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1. Introduction

The use of estimating equation has received much attention in the literature,

see for example Godambe and Thompson (1984), Li and McCullagh (1994), Small

and Mcleish (1994), Heyde (1997) and so on. Some comprehensive treatments

may be found in Godambe (1991) and the viewpoint of numerical computation

may be found in Small (2003). The estimating function plays the role of the

score function whether or not the form of distribution of data is known. The

main purpose of an estimating equation is to produce an estimator of parameter,

the estimator being obtained as a root of this estimating equation. So the basis

requirement of an estimating function is the unbiasedness for zero.

Estimating function can be derived from the moment conditions. A widely-

used estimating function is so-called quasi score function, which is based only on

the first and two moments of data or of a function of data and parameters, see for

example Wedderburn (1974), Godambe and Heyde (1987), Heyde (1997), McCul-

lagh (1983), McCullagh and Nelder (1989) and Lin (2004). A purely theoretical

way to define an estimating function is the Hilbert space method, the estimating

function being derived basically from on a function space endowed with a class

of inner products, for comprehensive knowledge about this topic see Small and

Mcleish (1994).

The derivation of Bayesian estimating function, namely, the posterior score,

is due to Ferreira (1982) and Ghosh (1993). According to the point of Bayesian

inference, an estimating function is designed to be unbiased in two senses of con-

ditional unbiasedness and average unbiasedness for zero. A recent study by Lin

(2006) introduced a theoretical framework of quasi Bayesian likelihood, in which

the quasi posterior score and likelihood are based on the Hilbert space method.

Although the general framework was established in this paper, the validity about

Hilbert-based Bayesian inference has been unexplored. The essential difficulty

with this topic may be that the true (posterior) likelihood function is in general

unknown and then there is no an explicit foundation to define and compute the

validity. So the validity of the Hilbert-based Bayesian estimating function is still

a challenge.

A recent work by Monahan and Boos (1992) provided criterion for calculating
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whether or not an alternative likelihood is proper for Bayesian inference. They

introduced a definition of validity based on the coverage property of posterior

sets, along with a numerical technique that may be used to invalidate a certain

likelihood. Lazar (2003) and Schennach (2005) used this notion to define and

examine the validity of Bayesian empirical likelihood.

Following the above works, this paper introduces and investigates systemically

the validity of Bayesian estimating equation. The estimating function is derived

from the Hilbert space method and then the estimating function depends only

on a space of estimating functions endowed with a class of inner products. The

Hilbert-based posterior likelihood is suppositional and therefore can not be in

general expressed explicitly. So some new and significant problems arise such as:

How shall we define the validity? How shall we calculate and check the validity?

And, how shall we use it in practice?

The remainder of this paper is organized as follows. In Section 2 the Bayesian

likelihood is outlined via the Hilbert space method. A validity for Hilbert-based

Bayesian estimating function is defined in Section 3 via a Hilbert-based (condi-

tional) unbiasedness and information unbiasedness. In Section 4, some examples

are presented to illustrate the theoretical results. A theoretical foundation for

penalty-based methods, such as penalized likelihood and penalized least squares,

is established in Section 5.

2. Hilbert-based likelihood

We first assume the distribution Pθ(y) of observations yi, · · · , yn belongs to a

class of underlying distributions P = {Pθ(y), θ ∈ Θ} and a dominating measure ν

exists on Rn such that dPθ(y) = pθ(y)dν, where pθ(y) is a density function with

respect to the measure ν and the parameter space Θ is a subset of Rp. Then the

true score function can be expressed as s(θ, y) = ∂ log pθ(y)/∂θ. On the other

hand, suppose that a prior distribution is defined on the parameter space Θ by

Π(θ) with density π(θ) > 0 for θ ∈ Θ. In this case the true posterior density of

θ is π(θ|y) = π(θ)pθ(y)/
∫
Θ π(θ)pθ(y)dθ and the true posterior score function can

be expressed as

s(θ|y) = ∂ log π(θ|y)/∂θ = s(θ, y) + π−1(θ)π̇(θ), (2.1)

where π̇(θ) stands for the derivative of π(θ).
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However the forms of distribution of data and / or the prior distribution of

parameter may be unknown. In this case a general theoretical framework for

inference is desired. We now outline the theoretical framework based on Hilbert

space method. For some similar notions see Small and Mcleish (1994) and Lin

(2006).

Let a p-dimensional function space G be endowed with a family of inner prod-

ucts 〈·, ·〉θ indexed by θ ∈ Θ. According to the existing Hilbert space version

(Small and Mcleish 1994), the mean of g(θ, y) ∈ G is defined by Eθ(g(θ, y)) =

〈g(θ, y),1G〉θ, where 1G is an unitary element of G. If this mean is regarded as

a linear functional Eθ: G → R, then, the Riesz representation theorem ensures

that, under some regularity conditions, there exists a function L(y|θ) such that

Eθ(g(θ, y)) =
∫

Y
g(θ, y)L(y|θ)dy, for any g(θ, y) ∈ G and θ ∈ Θ. (2.2)

In this case we call L(y|θ) the Hilbert-based likelihood function. From this defini-

tion we can see that the Hilbert-based likelihood function depends on the defined

inner 〈·, ·〉θ but not on the form of the distribution of data and then it is still

available when the form of the distribution of data is unknown.

In this section, we suppose that the prior π(θ) of θ on Θ may be unknown

and then define another function space F : Θ → R and an inner product 〈·, ·〉0
on F . The mean of f(θ) ∈ F is defined by E0(f(θ)) = 〈f(θ),1F 〉0, where 1F is

the unitary element of F . The Riesz representation theorem ensures that, under

some regularity conditions, there exists a function γ(θ) such that

E0(f(θ)) =
∫

Θ
f(θ)γ(θ)dθ. (2.3)

We call γ(θ) the Hilbert-based prior density of θ. By inner product 〈·, ·〉0, together

with inner product 〈·, ·〉θ, we define a new inner on G as

〈g1(θ, y), g2(θ, y)〉∗ = 〈〈g1(θ, y), g2(θ, y)〉θ,1F 〉0, for any g1(θ, y), g2(θ, y) ∈ G.

Under this inner product, the mean of g(θ, y) ∈ G is defined by E0Eθ(g(θ, y)) =

〈g(θ, y),1G〉∗ and then, by Riesz representation theorem, there exists a function

L(θ, y) such that

E0Eθ(g(θ, y)) =
∫

Θ

∫

Y
g(θ, y)L(θ, y)dydθ for any g(θ, y) ∈ G and θ ∈ Θ. (2.4)

4



In this case we call L(θ, y) the Hilbert-based joint density function of θ and y.

Combining (2.2), (2.3) and (2.4) leads to

L(θ, y) = γ(θ)L(y|θ). (2.5)

Finally, we define

L(θ|y) =
γ(θ)L(y|θ)

p(y)
(2.6)

as the Hilbert-based posterior density function of θ given y, and

h(θ|y) = ∂ log L(θ|y)/∂θ (2.7)

as the Hilbert-based posterior score function of θ given y, where

p(y) =
∫

Θ
γ(θ)L(y|θ)dθ. (2.8)

The new theoretical framework is similar to the classical one. The basic char-

acteristic of the Hilbert-based method is that it depends on the defined inner

products but not on the distributions of data and parameter θ, and then is still

available when these distributions are unknown.

3. Hilbert-based Bayesian estimating equation

As aforementioned, the basis requirement for constructing a proper estimat-

ing function is the unbiasedness for zero. In Bayesian context (Ferreira 1982

and Ghosh 1993), the the unbiasedness can be defined as follows. A Bayesian

estimating function g(θ, y) is said to be conditionally unbiased, if

E(g(θ, y)|y) = 0 (3.1)

holds with probability one. And a function g(θ, y) is said to be average unbiased

if

E(g(θ, y)) = 0. (3.2)

The further requirement for constructing a proper estimating function is informa-

tion unbiased. A Bayesian estimating function g(θ, y) is said to be conditionally

information unbiased, if

E(g(θ, y)g′(θ, y)|y) = −E(ġ(θ, y)|y) (3.3)
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holds with probability one, where ġ(θ, y) is the derivative of g(θ, y) with respect

to θ. Similarly, a Bayesian estimating function g(θ, y) is said to be average

information unbiased, if

E(g(θ, y)g′(θ, y)) = −E(ġ(θ, y)). (3.4)

We need the unbiasedness to get a consistent estimator of θ. According to the

Bayesian point of view, an estimator θ̂n is said to be consistent if θ̂n−θ converges

in probability to zero as n → ∞, where the probability is calculated suing the

posterior distribution of θ given y. That is the following holds

P{|θ̂n − θ| < ε|y} > 1− η, n > N,

for some N , given any ε, η > 0. Unlike the frequentist definition of consistency,

where the parameter θ is fixed and the estimator θ̂n is a random vector, the

roles are reversed here. The estimator θ̂n is a function of the data y and then

is constant given y, while θ is regarded as random vector in the definition of

Bayesian consistency above.

Under both the unbiasedness and the information unbiasedness, furthermore,

the estimating function may share some of the properties that are typically as-

sociated with log-likelihoods. For example, in this case the common iterative

algorithms result in a convergent iterative solution. For details see for example

Small (2003). More precisely, for the existence of log-likelihood, we require that

the estimating function is conservative. A common possibility to this goal is the

matrix ġ(θ, y) is symmetric for all θ and all y. In this case the vector field is con-

servative so that there exists a real-valued function Q(θ) such that Q̇(θ) = g(θ, y).

The function Q(θ) could be a log-likelihood.

It is worth noting that, in the Hilbert space context, the expectation in (3.1)

is taken under the Hilbert-based posterior likelihood function L(θ|y) as defined

in (2.6). We then extend the definitions above to the Hilbert space context as fol-

lows. An estimating function g(θ, y) is said to be the Hilbert-based conditionally

unbiased, if

EL(g(θ, y)|y) ≡
∫

Θ
g(θ, y)L(θ|y)dθ = 0 (3.5)

holds with probability one, where the probability is based on the probability

density p(y) defined by (2.8). Similarly, a function g(θ, y) is said to be the
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Hilbert-based average unbiased if

EL(g(θ, y)) ≡
∫

Θ

∫

Y
g(θ, y)L(θ, y)dydθ = 0. (3.6)

Using the relation between the expectation with respect to the Hilbert-based joint

likelihood and that with respect to the Hilbert-based posterior likelihood, we can

see that (3.5) implies (3.6), in general.

Similar to (3.3) and (3.4), in the Hilbert space context, we say that a Bayesian

estimating function g(θ, y) is Hilbert-based conditionally information unbiased,

if

EL(g(θ, y)g′(θ, y)|y) = −EL(ġ(θ, y)|y) (3.7)

holds with probability one. And a function g(θ, y) is said to be Hilbert-based

average information unbiased, if

EL(g(θ, y)g′(θ, y)) = −EL(ġ(θ, y)). (3.8)

Note that here the expectations EL(·|y) and EL(·) are defined respectively as in

(3.5) and (3.6). Again, the Hilbert-based conditional information unbiasedness

implies in general the Hilbert-based average information unbiasedness.

4. Examples.

In what follows we always suppose that it is permitted to interchange the

differentiation with respect to θ and the integration over the parameter space

Θ or the sample space Y. To illustrate the theory above, we consider following

examples. For the sake of convenience, we assume that, in the examples below,

θ is supposed to be a real-valued parameter and belongs to (a, b), where both a

and b may be infinite.

Example 1. We here consider the validity of the Hilbert-based posterior score

function defined by (2.7). By the assumptions above and the definition (2.7) we

have

EL(h(θ|y)|y) =
∫ b

a
L̇(θ|y)dθ = lim

θ→b−
L(θ|y)− lim

θ→a+
L(θ|y),

where L̇(θ|y) stands for the derivative of L(θ|y) with respect to θ. This means that

the Hilbert-based posterior score function h(θ|y) is Hilbert-based conditionally

unbiased if and only if

lim
θ→b−

L(θ|y)− lim
θ→a+

L(θ|y) = 0 (4.1)

7



holds with probability one. Furthermore, from the definition (2.7) it follows that

EL(ḣ(θ|y)) =
∫ b

a
[L−1(θ|y)L̈(θ|y)− L−2(θ|y)L̇(θ|y)L̇′(θ|y)]L(θ|y)dθ

= lim
θ→b−

L̇(θ|y)− lim
θ→a+

L̇(θ|y)− EL(h(θ|y)h′(θ|y)).

Then

EL(h(θ|y)h′(θ|y)|y) = −EL(ḣ(θ|y)|y)

if and only if

lim
θ→b−

L̇(θ|y)− lim
θ→a+

L̇(θ|y) = 0 (4.2)

holds with probability one. Thus h(θ|y) is Hilbert-based conditionally informa-

tion unbiased if and only if the condition (4.2) holds with probability one.

From (2.6) we can see that some common distributions, such as normal distri-

bution, Poisson distribution, exponential distribution and uniform distribution,

satisfy the conditions (4.1) and (4.2). However, we can not guarantee that the

conditions (4.1) and (4.2) is always satisfied. This means that, like the classical

posterior score function s(θ|y), h(θ|y) is sometimes Hilbert-based conditionally

biased and conditionally information biased.

We now turn to the average unbiasedness. From (2.6) and (2.7) we can see

that

h(θ|y) =
∂ log L(y|θ)

∂θ
+

∂ log γ(θ)
∂θ

.

Note that
∫
Y

∂L(y|θ)
∂θ dy = 0. Consequently,

EL(h(θ|y)) =
∫ b

a

∫

Y
h(θ|y)γ(θ)L(y|θ)dydθ

=
∫ b

a
γ(θ)dθ

∫

Y

∂L(y|θ)
∂θ

dy +
∫ b

a

∂γ(θ)
∂θ

dθ

∫

Y
L(y|θ)dy

= lim
θ→b−

γ(θ)− lim
θ→a+

γ(θ).

Therefore, h(θ|y) is Hilbert-based average unbiased if and only if

lim
θ→b−

γ(θ)− lim
θ→a+

γ(θ) = 0. (4.3)

To get the Hilbert-based average information unbiasedness, we suppose

lim
θ→b−

γ̇(θ)− lim
θ→a+

γ̇(θ) = 0. (4.4)
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Denote by L̇(y|θ) the derivative of L(y|θ) with respect to θ. Note that
∫ b

a

∫

Y
ṙ(θ)L̇(y|θ)dydθ = 0

and
∫

Y

∫ b

a
r̈(θ)L(y|θ)dθdy =

∫

Y

[
ṙ(θ)L(y|θ)

∣∣∣
b

a
−

∫ b

a
ṙ(θ)L̇(y|θ)dθ

]
dy = 0.

Then

EL(ḣ(θ|y)) =
∫ b

a

∫

Y

[
L−1(y|θ)L̈(y|θ)− L−2(y|θ)L̇2(y|θ)

+r−1(θ)r̈(θ)− r−2(θ)ṙ2(θ)
]
r(θ)L(y|θ)dydθ

= −EL(h2(θ|y)).

Therefore, h(θ|y) is Hilbert-based average information unbiased if (4.4) holds.

The condition (4.3) is very common. So h(θ|y) is in general Hilbert-based

average unbiased. Comparing the condition (4.4) with (4.1) and (4.2), the con-

dition (4.4) is mild and, consequently, h(θ|y) is sometimes Hilbert-based average

information unbiased. ¤

Example 1 shows that, under some conditions, the Hilbert-based posterior

score function h(θ|y) is a proper estimating function. In general, however, it does

not lend us a hand for the Hilbert-based Bayesian inference because it depends

on the Hilbert-based posterior likelihood function L(θ|y), which is sometimes

unknown. But the following example gives us an useable Hilbert-based method

to construct a proper estimating function for general nonlinear regression models.

Example 2. Suppose that the n-dimensional random variable y = (y1, · · · , yn)′

has mean µ(θ) = (µ1(θ), · · · , µn(θ))′ and covariance matrix σ2V (θ) ≡ σ2(vij(θ)),

the estimating function space is chosen as

G =

{
g(θ, y) : g(θ, y) =

n∑

i=1

ai(θ)yi + c(θ)

}
,

where ai(θ) and c(θ) are arbitrary functions depending only on θ. The main goal

of this example is to find an optimal estimating function in G.

Assume that an inner product on G is defined by

〈yi, 1〉θ = µi(θ) and 〈yi, yj〉θ = σ2vij(θ) + µi(θ)µj(θ) for all i, j = 1, · · · , n.
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In this case the usual notion of covariance is

Covθ(yi, yj) = 〈yi − Eθ(yi), yj − Eθ(yj)〉θ.

Then we can verify by definition that the estimating function g(θ, y) ∈ G is

Hilbert-based conditionally unbiased if and only if

n∑

i=1

ai(θ)µi(θ) + c(θ) = 0.

Furthermore, define an inner product on F : Θ → R by

〈f1(θ), f2(θ)〉0 =
∫

Θ
f1(θ)f2(θ)π(θ)dθ for any f1(θ), f2(θ) ∈ F ,

where π(θ) is the prior density of θ on Θ and is supposed to be known. As a

result, we get an inner product defined by

〈yi, 1〉∗ =
∫

Θ
µi(θ)π(θ)dθ

and

〈yi, yj〉∗ =
∫

Θ
[σ2vij(θ) + µi(θ)µj(θ)]π(θ)dθ for all i, j = 1, · · · , n.

Let L2(Pθ,Π) denote the class of estimating functions g(θ, y): Θ × Y → R

such that EπEθ(g(θ, y)g(θ, y)) =
∫
Θ

∫
Y g(θ, y)g(θ, y)dPθ(y)dΠ(θ) < ∞, where

Pθ(y) and Π(θ) stand for the distribution functions of data and θ, respectively.

Then we can verify that the analytic continuation of the inner product 〈·, ·〉∗ to

L2(Pθ,Π) is

〈g1(θ, y), g2(θ, y)〉 =
∫

Θ

∫

Y
g1(θ, y)g2(θ, y)dPθ(y)dΠ(θ),

for any g1(θ, y), g2(θ, y) ∈ L2(Pθ,Π). It follows from Corollary 1 of Lin (2006)

that the projection of true posterior score function s(θ|y) onto G is

q(θ|y) = −q(θ, y) + π−1(θ)π̇(θ), (4.5)

where q(θ, y) is the quasi score function as defined by

q(θ, y) = σ−2{µ̇(θ)}′{V (θ)}−1e(y, θ),

µ̇(θ) is an n-dimensional column vector with components ∂µi(θ)/∂θ and e(y, θ) =

y − µ(θ). We call q(θ|y) the quasi posterior score function in G.
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Note that

EL(q(θ, y)) = 0 and EL(π−1(θ)π̇(θ)) = lim
θ→b−

π(θ)− lim
θ→a+

π(θ).

Then q(θ|y) is Hilbert-based average unbiased if and only if

lim
θ→b−

π(θ)− lim
θ→a+

π(θ) = 0. (4.6)

Note that q(θ, y) is Hilbert-based conditionally information unbiased. Then q(θ|y)

is Hilbert-based average information unbiased if and only if

lim
θ→b−

π̇(θ)− lim
θ→a+

π̇(θ) = 0. (4.7)

The conditions(4.6) and (4.7) are mild in general. The results above mean

that, under the condition (4.6) and (4.7), the optimal estimating function in G is

q(θ|y) defined by (4.5). Here the optimality means that q(θ|y) is the projection

of the true posterior sore function onto G and, at the same time, is Hilbert-based

average unbiased and average information unbiased. It is also worth pointing out

that the inference here depends only on the form of inner product and thus is

free of the form of distribution of data.

Particularly, consider the following linear regression model:

Eθ(y) = Xθ, V ar(y) = σ2I, (4.8)

where X is an n × p design matrix and θ ∼ N(0, k−1σ2I) for some k > 0. This

normal prior satisfies (4.6) and (4.7). By (4.5), the quasi posterior score function

can be expressed as

q(θ|y) = σ−2X ′(y −Xθ)− kσ−2θ. (4.9)

This estimating equation is Hilbert-based average unbiased and average informa-

tion unbiased. Solving the equation q(θ|y) = 0 for θ leads to a quasi posterior

estimator of θ as

θ̂(k) = (X ′X + kI)−1X ′y, (4.10)

which is just the Ridge estimator or the Bayesian estimator if the distribution of

data is normal, as suggested in literature. ¤

5. A principle for penalty-based methods
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The penalty-based method has become an important topic in both parametric

and nonparametric statistics inferences. To review its basic framework, let us look

at the following two examples.

The first example is the penalized least squares. Consider linear regression

model (4.8) and, for the sake of convenience, σ2 is supposed to be 1. It is well-

known that, when X ′X is nearly singular, the least squares method will have a

bad property of mean error. To improve the least squares, the penalized least

squares is introduced by minimizing

Q(θ) =
1
2
||y −Xθ||2 +

k

2
θ′θ,

where k > 0 is a parameter. Obviously, the objective above is designed to be a

length penalty of parameter vector θ. The corresponding estimating equation is

g(θ, y) = X ′(y −Xθ)− kθ, (5.1)

and the resulting estimator is the Ridge estimator as defined as in (4.10). Note

that X ′(y−Xθ) is Hilbert-based average unbiased and average information unbi-

ased by the results of the example 2 above. Then g(θ, y) is Hilbert-based average

unbiased if and only if ∫

Θ
θγ(θ)dθ = 0, (5.2)

where γ(θ) is the Hilbert-based prior density. A common sufficient condition for

(5.2) is that the prior density γ(θ) is a even function. Further, we can verify that

g(θ, y) is Hilbert-based average information unbiased if and only if∫

Θ
θθ′γ(θ)dθ =

1
k
I. (5.3)

A common sufficient condition for (5.3) is that the elements θ1, · · · , θp of θ are

independent with a mean E(θi) = 0 variance V ar(θi) = k−1, where the mean and

variance are taken under the Hilbert-based prior γ(θ). This means that in the

Bayesian context, the above penalized least squares is proper if (5.2) and (5.3)

hold.

The second example is the penalized likelihood for variable selection. Con-

sider a generalized linear model: {xi, yi} are collected independently with density

fi(h(x′iθ), yi), where h(·) is a known link function. Let li = log fi denote the con-

ditional log-likelihood of yi. A form of penalized likelihood is defined by

Q(θ) =
n∑

i=1

li(h(x′iθ), yi)− n

p∑

j=1

pi(θi).
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This objective is designed as a dimensionality penalty of parameter vector θ. The

corresponding estimating function is

g(θ, y) = Q̇(θ) =
n∑

i=1

xi l̇(h(x′iθ), yi)− n(ṗ1(θ1), · · · , ṗp(θp))′. (5.4)

As a true score function,
∑n

i=1 xi l̇(h(x′iθ), yi) is average unbiased and average in-

formation unbiased. Then, like the first example, here g(θ, y) is average unbiased

if and only if ∫

Θ
(ṗ1(θ1), · · · , ṗp(θp))′γ(θ)dθ = 0. (5.5)

A common sufficient condition for (5.5) is that ṗi(θi) are odd functions and the

Hilbert-based prior density γ(θ) is a even function. The widely-used penalty func-

tions for variable selection satisfy this condition. A common example, proposed

by Fan and Li (2001), is defined by satisfying

ṗi(θi) = λ

{
I(θi ≤ λ) +

(aλ− θi)+
(a− 1)λ

I(θi > λ)
}

(5.6)

for some a > 2 and θi > 0, and ṗi(−θi) = −ṗi(θi). Here the penalty parameter λ

satisfies λ → 0 as n →∞. The penalty function defined by (5.6) satisfy condition

(5.5) if γ(θ) is even function. Further, g(θ, y) is average information unbiased if

and only if
∫

Θ
p̈i(θi)γ(θ)dθ = −n

∫

Θ
ṗ2

i (θi)γ(θ)dθ,

∫

Θ
ṗi(θi)ṗj(θj)γ(θ)dθ = 0 for i 6= j. (5.7)

Note that the penalty function defined by (5.6) does not satisfy (5.7), in general.

However, when θ1, · · · , θp are independent and there exists a element, say θ1, sat-

isfying θ1 ≡ 0, the condition (5.7) holds. This means that, for variable selection,

the above penalty function is proper in the sense of that the resulting estimating

function is both average unbiased and average information unbiased.

By summarizing the framework of estimating functions given in (5.1) and

(5.4), we can see that, in general, the estimating functions in the penalty-based

methods have the following decomposable structure:

g(θ, y) = g1(θ, y) + g2(θ), (5.8)

where g1(θ, y) is Hilbert-based average unbiased and average information un-

biased, and g2(θ) is a penalty function to be specified. In this case g(θ, y) is
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Hilbert-based average unbiased or average information unbiased if and only g2(θ)

is unbiased or information unbiased, respectively.

The above discussion proposes a principle that can be used to select penalty

function for the penalty-based methods in the Bayesian context. The princi-

ple can be stated as follows: In the decomposable form (5.8), when g1(θ, y) is

Hilbert-based average unbiased and besides, is sometimes Hilbert-based average

information unbiased, the penalty function g2(θ) should be chosen to be at least

unbiased and, if possible, be information unbiased.
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