1 1 0 0 0 1 4 2 1 1 0 0
28 1 0 0 1 1 1 0 1 0 0 1 0 5 2 1 1 0 0
29 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 1 0 1
30 1 1 0 0 0 1 0 0 1 0 1 1 1 0 0 1 0 1
31 0 1 1 1 0 0 1 1 1 0 1 0 0 0 1 0 1 0
32 1 1 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0
33 0 0 0 1 0 1 1 0 0 1 1 1 2 1 0 1 1 0
34 1 1 1 0 1 0 1 0 0 1 1 0 3 1 0 1 1 0
35 0 1 0 1 1 1 0 0 1 1 0 0 2 1 1 0 0 1
36 1 0 1 0 0 1 1 1 1 1 0 0 3 1 1 0 0 1

L36(21235) = [b1 − b12, c1 − c5]

L36(2113461) = [b2 − b12, c2 − c5, f ]
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