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1. Introduction

Sets of uniformly scattered points in some regular regions in the Euclidean

space Rs (s ≥ 2) have found many applications in the field of numerical integra-

tion, quasi Monte Carlo methods and statistical simulation, see, for example,

Hua and Wang (1981), Niederreiter (1992), Fang and Wang (1994), and Sloan

and Joe (1994). Some methods have been proposed to generate uniformly

scattered points in the regular regions such as the square (in R2), the cube

(in R3) or the hypercube (in Rs, s > 3), the simplex, and the unit sphere (in

the sense of the Euclidean norm) in Rs (s ≥ 2). These methods have been

used to generate empirical samples or representative points (Fang and Wang,

1994) from some multivariate probability distributions such as the spherical

and elliptical distributions (Fang, Kotz and Ng, 1990). In the literature of

number-theoretic methods or quasi Monte Carlo methods, there are different

criteria on the uniformity of a set of points in a given region, see, for example,

Fang and Wang (1994). For an arbitarily given region D ⊂ Rs (s ≥ 2), it is

often difficult to find a direct method for generating a set of uniformly scat-

tered points in D. A transformation method is usually necessary. One of the

commonly used approaches as pointed out by Fang and Wang (1994, Sections

1.5-1.6) is to generate a set of uniformly scattered points P = {z1, . . . , zn} in

the hypercube

Cs = [0, 1]s = {z = (z1, · · · , zs)
′ ∈ Rs, 0 ≤ zi ≤ 1, i = 1, . . . , s} (1)

and then use the inverse transformation method (Fang and Wang, 1994, p.45)

to project the set of points in P = {z1, . . . , zn} ⊂ Cs into the given region

D ⊂ Rs. The uniformity of the set of points in P ⊂ Cs is measured by

discrepancy defined by (Fang and Wang, 1994, p. 15)

D(n,P) = sup
γ∈Cs

∣∣∣∣∣
N(γ,P)

n
− v([0, γ])

∣∣∣∣∣ , (2)

where v([0,γ]) denotes the volume of the rectangle [0,γ], and N(γ,P) denotes

the number of points in P satisfying zi ≤ γ (“≤ ” means componentwise,
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i = 1, . . . , n). After projecting the points in P ⊂ Cs into the region D by the

inverse transformation method, the uniformity of the projected set of points

PF ⊂ D can be measured by the quasi F -discrepany as defined as follows.

Definition 1. (Fang and Wang, 1994, p. 42) Let x be an s × 1 random

vector with c.d.f. (cumulative distribution function) F (x). x has a stochastic

representation x = h(z), where z ∼ U(Ct) (the uniform distribution on the

hypercube Ct as defined by (1) with s replaced by t, t ≤ s). Let {ck : k =

1, . . . , n} be a set of points that are uniformly scattered in Ct with discrepancy

d in the sense of (2). Then the set of points PF = {h(ck) : k = 1, . . . , n} is

said to a quasi F -discrepancy d with respect to F (x).

Definition 2. (Fang and Wang, 1994, p. 15) Let F (x) be a c.d.f. in Rs and

P = {x1, . . . , xn} a set of points on Rs. The empirical distribution function

on P is defined by

Fn(x) =
1

n

n∑

i=1

I{xi ≤ x},

where I(·) stands for the indicator function on a set and “xi ≤ x” means

componentwise. Then

DF (n,P) = sup
x∈Rs

|Fn(x)− F (x)| (3)

is called the F -discrepancy of P with respect to F (x).

Fang and Wang (1994, pp. 42-44) provides a detailed discussion on using

the quasi F -discrepany as a reasonable measure of uniformity on the projected

set of points PF ⊂ D in Definition 1. When the random vector z = (z1, . . . , zt)
′

in the stochastic representation x = h(z) in Definition 1 has independent

components z1, . . . , zt with a c.d.f. Hi(zi) for zi (i = 1, . . . , t), Fang and Wang

(1994, pp. 42-44) proves that the quasi F -discrepancy d with respect to c.d.f.

F (x) is actually the regular F -discrepancy (3) with respect to the c.d.f. of z

H(z) =
∏t

i=1 Hi(zi). It turns out that

d = sup
r∈Ct

∣∣∣∣∣
N(PF , Gr)

n
−H(r)

∣∣∣∣∣ , (4)
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where r = (r1, . . . , rt)
′ ∈ Ct, H(r) =

∏t
i=1 Hi(ri), PF is the set defined in

Definition 1, N(PF , Gr) stands for the number of points in PF that fall in the

set Gr defined by

Gr = {x : x = h(z), z ≤ r}. (5)

Equation (4) is exactly the regular F -discrepancy of PF with respect to the

c.d.f. H(z) of z. Therefore, in order to obtain a set of uniformly scattered

points PF ⊂ D in a given region D, three steps are essential:

Step (1). Find a set of uniformly scattered points P = {c1, . . . , cn} ⊂ Cs

with the smallest discrepancy d in the sense of (2);

Step (2). Find a suitable stochastic representation x = h(z) so that z =

(z1, . . . , zs)
′ has independent components z1, . . . , zt with some c.d.f. Hi(zi)

for zi (i = 1, . . . , s);

Step (3). Perform the inverse transformations

xk = h
(
H−1

1 (ck1), . . . , H
−1
s (cks)

)
, k = 1, . . . , n, (6)

where ck = (ck1, . . . , cks) ∈ P = {c1, . . . , cn} ⊂ Cs in step (1). Then

the set of points PF = {xk given by (6) : k = 1, . . . , n} ⊂ D has the

smallest quasi F -discrepancy (with respect to the c.d.f. of x in step (2))

d that is equal to (4), or PF has the smallest F -discrepancy with respect

to the c.d.f. H(z) =
∏s

i=1 Hi(zi) of z in step (2).

Step (1) is realized by using the set of good lattice points (called the glp set by

Fang and Wang (1994, p. 21) in Cs as defined below. Step (2) will be realized

by using the uniform distribution on the given region D.

Definition 3. (Fang and Wang, 1994, p. 21) Let (n; h1, . . . , hs) be a vector

with integer components satisfying 1 ≤ hi ≤ n, hi 6= hj (i 6= j), s < n, and

the greatest common divisors (n, hi) = 1, i = 1, . . . , s. Let




qki = khi (mod n),

xki = (2qki − 1)/2n,
k = 1, . . . , n; i = 1, . . . , s, (7)
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where 1 ≤ qki < n. Then the set Pn = {xk = (xk1, . . . , xks)
′, k = 1, . . . , n}

is called the lattice point set with the generating vector (n; h1, . . . , hs). If the

set Pn has the smallest discrepancy in the sense of (2) among all possible

generating vectors, then the set Pn is called a glp set.

It can be verified that the points xk = (xk1, . . . , xks)
′ given by (7) can be

calculated by

xki =

{
2khi − 1

2n

}
, k = 1, . . . , n; i = 1, . . . , s, (8)

where {x} stands for the fractional part of a real number x. Fang and Wang

(1994, p. 286, Appendix A) tabulates the generating vectors for obtaining the

glp sets for many choices of n and the dimension 2 ≤ s ≤ 18. In order to realize

the above step (2), we need to construct the uniform distribution in the given

region D. In this paper we consider the surface of the Lp-norm unit sphere

as the region D and construct the inverse transformation from the uniform

distribution on the Lp-norm unit sphere.

Definition 4. Let

Sp
s =

{
x = (x1, · · · , xs)

′ ∈ Rs, ‖x‖p = (|x1|p+· · ·+|xs|p)1/p = 1, p > 0, s ≥ 2
}
.

(9)

Sp
s (s ≥ 2 is a positive integer) is called the surface of the Lp-norm unit sphere

or simply called the Lp-norm unit sphere.

Definition 5. (Song and Gupta, 1997) A random vector us = (U1, · · · , Us)
′

is said to have an Lp-norm uniform distribution (p > 0), denoted by us ∼
U(s, p), if

∑s
i=1 |Ui|p = 1 and the joint p.d.f. (probability density function) of

U1, . . . , Us−1 is given by

g(u1, . . . , us−1) =
ps−1Γ(s/p)

2s−1Γs(1/p)

(
1−

s−1∑

i=1

|ui|p
)(1−p)/p

,

− 1 < ui < 1, i = 1, . . . , s− 1,
∑s−1

i=1 |ui|p < 1.

(10)

The Lp-norm uniform distribution is a generalization of the uniform dis-

tribution on the usual unit sphere S2
s (p = 2), see Fang, Kotz and Ng (1990,
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Chapter 3). However, some algorithms, such as the TFWW algorithm given by

Tashiro (1977), and Fang and Wang (1994, pp. 167-170), which has been used

to generate uniformly scattered points on S2
s , cannot be directly generalized

to generating uniformly scattered points on Sp
s for any p > 0 (p 6= 2). We will

present the theoretical derivation for the inverse transformation in Section 2.

Some applications of the proposed method are illustrated in Section 3.

2. Theoretical Derivation

The following two theorems provide the basis for our inverse transformation

method for generating uniformly scattered points in the Lp-norm unit sphere

Sp
s defined by (9).

Theorem 1. Let us = (U1, · · · , Us)
′ ∼ U(s, p). Define the random variables

Bi (i = 1, . . . , s− 1) by the following conditional distributions:

B1
d
= |U1|p,

B2
d
= {(1− |U1|p)−1|U2|p

∣∣∣U1},
...

Bm
d
= {(1−∑m−1

i=1 |Ui|p)−1|Um|p
∣∣∣(U1, · · · , Um−1)},

(11)

where m = 2, . . . , s− 1, the sign “
d
=” means that the two sides of the equality

have the same probability distribution, and {·
∣∣∣·} stands for the conditional

distribution given the part on the right hand side of “
∣∣∣”. Then B1, . . . , Bs−1

are mutually independent and Bk ∼ Beta[1/p, (s−k)/p] (the beta distribution,

k = 1, . . . , s− 1).

Proof. Define the following conditional random variables

T1
d
= U1,

T2
d
= {U2

∣∣∣U1}
...

Ts−1
d
= {Us−1

∣∣∣U1, . . . , Us−2}.

(12)

Because the random vector (U1, . . . , Us−1)
′ has a joint p.d.f. given by (10),

according to the conditional probability integral transformation (Rosenblatt,
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1952), the random variables T1, . . . , Ts−1 are mutually independent. Note that

B1 is a function of T1 and uniquely determined by T1

B2 is a function of T2 and uniquely determined by T2

...

Bs−1 is a function of Ts−1 and uniquely determined by Ts−1.

So B1, . . . , Bs−1 are also mutually independent.

From Theorem 2.1 of Song and Gupta (1997), the random variables |Ui|p

(i = 1, . . . , s) has a beta distribution |Ui|p ∼ Beta[1/p, (s − 1)/p], and the

marginal density of (U1, . . . , Um) (m = 2, . . . , s− 1) is given by

h(u1, . . . , um) =
pmΓ(s/p)

2mΓm(1/p)Γ[(s−m)/p]

(
1−

m∑

i=1

|ui|p
)(s−m)/p−1

,

− 1 < ui < 1, i = 1, . . . ,m,
∑m

i=1 |ui|p < 1.

(13)

Therefore B1
d
= |U1|p ∼ Beta[1/p, (s− 1)/p], and the conditional density func-

tion of (Um|U1, . . . , Um−1) (m = 2, . . . , s− 1) is given by

f(um|u1, . . . , um−1)

=
pΓ[(s−m + 1)/p]

2Γ(1/p)Γ[(s−m)/p]
·
(

1−
m−1∑

i=1

|ui|p
)−1/p (

1− |um|p
1−∑m−1

i=1 |ui|p
)(s−m)/p−1

,

for |um| <
(

1−
m−1∑

i=1

|ui|p
)1/p

.

(14)

Then from (14), we can obtain the density function of the random variable

Y = Bm defined in (11) as

b(y) =
Γ[(s−m + 1)/p]

Γ(1/p)Γ[(s−m)/p]
y

1
p
−1(1− y)

s−m
p
−1, |y| < 1, (15)

which is the density function of the beta distribution Bm ∼ Beta[1/p, (s−m)/p]

(m = 2, . . . , s− 1). This completes the proof.

Theorem 2. Assume that u = (U1, · · · , Us)
′ ∼ U(s, p). Let V1, . . . , Vs be

i.i.d. and Vi ∼ U(0, 1) (the uniform distribution in (0, 1), 1 ≤ i ≤ s),

and B1, . . . , Bs−1 be independent such that Bk ∼ Beta[1/p, (s − k)/p] (k =
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1, . . . , s− 1). Denote by Fk(·) the c.d.f. of Bk and F−1
k (·) the inverse function

of Fk(·). Then the random vector u = (U1, · · · , Us)
′ ∼ U(s, p) has a stochastic

representation

u
d
= x = (X1, · · · , Xs)

′, (16)

where the components X1, . . . , Xs are given by

X1 = sign(2V1 − 1)
{
F−1

1 [(2V1 − 1)sign(2V1 − 1)]
}1/p

,

X2 = sign(2V2 − 1)
{
(1− |X1|p)F−1

2 [(2V2 − 1)sign(2V2 − 1)]
}1/p

,

...

Xs−1 = sign(2Vs−1 − 1)
{
(1−∑s−2

i=1 |Xi|p)F−1
s−1[(2Vs−1 − 1)sign(2Vs−1 − 1)]

}1/p
,

Xs = sign(2Vs − 1)
(
1−∑s−1

i=1 |Xi|p
)1/p

,

(17)

here sign(·) stands for the sign function.

Proof. From the assumption that V1, . . . , Vs are i.i.d. and Vi ∼ U(0, 1), we

can verify that the random variables {(2Vk−1)sign(2Vk−1)}s−1
k=1 are i.i.d. with

a uniform distribution U(0, 1). Then

Bk = F−1
k

[
(2Vk − 1)sign(2Vk − 1)

]
∼ Beta

(1

p
,
s− k

p

)
(18)

for k = 1, . . . , s − 1. With probability 1, the equations given by (17) can be

written as

X1 = ±B
1/p
1 ,

X2 = ±
[
(1− |X1|p)B2

]1/p
,

...

Xs−1 = ±
[
(1−

s−2∑

i=1

|Xi|p)Bs−1

]1/p
,

Xs = ±
(
1−

s−1∑

i=1

|Xi|p
)1/p

,

(19)

where B1, . . . , Bs−1 given by (18) are independent and Bk ∼ Beta[1/p, (s−k)/p]

(k = 1, . . . , s− 1).
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Consider the transformation (X1, · · · , Xs−1) → (B1, · · · , Bs−1) given by

(19). In each of the 2s−1 quadrants of Rs−1, the transformation given by (19) is

uniquely determined. The first-order differential form for the transformation

(19) can be calculated as follows:

dx1 · · · dxs−1 = ±p1−s
(
1−|x1|p

)1/p · · ·
(
1−

s−2∑

i=1

|xi|p
)1/p

(b1 · · · bs−1)
1/p−1db1 · · · dbs−1.

(20)

Then the Jacobian

J
(
(X1, · · · , Xs−1) → (B1, · · · , Bs−1)

)

= 2s−1p1−s
(
1− |x1|p

)1/p · · ·
(
1−

s−2∑

i=1

|xi|p
)1/p

(b1 · · · bs−1)
1/p−1.

(21)

The joint p.d.f. of (B1, · · · , Bs−1) given by (18) is given by

1

B(1
p
, s−1

p
)
b

1
p
−1

1 (1− b1)
s−1

p
−1 · 1

B(1
p
, s−2

p
)
b

1
p
−1

2 (1− b2)
s−2

p
−1 · · ·

· 1

B(1
p
, 1

p
)
b

1
p
−1

s−1 (1− bs−1)
1
p
−1

=
Γ(s/p)

Γs(1/p)
(b1 · · · bs−1)

1
p
−1(1− b1)

s−1
p
−1(1− b2)

s−2
p
−1 · · · (1− bs−1)

1
p
−1,

(22)

where 0 < bi < 1, i = 1, . . . , s− 1. From (18), we obtain

1− b1 = 1− |x1|p,

1− b2 = (1− |x1|p)−1(1− |x1|p − |x2|p),
...

1− bs−1 =
(
1−

s−2∑

i=1

|xi|p
)−1(

1−
s−1∑

i=1

|xi|p
)
.

(23)

By (21)-(23), we obtain the joint p.d.f. of (X1, · · · , Xs−1):

ps−1Γ(s/p)

2s−1Γs(1/p)
(1− |x1|p)

s−1
p
−1[(1− |x1|p)−1(1− |x1|p − |x2|p)]

s−2
p
−1·

· · · ·
[
(1−

s−2∑

i=1

|xi|p)−1(1−
s−1∑

i=1

|xi|p)
] 1

p
−1

=
ps−1Γ(s/p)

2s−1Γs(1/p)

(
1−

s−1∑

i=1

|xi|p
)(1−p)/p

,

(24)
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where −1 < xi < 1, i = 1, . . . , s − 1,
∑s−1

i=1 |xi|p < 1. Thus, the random

vector x = (X1, · · · , Xs)
′ with the components X1, . . . , Xs given by (19) has a

uniform distribution U(s, p), i.e., u = (U1, · · · , Us)
′ d
= x = (X1, · · · , Xs)

′. This

completes the proof.

The stochastic representation given by (16) and (17) for x ∼ U(s, p) deter-

mines a transformation from Cs (defined by (1)) to Sp
s (defined by (9)). Let

Pz = {z1, . . . , zn} ⊂ Cs be a glp set with discrepancy d in the sense of (2).

Let us obtain the set of points Px = {x1, . . . , xn} ⊂ Sp
s in the following way:

denote by xi = (xi1, . . . , xis)
′ and zi = (zi1, . . . , zis)

′ (i = 1, . . . , n), let

xi1 = sign(2zi1 − 1)
{
F−1

1 [(2zi1 − 1)sign(2zi1 − 1)]
}1/p

,

xi2 = sign(2zi2 − 1)
{
(1− |xi1|p)F−1

2 [(2zi2 − 1)sign(2zi2 − 1)]
}1/p

,

...

xi,s−1 = sign(2zi,s−1 − 1)





(
1−

s−2∑

j=1

|xij|p
)
F−1

s−1[(2zi,s−1 − 1)sign(2zi,s−1 − 1)]





1/p

,

xis =





sign(2zis − 1)
(
1−

s−1∑

j=1

|xij|p
)1/p

, if zis 6= 0.5,

(
1−

s−1∑

j=1

|xij|p
)1/p

, if zis = 0.5.

(25)

Based on the discussion in steps (1)-(3) in the introduction, the set of points

Px = {x1, . . . , xn} ⊂ Sp
s has a quasi F -discrepancy d with respect to the

c.d.f. of x ∼ U(s, p), or Px has an F -discrepancy d with respect to the c.d.f.

H(v) =
∏s

i=1 vi of the random vector V = (V1, . . . , Vs)
′ with independent

components Vi ∼ U(0, 1) (v = (v1, . . . , vs) ∈ Cs). According to equation (4),

d is equal to:

d = sup
r∈Cs

∣∣∣∣∣
N(Px, Gr)

n
−H(r)

∣∣∣∣∣ , (26)

where r = (r1, . . . , rs)
′ ∈ Cs, H(r) =

∏s
i=1 ri, N(Px, Gr) stands for number of

points in Px that fall in the set Gr defined by

Gr = {x : x = h(v), v ≤ r}. (27)
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where h(v) = (h1(v), . . . , hs(v)) (v = (v1, . . . , vs) ∈ Cs) with

h1(v) = sign(2v1 − 1)
{
F−1

1 [(2v1 − 1)sign(2v1 − 1)]
}1/p

,

h2(v) = sign(2v2 − 1)·
{[

1− F−1
1 ((2v1 − 1)sign(2v1 − 1))

]
F−1

2 ((2v2 − 1)sign(2v2 − 1))
}1/p

,

hm(v) = sign(2vm − 1)·
{[

1−
m−1∑

i=1

F−1
i ((2vi − 1)sign(2vi − 1))

]
F−1

m ((2vm − 1)sign(2vm − 1))

}1/p

,

m = 2, . . . , s− 1,

hs(v) = sign(2vs − 1)

(
1−

s−1∑

i=1

|hi(v)|p
)1/p

.

(28)

Therefore, if we choose the set of points Pz = {z1, . . . , zn} in (25) as a glp set

in Cs with the smallest discrepancy d in the sense of (2), then the set of points

Px = {x1, . . . , xn} determined by (25) has the smallest quasi F -discrepancy

d with respect to the c.d.f. of the uniform distribution x ∼ U(s, p) on Sp
s ,

or Px has the smallest F -discrepancy d with respect to the uniform c.d.f.

H(r) =
∏s

i=1 ri with independent components, where r = (r1, . . . , rs)
′ ∈ Cs.

The algorithm given by (25) is easily implemented in practice. The com-

putation of the inverse function F−1
k (·) (k = 1, . . . , s−1) (i.e., the inverse beta

function) in (25) is provided by many statistical packages such as SAS and

MATLAB. Figure 1 illustrates the projection of some glp sets in C2 onto Sp
2

by the algorithm given by (25) for the 2-dimensional case and p = 1/2, 1, 2

and 3, respectively, where the generating vectors for the glp sets are given in

Appendix A of Fang and Wang (1994). From Figure 1, it can be seen that the

projected points of the glp sets in C2 are nearly uniformly scattered on Sp
2 for

each chosen p.

(1) s = 2, n = 8, p = 1/2, 1, 2, 3, (h1, h2) = (1, 5), the glp set in C2 is
(

k−0.5
n

,
{

h2k−0.5
n

})
for n = 8 and 1 ≤ k ≤ n. Here {·} has the same

meaning as in (8);
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(2) s = 2, n = 21, p = 1/2, 1, 2, 3, (h1, h2) = (1, 13), the glp set in C2 is
(

k−0.5
n

,
{

h2k−0.5
n

})
for n = 21 and 1 ≤ k ≤ n;

(3) s = 2, n = 55, p = 1/2, 1, 2, 3, (h1, h2) = (1, 34), the glp set in C2 is
(

k−0.5
n

,
{

h2k−0.5
n

})
for n = 55 and 1 ≤ k ≤ n;

(4) s = 2, n = 144, p = 1/2, 1, 2, 3, (h1, h2) = (1, 89), the glp set in C2 is
(

k−0.5
n

,
{

h2k−0.5
n

})
for n = 144 and 1 ≤ k ≤ n.

Put Figure 1 around here

3. Applications

Stochastic representation of a random variable (or vector) plays an impor-

tant role in statistical simulation. Johnson (1987) comprehensively studied

statistical simulation by the method of stochastic representation. Fang and

Wang (1994, Chapter 4) used stochastic representation to generate the rep-

resentative points of a multivariate probability distribution. The stochastic

representation given by (16) and (17) provides a way to generate the represen-

tative points or empirical samples from the uniform distribution U(s, p). Based

on (16) and (17) and the properties of the Lp-norm spherical distributions, we

can generate empirical samples from a given Lp-norm spherical distribution

conveniently. The following definition was given by Gupta and Song (1997).

Definition 6. An s-variate random vector x is said to have an Lp-norm

spherical distribution (denoted by x ∼ SP (s, p)) if

x
d
= Ru, (29)

where u ∼ U(s, p), R is a univariate nonnegative random variable that is

independent of u.

By Definition 6, we can generate a random sample from a given Lp-norm

spherical distribution as follows: generate a sample ui = (Ui1, . . . , Uis)
′ ∼

U(s, p) by using a uniform sample zi = (zi1, . . . , zis)
′ ∈ Cs with zij (i =

12



1, . . . , n; j = 1, . . . , s) being i.i.d. U(0, 1) and the algorithm given by (25),

then generate a random sample ri (i = 1, . . . , n) such that ri
d
= R and ri is

independent of u, where R in (29) is a given nonnegative random variable

that is independent of u. Then {xi = (Xi1, . . . , Xis)
′ = (riUi1, . . . , riUis)

′ :

i = 1, . . . , n} is a random sample satisfying (29).

Example 1. Application in generating empirical samples from the class

of p-generalized normal distributions. The p-generalized normal distribution

was given by Goodman and Kotz (1973). Denote it by Ns(0, Is, p). x =

(X1, . . . , Xs)
′ ∼ Ns(0, Is, p) has a p.d.f.

f(x1, . . . , xs) =
psrs/p

2sΓs(1/p)
· exp

{
− r

s∑

i=1

|xi|p
}
, (x1, · · · , xs)

′ ∈ Rs,

where r > 0 is a parameter. It is easy to verify that x ∼ Ns(0, Is, p)
d
= Ru,

u ∼ U(s, p), and R has a p.d.f. (Lemma 2.1 of Gupta and Song (1997))

g(t) =
prs/p

Γ(s/p)
· ts−1 exp(−rtp), t > 0.

Then the random variable Y = rRp has a gamma distribution with a p.d.f.

g(y) =
1

Γ(s/p)
ys/p−1 exp(−y), y > 0. (30)

An i.i.d. sample {Y1, . . . , Yn} can be easily generated from the gamma distri-

bution (31). Then an i.i.d. sample {R1, . . . , Rn} can be obtained by

Ri = (Yi/r)
1/p, i = 1, . . . , n. (31)

A random sample {x1, . . . , xn} from Ns(0, Is, p) is obtained by

xi = Riui, i = 1, . . . , n. (32)

where {ui : i = 1, . . . , n} is a random sample from U(s, p), which is obtained

through (25) by generating a uniform sample zi = (zi1, . . . , zis)
′ ∈ Cs with zij

(j = 1, . . . , s) i.i.d. U(0, 1).

13



Example 2. Application in generating representative points (simply called

rep-points) for the class of Lp-norm spherical distributions. We need the fol-

lowing definition.

Definition 7. (Fang and Wang, 1994, p. 155) Let F (x) = F (x1, . . . , xs)

be a given s-dimensional continuous c.d.f. and P = {x1, . . . , xn} a set of

points on Rs. The F -discrepancy DF (n,P) defined by (3) is a measure of the

representation of P to F (x). If we can find a set of points P∗ = {x∗1, . . . , x∗n}
such that

DF (n,P∗) = min
P

DF (n,P), (33)

where P runs over all sets of n points in Rs, then P∗ is called a set of cdf-rep-

points of F (x).

It can be seen that the empirical distribution function based on the set of

cdf-rep-points of F (x) is the best approximation of F (x) in the sense of (33).

For the one-dimensional case s = 1, it is easy to find the set of cdf-rep-points

of any given continuous c.d.f. as stated in Theorem 4.1 of Fang and Wang

(1994, p. 156). As pointed out by Fang and Wang (1994, p. 156), for the

high-dimensional case s > 1, it is usually difficult to find the set of cdf-rep-

points P∗ of any given c.d.f. F (x). We have to turn to looking for a sequence

of rep-points Pn = {x1, . . . , xn} of F (x) such that

DF (n,Pn) = o(n−
1
2 ), (34)

where o(n−
1
2 ) stands for a term satisfying limn→∞ n

1
2 o(n−

1
2 ) = 0. Fang and

Wang (1994, pp. 158-159) gave the NTSR algorithm for generating a sequence

of sets of rep-points of a c.d.f. F (x) (x ∈ Rs, s ≥ 2) with the associated

random vector x that has the stochastic representation of the type

x
d
= Ry, (35)

where x ∼ F (x), R > 0 is a positive random variable, and y ∼ U(D) is the

uniform distribution on an (s− 1)-dimensional bounded domain D ⊂ Rs. The

NTSR algorithm consists of the following steps:

14



Step 1. Generate a uniformly scattered set of points Pc = {ck = (ck1, . . . , cks)
′ :

k = 1, . . . , n} in Cs defined by (1);

Step 2. Denote the c.d.f. of R by FR(r) and let F−1
R be its inverse function.

Compute rk = F−1
R (cks), k = 1, . . . , n;

Step 3. Generate a uniformly scattered set of points Py = {yk : k = 1, . . . , n}
on the bounded domain D ⊂ Rs with the first (s− 1)-components of the

point ck = (ck1, . . . , cks)
′ in step 1 (k = 1, . . . , n);

Step 4. Then the set of points Px = {xk = rkyk : k = 1, . . . , n} is a set of

rep-points of F (x).

By the above NTSR algorithm, to generate a set of rep-points Px =

{x1, . . . , xn} for an Lp-norm spherical distribution defined by (29), we can

carry out step 1 by choosing the Pc = {ck = (ck1, . . . , cks)
′ : k = 1, . . . , n} ⊂

Cs in step 1 as the glp set defined by (7). That is, let (n; h1, . . . , hs) be a

generating vector for given n and

cki =

{
2khi − 1

2n

}
, k = 1, . . . , n. i = 1, . . . , s, (36)

In step 2, the c.d.f. FR(r) of R is known in the Lp-norm spherical distribution

defined by (29). So the above step 2 can be carried out. In step 3, the bounded

domain D ⊂ Rs is the Lp-norm unit sphere Sp
s defined by (9). A uniformly

scattered set Py = Pu = {uk = (uk1, . . . , uks)
′ : k = 1, . . . , n} on Sp

s in

the above step 3 is realized by the algorithm defined by (25). That is, the
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components of uk = (uk1, . . . , uks)
′ ∈ Pu ⊂ Sp

s are given by

uk1 = sign(2ck1 − 1)
{
F−1

1 [(2ck1 − 1)sign(2ck1 − 1)]
}1/p

,

uk2 = sign(2ck2 − 1)
{
(1− |uk1|p)F−1

2 [(2ck2 − 1)sign(2ck2 − 1)]
}1/p

,

...

uk,s−1 = sign(2ck,s−1 − 1)





(
1−

s−2∑

j=1

|ukj|p
)
F−1

s−1[(2ck,s−1 − 1)sign(2ck,s−1 − 1)]





1/p

,

uks =





sign(2cks − 1)
(
1−

s−1∑

j=1

|ukj|p
)1/p

, if cks 6= 0.5,

(
1−

s−1∑

j=1

|ukj|p
)1/p

, if cks = 0.5,

(37)

where {cki : i = 1, . . . , s; k = 1, . . . , n} are the components given by (36).

The inverse functions F−1
l (·) (l = 1, . . . , s− 1) are the same as in (25). Then

the set of points Px = {xk = rkuk : k = 1, . . . , n} from the above step 4 is a

set of rep-points of the Lp-norm spherical distribution defined by (29).

Example 3. Application in optimization problems. Let f(x) (x = (x1, . . . , xs)
′

∈ Rs) be a continuous function. Suppose that we want to find the maximal

point x∗ ∈ Sp
s such that

M = f(x∗) = max
x∈Sp

s

f(x). (38)

This is an optimization problem of f(x) = f(x1, . . . , xs) subject to the restric-

tion

|x1|p + · · ·+ |xs|p = 1, p > 0.

Assume that {Pni
: i = 1, . . . , } (n1 < n2 < · · ·, ni → ∞ as i → ∞) is

a sequence of sets such that the points in Pni
are obtained by (37). So the

points in Pni
can be considered as uniformly scattered on Sp

s . From Example

1.2 of Fang and Wang (1994, p. 19) or Hua and Wang (1981), the discrepancy

d of Pc = {ck = (ck1, . . . , cks)
′ : k = 1, . . . , n} ⊂ Cs with ck given by (36)

satisfies

c1(s)n
−1/s ≤ d ≤ c2(s)n

−1/s,

16



where c1(s) and c2(s) are two constants determined only by s. Let dni
be

the discrepancy (in the sense of (2)) of Pc(ni) = {ck = (ck1, . . . , cks)
′ : k =

1, . . . , ni}. According to Theorem 1.6 of Fang and Wang (1994, pp. 44-45),

dni
is the quasi F -discrepany of Pni

with respect to the c.d.f. of us ∼ U(s, p),

or the F -discrepany of Pni
with respect to the c.d.f. H(z1, . . . , zs) =

∏s
i=1 zi

(0 < zi < 1, i = 1, . . . , s) by the discussion following equations (3)-(5). Then

we have

c1(s)n
−1/s
i ≤ dni

≤ c2(s)n
−1/s
i .

So limni→∞ dni
= limi→∞ dni

= 0. We write dni
= o(1). Suppose that x∗ni

∈ Pni

be a point satisfying

Mni
= f(x∗ni

) = max{f(x
(ni)
k ) : x

(ni)
k ∈ Pni

}. (39)

By Theorem 3.1 of Fang and Wang (1994, p. 107), we have

Mni
→ M, i →∞. (40)

Equation (40) implies that the optimization problem (38) can be approximated

by way of (39) through generating a suitable sequence of sets Pni
such that

the points in Pni
are uniformly scattered on Sp

s .

Furhermore, if the function f(x) = f(x1, . . . , xs) is differentiable such that

5f = ( ∂f
∂x1

, · · · , ∂f
∂xs

) is continuous and

‖ 5 f‖2 =




s∑

i=1

(
∂f

∂xi

)2



1/2

< C, (41)

where C is a constant, a more accurate approximation of the Mni
given by (40)

to the solution M defined by (38) is possible based on the following definition.

Definition 8. (Fang and Wang, 1994, p. 34) Let D be a closed and bounded

domain and P = {xk : k = 1, . . . , n} ⊂ D a set of points on D. The term

DP (P , D) = max
x∈D

min
1≤k≤n

d(x,xk), (42)
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is called the dispersion of P on D, where d(x,xk) denotes the Euclidean dis-

tance between the two points x and xk. By the above suitably chosen sequence

of sets Pni
and using Theorem 3.2 of Fang and Wang (1994, p. 108), we have

Mni
≤ M ≤ Mni

+ CDP (Pni
, Sp

s ), (43)

where C is the constant given in (41) and DP (Pni
, Sp

s ) is the dispersion of

Pni
on Sp

s . When the points in Pni
are fairly uniformly scattered on Sp

s , one

can expect the dispersion DP (Pni
, Sp

s ) to be very small for large ni. But

unfortunately, obtaining the exact value or the accurate upper bound of the

dispersion DP (Pni
, Sp

s ) can be extremely difficult, see Fang and Wang (1994,

pp. 34-36) for more discussion on dispersion.

Examples 1-3 above provide a few applications of the proposed method

in this paper. By following the same discussions in Chapters 2, 5 and 6 of

Fang and Wang (1994), it is possible to find more applications of the proposed

method in this paper. We only present the above three examples as illus-

trations for applying the sets of uniformly scattered points on the Lp-norm

unit sphere to various problems. The method in this paper sheds some ad-

ditional light to the application of number-theoretic methods in statistics as

comprehensively studied by Fang and Wang (1994).
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Figure 1: Illustration of projecting some glp sets in C2 onto the Lp-norm unit

sphere Sp
2 by the algorithm given by (25) for some selected values of p.
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