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Summary. We introduce sequential testing procedures for the planning

and analysis of reliability studies to assess an exposure’s measurement error.

The designs allow repeated evaluation of reliability of the measurements

and stop testing if early evidence shows the measurement error is within

the level of tolerance. Methods are developed and critical values tabulated

for a number of two-stage designs. The methods are exemplified using an

example evaluating the reliability of biomarkers associated with oxidative

stress.
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1. Introduction

In epidemiologic studies evaluating the association between outcomes and exposures,

measurements of exposures are often subject to error. Accurately assessing the amount

of and adequately correcting such error is important since otherwise substantial bias

can be introduced to the estimates of regression coefficients or relative risks, as well as
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sample size and power of the study (Liu et al. 1978; Armstrong, White and Saracci,

1992; Carroll, Ruppert and Stefanski, 1995; Freedman et al., 2004).

Reliability studies are a common approach to assess the reproducibility of the mea-

sures of an exposure, i.e. how consistently the measurements of the exposure can be

repeated on the same subject. By the nature of such studies, the exposure’s values of

the same subject are measured several times using the same instrument or different

ones, either simultaneously or at several time points. Consistency of the measurements

is often assessed using the so called intraclass correlation coefficient with larger values

indicating higher level of consistency (Armstrong et al., 1992).

In many studies, measuring an exposure values can be very costly and the cost is

driven high if repeated measurements are taken. The need to reduce study cost is clearly

a motive to adopt the idea of sequential testing that is widely used in clinical trials

(e.g. Pocock, 1977; O’Brien and Fleming, 1979; Lan and DeMets, 1983; Slud, 1984;

Kim and DeMets, 1987; Tang, Geller and Pocock, 1993; Tan, Xiong, and Kutner, 1996;

Whitehead, 1997; Jennison and Turnbull, 2000) to the design and analysis of reliability

studies. Furthermore, when there are several exposures of interest, it is desirable to

stop evaluation of an exposure and reallocate the resources to others if early evidence

shows the exposure to have small (or large) measurement error.

In this paper, we propose to sequentially evaluate the measurements’ reliability of

an exposure. If at any early stage the data shows substantial consistency in the mea-

surements, then the evaluation process stops. Otherwise, it continues to the next stage

till a conclusion regarding the measurement error can be made. Such designs are cost-

effective as compared to the traditional one-stage designs (e.g. Kraemer and Korner,

1976; Donner and Eliasziw, 1987). In Section 2, we describe a motivating example,

review briefly the sample size and power calculation for one-stage reliability studies,
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and then introduce a general sequential procedure for testing hypothesis concerning the

measurement error. In Section 3 we propose methods to derive critical values, sam-

ple size and power, and present simulation results for a number of two-stage designs

using Lan and DeMets error spending appraoch, and revisit the motivating example.

Summary and discussions are given in Section 4.

2. A Motivating Example and the Multistage Procedure

2.1 Example: A study of oxidative biomarkers

Studies have suggested that oxidative stress might be implicated in the risk of human

infertility. However, mechanisms by which oxidative stress may be associated with fe-

male infertility are not completely understood. Although it is known that micronutrient

antioxidants, hormones and enzymatic antioxidants neutralize oxygen-free radicals and

inhibit oxidation, lack of knowledge on the association and interrelation of these an-

tioxidants with oxidative stress levels across the menstrual cycle in human females has

hindered the use of these therapies to reduce the risk of infertility. For this reason, the

BioCycle study, a longitudinal study to assess the effects of endogenous hormones (i.e.

estrogen and progesterone) on biomarkers of oxidative stress and antioxidant status

during the menstrual cycle, was initiated at the National Institute of Child Health and

Human Development (NICHD) of the National Institutes of Health (NIH). One part of

the first phase of the study is to enroll a number of 10 women to assess the variation in

measures of F2 Isoprostanes, an important oxidative stress biomarker, during various

phases of the menstrual cycle. It was planned that at each specific time point within

a menstrual cycle, the F2 Isoprostanes values will be measured simultaneously three

times, which is used to assess the consistency of the measurements.

This is a typical study of reliability. Let ρ denote the intraclass correlation co-
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efficient (to be defined below) of F2 Isoprostanes measures at a selected time point.

Then the null hypothesis to be tested in this study is H0 : ρ ≤ ρ0(= 0.5) with level

of significance to be α(= 0.05). Since each assay costs about $130, cost reduction was

considered when planning for the study.

2.2 One-stage test

In general, an analysis of variance (ANOVA) approach can be employed to analyze

a reliability study such as the F2 Isoprostanes example described above (repeated

measurements at a time point). Let Xij be the jth (j = 1, . . . , p) measurement from

the ith (i = 1, . . . n) subject, where the n subjects form the independent experimental

units of the study. Then the one-way ANOVA model is

Xij = µ + ui + εij, (1)

where the fixed effect µ is the grand mean of all measurements, the random effects

ui, reflecting the variation among the subjects, are normally distributed with mean 0

and variance σ2
u, and the measurement error εij are normally distributed with mean

0 and variance σ2
ε whose magnitude reflects the variation among the measurements

within a subject. Further we assume that ui are independent of εij. Note that these

assumptions lead to Cov(Xij, Xi′j′) = 0 if i 6= i′, Cov(Xij, Xij′) = σ2
u if j 6= j′, and

V ar(Xij) = σ2
u + σ2

ε .

A popular measure of consistency of the within-subject measurements is the intra-

class correlation coefficient defined as

ρ =
σ2

u

σ2
u + σ2

ε

. (2)

This is the correlation coefficient between two measurements from the same subject.

Larger values of ρ indicates higher coherence among measurements from the same
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subject since then the within-subject error is relatively smaller as compared to the

between subject error; perfect consistency occurs when ρ = 1 (then σε = 0).

Define S2
W =

∑n
i=1

∑p
j=1(Xij−X̄i.)

2, the within sum of squares, and S2
B =

∑n
i=1 p(X̄i.−

X̄..)
2, the between sum of squares, where X̄i. =

∑p
j=1 Xij/p, the within-subject average,

and X̄.. =
∑n

i=1

∑p
j=1 Xij/(np), the overall average. Then (e.g. Rao 1972) S2

W and S2
B

are independent and

S2
W ∼ σ2

ε χ
2
n(p−1), S2

B ∼ (σ2
ε + pσ2

u)χ
2
n−1, (3)

where χ2
m stands for the (central) chi-square distribution with m degrees of freedom.

Thus E(S2
W ) = n(p− 1)σ2

ε , and E(S2
B) = (n− 1)(σ2

ε + pσ2
u), yielding an estimate of ρ

(the sample intraclass correlation coefficient):

ρ̂ =
n(p− 1)F − (n− 1)

n(p− 1)F + (n− 1)(p− 1)
, (4)

where F = S2
B/S2

W . Note that ρ̂ is strictly increasing in F . Further, from (3), we have

F ∼ (n− 1)(1 + (p− 1)ρ)

n(p− 1)(1− ρ)
Fn−1,n(p−1), (5)

with Fm1,m2 being a (central) F-distribution with degrees of freedom m1 and m2.

With these developments, the one-stage testing procedure with level of significance

α rejects the null hypothesis H0 : ρ ≤ ρ0 if ρ̂ > c for such 0 < c < 1 that Pρ=ρ0(ρ̂ > c) =

α. To compute c, note that ρ̂ > c if and only if F > (n−1)(1+(p−1)c)/(n(p−1)(1−c)).

Setting the probability of the latter event to α and utilizing (5), we find, through

straightforward algebraic manipulation, that

c =
(1 + (p− 1)ρ0)F

−1
n−1,n(p−1)(1− α)− (1− ρ0)

(p− 1)(1− ρ0) + (1 + (p− 1)ρ0)F
−1
n−1,n(p−1)(1− α)

. (6)

The power of such test at ρ > ρ0 is thus given by

Pρ(ρ̂ > c) = 1− Fn−1,n(p−1)

(
(1− ρ)(1 + (p− 1)ρ0)

(1− ρ0)(1 + (p− 1)ρ)
F−1

n−1,n(p−1)(1− α)

)
. (7)
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Setting (7) to the desired power at an alternative value of ρ and numerically solving

the equation then yields the sample size needed for the study.

2.2 Multistage test

Suppose the subjects are taken into groups. Denote by gk the number of subjects in

the kth group, and nk = g1 + g2 + . . . + gk the cumulative sample size (number of

subjects) of the first k groups. Write ρ̂k as the estimate of the intraclass correlation

coefficient ρ computed from data observed up to the kth group. Let K be the pre-

specified maximum number of tests planned for the study. Then a K-stage testing

procedure for H0 : ρ < ρ0 is carried out as follows. First, p repeated measurements are

taken from each of the g1 subjects in the first group, and ρ̂1 is computed. If ρ̂1 > c1,

then the test stops and H0 is rejected. Otherwise, measurements from the g2 subjects

in the second group are taken, and ρ̂2 is computed based on data from all n2 subjects.

In general, at each stage k = 1, . . . , K− 1, with critical values ck, the sampling process

stops with rejection of H0 if

ρ̂i ≤ ci, i ≤ k − 1, and ρ̂k > ck . (8)

Otherwise, the test continues to stage k+1; if it did not stop at any early stage k < K,

then it will stop at the Kth stage and reject H0 if ρ̂K > cK .

Such “group” sequential testing concepts have become standard practice in clinical

trials. The power function of the test is

β(ρ) =
K∑

k=1

P (ρ̂i ≤ ci, i ≤ k − 1, and ρ̂k > ck) , (9)

where the critical values ck are chosen so that the type I error of the test, β(0), is α

and the power at ρ1 > ρ0, β(ρ1), is 1−β, where α and β are pre-specified rates of type

I and type II error, respectively. In a clinical trial setting where testing is focused on a

normal mean or a Bernoulli probability, a considerable number of methods have been
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proposed to compute these critical values; see Jennison and Turnbull (2000). In the

next section we will focus on two-stage designs and explore Lan and DeMets (1983)

error speeding approach which allocates the overall type I error α to each stage till the

overall error “is spent”. Once an error spending function is chosen, the kth summand

in (9), i.e. the error spent at the kth stage, will be given by the error spending function.

3. Two-stage Designs and Simulation Technique

3.1 Determination of critical values

We write S2
1W , S2

1B and S2
2W , S2

2B to be the within- and between- sum of squares

computed at the first and second stage, with corresponding estimates of intraclass

correlation coefficient ρ̂1 and ρ̂2, respectively. Suppose the type I error to be spent at

stage 1 is α1. Then from (9) the error requirements (overall type I error α and power

1− β at ρ1) mandate that

Pρ0(ρ̂1 > c1) = α1 , Pρ0(ρ̂1 ≤ c1, ρ̂2 > c2) = α− α1 , (10)

and

Pρ1(ρ̂1 > c1) + Pρ1(ρ̂1 ≤ c1, ρ̂2 > c2) = 1− β . (11)

These three equations together determine the critical values and the sample size as-

suming the allocation ratio, n1/n2, of subjects to the first group is specified. Recalling

(6), the first equation of (10) yields

c1 =
(1 + (p− 1)ρ0)F

−1
n1−1,n1(p−1)(1− α1)− (1− ρ0)

(p− 1)(1− ρ0) + (1 + (p− 1)ρ0)F
−1
n1−1,n1(p−1)(1− α1)

. (12)

Thus the first summand of (11) is given by (7) with substitution of (ρ, c, n) for

(ρ1, c1, n1). The second equation of (10) and the second summand of (11) involve

evaluation of β2(ρ) = Pρ(ρ̂1 ≤ c1, ρ̂2 > c2) for some ρ. This requires knowledge of

the joint distribution of ρ̂1 and ρ̂2 for which no closed form is available. The following
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results (proof given in the appendix) provide a simple formula for the distribution which

substantially simplifies computation and simulation concerning the error probabilities.

Let U1, U2, U3 and U4 be independent random variables having χ2 distributions with

degrees of freedom n1 − 1, n1(p− 1), g2, and g2(p− 1), respectively and define

b(n, c; ρ) =
(1− ρ)(n− 1)(1 + c(p− 1))

n(p− 1)(1− c)(1 + (p− 1)ρ)
. (13)

Then

P (ρ̂1 ≤ c1, ρ̂2 > c2) = P
(
U1 ≤ b1U2, U1 + U3 > b2(U2 + U4)

)
=
∫ b1

0

(∫
∆

dχn1(p−1)(u1)dχg2(u3)dχg2(p−1)(u4)
)

dFn1−1,n1(p−1)

(
n1(p− 1)

n1 − 1
y

)
, (14)

where b1 = b(n1, c1; ρ), b2 = b(n2, c2; ρ), and ∆ = {(u2, u3, u4) : (y− b2)u2 +u3 > b2u4}.

The above formulas, along with (10) and (11), provide two options to compute the

critical values and the power (or sample size) of the test. One is to use multi-variable

integrations in the second equation. This, however, requires computational capacity

and accuracy for multiple integrals and often proves to be difficult. Alternatively, one

can use the first equation to simulate data from the four independent χ2 distributions

and then find the critical values subject to error requirements in (10) and (11). This

approach is computationally straightforward, simpler and faster than simulation from

multivariate normal distributions. Providing the number of simulations is sufficiently

large, it in general yields accurate results. We use this latter approach to compute

critical values for various two-stage designs; see more below.

3.2 Power analysis of designs with given sample size: The F2 Isoprostanes example

revisited

In many studies the sample size n2 is given, and analysis of power at various alternatives

is desirable. These designs are particularly employed when the number of subjects that

can be studied is limited (e.g. due to budget constraints).

8



Computation and simulation related to these designs is relatively less extensive.

With n1, α and α1 also given, the first critical value c1 is given by (12). The second

critical value c2 can be determined via simulation based on the four independent χ2

variables U = (U1, U2, U3, U4) in (14). For a range of values of c2, with a total of N

runs of U , the empirical probability of the left side of the second equation of (10) can

be obtained and the required c2 value is the one that gives empirical probability equal

or close to α − α1. Once c1 and c2 are determined, the first summand of (11) can be

computed using (7) and the second summand is obtained via simulation using the U -

observations; addition of these two summands then yields the power of the test at an

alternative value. To narrow the search range for c2, we start with the one-stage critical

value computed based on (6) with n = n2, and then expand to the neighborhood till

the desired value of c2 is found.

We now turn to the F2 Isoprostanes example described in Section 2.1. The interim

analysis was planned when half of the subjects supply their blood samples and the

values of F2 Isoprostanes are measured. The interim error α1 was set to be α/2 based

on an error spending function of Kim and DeMets (1987); see below. Thus ρ0 = 0.5,

n1 = n2/2 = 5, and α1 = α/2 = 0.025. With these design parameters, we simulated

N = 100, 000 runs of random vector U , and found c1 = 0.8493, and c2 = 0.7593.

The power of the test at ρ1 = 0.80, 0.85, 0.90 is 0.65, 0.81 and 0.94, respectively. The

average sample size at these alternative values is 9, 8, and 7, respectively, reflecting

the cost-effective nature of the design.

3.3 Computation of sample size and simulation results

In other studies the sample size n2 needs to be determined based on pre-specified

significance level α and power 1−β at an alternative ρ = ρ1. These designs often occur

when it is feasible to study a relatively larger number of subjects. We demonstrate
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below how to find the critical values c1, c2 and the required total sample size n2 via

Monto Carlo simulation. To this end, we set n1 = n2/2. For illustration we use error

spending functions of Kim and DeMets (1987), α1 = α/2r. (The F2 Isoprostanes

example above used r = 1.) Possible values of design parameters to be considered are

α = {0.025, 0.05}, for testing null value ρ0 = {0.5, 0.6}, power of the test 1 − β =

{0.8, 0.85, 0.9} at ρ = ρ1 = {0.70, 0.75, 0.80, 0.85, 0.90, 0.95}, with r = {1, 1.5, 2}. Note

that the null values chosen indicate moderate consistency in measurements, according

to Landis and Koch (1977). We consider p = 2, 3, 4 up to 10 replicates, respectively.

For each set of design parameters (α, β, r, ρ0, ρ1), we search a potential range of

(c1, c2, n2) to find a combination that meets the error requirements. For each combina-

tion of (c1, c2, n2), c1 can be determined either via simulation or by (12). A total number

of N = 100, 000 random observations from the random vector U = (U1, U2, U3, U4) of

the four independent χ2 variables are drawn, and the empirical probabilities in (10)

and (11) are computed. The combination that satisfies error requirements in (10) and

(11) is thus the desired solution to the design. Again, to help narrow the range, we

first limit the values of c2 and n2 close to that required in a one-stage test by (6) and

(7), and then gradually expand the range till a solution is found.

Table 1 presents simulation results of critical values and sample size required, for a

selected number of designs with r = 1, 2. (The complete tabulation and the program

codes are available upon request.) It is noticed that setting r = 2 yields more con-

servative stopping boundaries (less likely to stop early) than r = 1, and thus requires

smaller sample size. For each design, the final critical value c2 is smaller than the

interim critical value c1, partly reflecting the increase of sample size. Again, the aver-

age sample size (ASN) is smaller than the fixed sample size (required in the one-stage

procedure).
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Table 1

Sample size tabulation for a number of two-stage designs

Put Table 1 here

4. Discussion

In this article we introduced sequential methods for evaluation of measurement

error, and presented stopping boundary values for a number of two-stage designs.

To our best knowledge there has been no previous work in the literature advocating

sequential testing procedures to evaluate measurement errors. In addition to high cost

of measuring the exposure, in some situations ethical consideration may also provide

another motive to use these designs since some procedures such as taking bone marrow

samples may be very painful to the study subjects and thus sampling process should be

stopped if early evidence shows the measurement error is within the level of tolerance.

Unlike the sequential testing procedures developed specifically for clinical trials

based on testing a normal mean or a Bernoulli probability, the methods in this article

requires computation of the joint distributions of a series of sample intraclass correla-

tion coefficients, or equivalently, a series of F -statistics. It is worth noting that these

distributions involve only the correlation coefficient and are independent of the means

and variances of the repeated measurements. Moreover, under both null and alter-

native hypotheses, computation of error probabilities requires only central F and χ2

distributions. In contrast sequential F -tests concerning the mean vector of a multivari-

ate normal variable involve non-central F and χ2 distributions under the alternative

hypotheses; see Jennison and Turnbull (2000, chapter 15).
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Future research is needed to develop and compare various sequential procedures

and to propose methods for post-test analysis such as computation of p-values and

point and interval estimation of the intraclass correlation coefficient.

References

Liu, K., Stammler, J., Dyer, A., McKeever, J., and McKeever, P. (1978). Statistical
methods to assess ans minimize the role of intr-individual variability in obscring
the relationship between dietary lipids and serum cholesterol. Journal of Chronic
Diseases 31, 399-418.

Armstrong, B. K., White, E., and Saracci, R. (1992). Principles of Exposure Measure-
ment in Epidemiology. New York: Oxford University Press.

Carroll, R. J., Ruppert, D. and Stefanski, L. A. (1995). Measurement Error in Non-
linear Models. Boca Raton: Chapman and Hall.

Donner, A. P. and Eliasziw, M. (1987). Sample size requirements for reliability studies.
Statistics in Medicine 6, 441-448.

Freedman, L. S., Fainberg, V., Kipnis, V., Midthune, D. and Carroll, R. J. (2004).
A new method for dealing with measurement error in explanatory variables of
regression models. Biometrics 60, 172-181.

Jennison, C. and Turnbull, B. W. (2000). Group Sequential Methods with Applications
to Clinical Trials. New York: Chapman and Hall/CRC.

Kim, K. and DeMets, D. L. (1987). Design and analysis of group sequential tests based
on type I error spending rate function. Biometrika 74, 149-154.

Kraemer, H. C. and Korner, A. F. (1979). Statistical alternatives in assessing reliability,
consistency and individual dierences for quantitative measures: applications to
behavioural measures of neonates. Psychological Bulletin 83, 914-921.

Landis, J. R. and Koch, G. G. (1977). The measurement of observer agreement for
categorical data. Biometrics 33, 159-174.

Lan, K. K. G. and DeMets, D. L. (1983). Discrete sequential boundaries for clinical
trials. Biometrika 70, 659-663.

O’Brien, P. C. and Fleming. T. R. (1979). A multiple testing procedure for clinical
trials. Biometrics 35, 549-556.

Pocock, S. J. (1977). Group sequential methods in the design and analysis of clinical
trials. Biometrika 64, 191-100.

12



Rao, C. R. (1972). Linear Statistical Inference and Its Applications. New York: Wiley.

Slud, E. V. (1984). Sequential linear rank tests for two-sample censored survival data.
Annals of Statistics 12, 551-571.

Tan, M., Xiong, X. and Kutner, M. H. (1998). Clinical trial designs based on sequential
conditional probability ratio tests and reverse stochastic curtailing. Biometrics 54,
684-697.

Tang, D., Geller, N. L. and Pocock, S. J. (1993). On the design and analysis of
randomized clinical trials with multiple endpoints. Biometrics 49, 23-30.

Whitehead, J. (1997). The Design and Analysis of Sequential Clinical Trials, Revised
2nd ed. New York: Wiley.

Appendix

Proof of (14)

Define

U1 =
1

σ2
ε + pσ2

u

S2
1B, U2 =

1

σ2
ε

S2
1W ,

U3 =
1

σ2
ε + pσ2

u

(S2
2B − S2

1B), U4 =
1

σ2
ε

(S2
2W − S2

1W ).

It follows from (3) that U1 ∼ χ2
n1−1, U2 ∼ χ2

n1(p−1), and U1 and U2 are independent.

For U4, because

S2
2W =

n2∑
i=1


p∑

j=1

(Xij − X̄i.)
2

 = S2
1W +

n2∑
i=n1+1


p∑

j=1

(Xij − X̄i.)
2

 ,

hence U4 ∼ χ2
g2

and is independent of U1 and U2. To find the distribution of U3, define

X̄1.. =
∑n1

i=1

∑p
j=1 Xij/(n1p), X̄2.. =

∑n2
i=1

∑p
j=1 Xij/(n2p), X̄21.. =

∑n2
i=n1+1

∑p
j=1 Xij/(g2p),

and S2
21B =

∑n2
i=n1+1(X̄i.−X̄21..)

2. The first two terms are respectively the grand sample

means at the first and second stage, and the last two terms are respectively the grand

mean and between-subject sum of squares of observations in the second group alone.

Then through straightforward (but tedious) algebraic manipulations, we obtain

U3 =
1

σ2
ε + pσ2

u

S2
21B +

1

σ2
ε + pσ2

u

n1n2p

g2

(
X̄2.. − X̄1..

)2
.
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Again from Rao (1972) on distribution of quadratic forms of multivariate normal vari-

ables, the two summands in the equation above are independent, follow χ2 distributions

with degrees of freedom g2 − 1 and 1, respectively, and both are independent of S2
1B.

Thus U3 also follows a χ2 distribution with degrees of freedom g2.

The first equation of (14) hence follows because ρ̂1 ≤ c1 and ρ̂2 > c2 are the same

as U1/U2 ≤ b(n1, c1; ρ) and (U1 + U3)/(U2 + U4) > b(n2, c2; ρ). The second equation of

(14) is derived by using conditioning arguments.
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Below is Table 1
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    alpha     beta      r   rho_0    rho_1  n_1          c_1       c_2    ASN     fixed size
                  p=2

0.05 0.1 1 0.5 0.7 46 0.6874 0.6284 66.05 83
0.05 0.1 2 0.5 0.7 44 0.7133 0.6250 69.06 83

0.025 0.1 1 0.5 0.7 55 0.6943 0.6354 80.74 102
0.025 0.1 2 0.5 0.7 53 0.7156 0.6319 84.25 102
0.05 0.2 1 0.5 0.7 33 0.7155 0.6493 51.82 61
0.05 0.2 2 0.5 0.7 32 0.7425 0.6423 54.08 61

0.025 0.2 1 0.5 0.7 43 0.7153 0.6528 67.91 78
0.025 0.2 2 0.5 0.7 40 0.7414 0.6510 68.23 78
0.05 0.1 1 0.5 0.8 16 0.7864 0.7049 23.13 29
0.05 0.1 2 0.5 0.8 15 0.8211 0.7014 23.90 29

0.025 0.1 1 0.5 0.8 20 0.7901 0.7119 29.09 36
0.025 0.1 2 0.5 0.8 19 0.8180 0.7084 30.19 36
0.05 0.2 1 0.5 0.8 12 0.8176 0.7310 18.85 22
0.05 0.2 2 0.5 0.8 11 0.8554 0.7293 18.88 22

0.025 0.2 1 0.5 0.8 15 0.8211 0.7397 23.90 27
0.025 0.2 2 0.5 0.8 14 0.8515 0.7362 24.13 27
0.05 0.1 1 0.6 0.8 29 0.7882 0.7319 41.57 52
0.05 0.1 2 0.6 0.8 27 0.8138 0.7293 42.68 52

0.025 0.1 1 0.6 0.8 34 0.7959 0.7397 50.13 64
0.025 0.1 2 0.6 0.8 33 0.8146 0.7362 52.61 64
0.05 0.2 1 0.6 0.8 21 0.8131 0.7536 32.92 38
0.05 0.2 2 0.6 0.8 20 0.8383 0.7484 33.92 38

0.025 0.2 1 0.6 0.8 27 0.8138 0.7571 42.68 48
0.025 0.2 2 0.6 0.8 25 0.8372 0.7553 42.77 48
0.05 0.1 1 0.6 0.9 9 0.8851 0.8127 12.81 15
0.05 0.1 2 0.6 0.9 8 0.9166 0.8136 12.84 15

0.025 0.1 1 0.6 0.9 10 0.8978 0.8301 14.91 19
0.025 0.1 2 0.6 0.9 10 0.9149 0.8231 16.04 19
0.05 0.2 1 0.6 0.9 7 0.9069 0.8336 10.81 12
0.05 0.2 2 0.6 0.9 6 0.9394 0.8379 10.37 12

0.025 0.2 1 0.6 0.9 8 0.9166 0.8509 12.84 14
0.025 0.2 2 0.6 0.9 8 0.9327 0.8440 13.71 14

               p=3
0.05 0.1 1 0.5 0.7 28 0.6826 0.6250 40.08 53
0.05 0.1 2 0.5 0.7 27 0.7074 0.6215 41.91 53

0.025 0.1 1 0.5 0.7 35 0.6863 0.6319 50.35 64
0.025 0.1 2 0.5 0.7 33 0.7088 0.6284 51.55 64
0.05 0.2 1 0.5 0.7 21 0.7059 0.6423 32.41 38
0.05 0.2 2 0.5 0.7 20 0.7339 0.6380 33.27 38

0.025 0.2 1 0.5 0.7 26 0.7106 0.6493 40.76 48
0.025 0.2 2 0.5 0.7 25 0.7333 0.6458 41.88 48
0.05 0.1 1 0.5 0.8 11 0.7656 0.6884 15.35 19
0.05 0.1 2 0.5 0.8 10 0.8027 0.6875 15.40 19

0.025 0.1 1 0.5 0.8 13 0.7756 0.7014 18.45 23
0.025 0.1 2 0.5 0.8 12 0.8060 0.6997 18.63 23
0.05 0.2 1 0.5 0.8 8 0.7984 0.7154 12.22 14
0.05 0.2 2 0.5 0.8 7 0.8409 0.7154 11.75 14

0.025 0.2 1 0.5 0.8 10 0.8027 0.7223 15.40 18



0.025 0.2 2 0.5 0.8 9 0.8365 0.7258 15.09 18
0.05 0.1 1 0.6 0.8 19 0.7810 0.7275 26.93 35
0.05 0.1 2 0.6 0.8 18 0.8045 0.7240 27.81 35

0.025 0.1 1 0.6 0.8 22 0.7897 0.7362 32.05 42
0.025 0.1 2 0.6 0.8 22 0.8057 0.7310 34.16 42
0.05 0.2 1 0.6 0.8 14 0.8033 0.7449 21.55 25
0.05 0.2 2 0.6 0.8 13 0.8299 0.7414 21.68 25

0.025 0.2 1 0.6 0.8 17 0.8089 0.7536 26.66 32
0.025 0.2 2 0.6 0.8 16 0.8304 0.7501 26.94 32
0.05 0.1 1 0.6 0.9 6 0.8718 0.8023 8.44 11
0.05 0.1 2 0.6 0.9 6 0.8936 0.7936 9.05 11

0.025 0.1 1 0.6 0.9 7 0.8808 0.8162 10.03 13
0.025 0.1 2 0.6 0.9 7 0.8981 0.8092 10.68 13
0.05 0.2 1 0.6 0.9 5 0.8871 0.8170 7.45 8
0.05 0.2 2 0.6 0.9 4 0.9261 0.8231 6.73 8

0.025 0.2 1 0.6 0.9 6 0.8936 0.8266 9.05 10
0.025 0.2 2 0.6 0.9 5 0.9248 0.8353 8.42 10

           p=4
0.05 0.1 1 0.5 0.7 23 0.6773 0.6215 32.58 43
0.05 0.1 2 0.5 0.7 22 0.7022 0.6180 33.77 43

0.025 0.1 1 0.5 0.7 28 0.6831 0.6284 40.09 52
0.025 0.1 2 0.5 0.7 27 0.7034 0.6250 41.58 52
0.05 0.2 1 0.5 0.7 17 0.7010 0.6380 26.05 31
0.05 0.2 2 0.5 0.7 16 0.7297 0.6350 26.43 31

0.025 0.2 1 0.5 0.7 21 0.7061 0.6458 32.63 39
0.025 0.2 2 0.5 0.7 20 0.7292 0.6432 33.23 39
0.05 0.1 1 0.5 0.8 9 0.7581 0.6832 12.50 16
0.05 0.1 2 0.5 0.8 8 0.7970 0.6823 12.27 16

0.025 0.1 1 0.5 0.8 10 0.7743 0.6980 14.35 19
0.025 0.1 2 0.5 0.8 10 0.7962 0.6910 15.23 19
0.05 0.2 1 0.5 0.8 6 0.7991 0.7154 9.31 12
0.05 0.2 2 0.5 0.8 6 0.8272 0.7049 9.87 12

0.025 0.2 1 0.5 0.8 8 0.7970 0.7188 12.27 14
0.025 0.2 2 0.5 0.8 8 0.8194 0.7101 12.96 14
0.05 0.1 1 0.6 0.8 16 0.7759 0.7223 22.46 29
0.05 0.1 2 0.6 0.8 15 0.7997 0.7206 22.93 29

0.025 0.1 1 0.6 0.8 19 0.7828 0.7327 27.11 35
0.025 0.1 2 0.6 0.8 18 0.8024 0.7301 27.75 35
0.05 0.2 1 0.6 0.8 12 0.7962 0.7397 18.20 21
0.05 0.2 2 0.6 0.8 11 0.8232 0.7362 18.10 21

0.025 0.2 1 0.6 0.8 14 0.8048 0.7501 21.80 26
0.025 0.2 2 0.6 0.8 13 0.8271 0.7466 21.74 26
0.05 0.1 1 0.6 0.9 5 0.8650 0.7971 7.04 10
0.05 0.1 2 0.6 0.9 5 0.8867 0.7884 7.49 10

0.025 0.1 1 0.6 0.9 6 0.8718 0.8092 8.47 11
0.025 0.1 2 0.6 0.9 6 0.8891 0.8005 8.96 11
0.05 0.2 1 0.6 0.9 4 0.8834 0.8127 6.02 7
0.05 0.2 2 0.6 0.9 4 0.9048 0.8049 6.38 7

0.025 0.2 1 0.6 0.9 5 0.8867 0.8231 7.49 8
0.025 0.2 2 0.6 0.9 5 0.9036 0.8144 7.91 8




