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1. Questions and previous methods

Professor Hams-Bert Rademacher had given

two beautiful lectures on geodesics. So I only

give a few of related notions.

A C∞ Finsler metric on a C∞ manifold Mn is

a C0 function F : TM → R with properties:

(i) C∞ in TM \ {0},
(ii) F (v) > 0 ∀v ∈ TM \ {0},
(iii) F (tv) = tF (v) ∀t > 0 and v ∈ TM ,

(iv) F2 is fiberwise strongly convex, i.e., for

any (x, y) ∈ TM \ 0TM the symmetric bilinear

form gF (x, y) : TxM × TxM → R given by

(u, v) 7→
1

2

∂2

∂s∂t

[
F2(x, y + su+ tv)

] ∣∣∣∣
s=t=0

is positive definite. Call gF the fundamental

tensor of (M,F ).



Geodesics on (M,F ) can be characterized as

critical points of the energy functional on a

Hilbert manifold:

W1,2([0,1],M) 3 γ 7→ E(γ) =
∫ 1

0
F2(γ(t), γ̇(t))dt.

Since our theory is of local nature we restrict

to a compact Finsler manifold (M,F ) below.

Let I = [0,1] and the Hilbert manifold W1,2(I,M)

be equipped with the Riemannian structure

induced by a Riemann metric g on M :

〈X,Y 〉1 =
∫ 1

0
g(x(t))[X(t), Y (t)]dt

+
∫ 1

0
g(x(t))[∇gtX(t),∇gtY (t)]dt.

For a C∞ closed submanifold Q of M ×M we



have a Riemannian-Hilbert submanifold

ΛQ(M) := {x ∈W1,2(I,M) | (x(0), x(1)) ∈ Q}.

Theorem 1 (I) On ΛQ(M) the functional E is

C2−0, and satisfies the (PS) condition.

(II) A curve γ ∈ ΛQ(M) is a (non constant)

critical point of E iff it is a constant (nonzero)

speed geodesic on (M,F ) with (BC):

gF (γ(0), γ̇(0))[V, γ̇(0)] = gF (γ(1), γ̇(1))[W, γ̇(1)]

for any (V,W ) ∈ T(γ(0),γ(1))Q.

[Caponio-Javaloyes-Masiello, Math.Ann. 2010],

[Mercuri, Math.Z,156(1977),231-245] for Q =

4M , [Kozma-Kristaly-Varga, Contributions to

Algebraic Geometry, 45(2004),47-59] for Q =

M1 ×M2 with submanifolds Mi of M , i = 1,2.



Note: Abbondandolo and Schwarz in

[Advanced Nonlinear Studies, 9(2009),597-623]

showed: the above energy functional E is

twice differentiable at a (nonconstant) crit-

ical point γ iff F2 is Riemannian along γ.

In order to study existence and multiplicity

of critical points of E with Morse theory one

need:

• to compute critical groups

C∗(E, γ0;K) = H∗(ΛQ(γ0) ∪ {γ0},ΛQ(γ0);K)

at a critical point γ0 (where ΛQ(γ0) = {E <

E(γ0)}), or

C∗(E, S1 · γ0;K) = H∗(Λ(γ0) ∪ S1 · γ0,Λ(γ0);K)

at a critical orbit S1 · γ0 if Q = 4M ,



• to prove the induced homomorphism

(ϕm)∗ : H∗(Λ(γ0) ∪ {S1 · γ0},Λ(γ0);K)

→ H∗(Λ(γm0 ) ∪ {S1 · γm0 },Λ(γm0 );K)

are isomorphisms under suitable conditions, where

the m-th iterate

ϕm : ΛM → ΛM,γ → γm (1)

by γm(t) = γ(mt) ∀t ∈ R.

On Riemannian manifolds the energy functional

E are smooth and these can be completed with

the Gromoll-Meyer splitting lemma for C2-

functionals on Hilbert spaces and its corollary—

shifting theorem.

So one cannot directly apply Gromoll-Meyer

theory to the Finsler energy functional E. In



past almost all literatures one completed the

related arguments by using Gromoll-Meyer the-

ory on the Morse’s finite-dimensional ap-

proximation of ΛQ(M). For a ∈ (0,∞) and

a large k ∈ N let

ΛaQ(M) = {γ ∈ ΛQ(M) : E(γ) ≤ a},

Λa
Q(k,M) = {γ ∈ Λa

Q(M) : γ|[
i

k
,
i+ 1

k
] is F -geodesic}.

Then ΛaQ(k,M)◦ := ΛaQ(k,M) ∩ Int(ΛaQ(M)) is

a smooth manifold of finite dimension, and

• the restriction of E to ΛaQ(k,M)◦ is smooth,

and has the same critical set as E in Int(ΛaQ(M)),

• for each c < a the set

ΛcQ(k,M) = ΛaQ(k,M) ∩ ΛcQ(M)

is compact, and a deformation retract of

ΛcQ(M) (this is also true for c = a).



Hence by applying Gromoll-Meyer theory to the

restriction of E to ΛaQ(k,M)◦ one can complete

the desired arguments. These can be found in

• H.H.Matthias [Bonner Math.Schr.128(1980)],

•H.B.Rademacher[[Bonner Math.Schr.229(1992)]

• Z.Shen [Lecture on Finsler Geometry, 2001]

• V.Bangert & Y.Long[Math.Ann.346(2010)335].

As on Riemannian manifolds it is expected to

develop infinite-dimensional Morse theory meth-

ods for geodesics problem on Finsler manifolds

for conveniences in some cases.

We state the expected first result for Q = {p}×
{q} with p 6= q. Let γ0 be a nonconstant cpt

of

ΛQ(M) 3 γ 7→ E(γ) =
∫ 1

0
F2(γ(t), γ̇(t))dt.



Then γ0 ∈ C∞Q (I,M) and ∃ c > 0 such that

F (γ0(t), γ̇0(t)) =
√
c ∀t ∈ [0,1]. (2)

Note the restriction of E to Banach manifold

C1
Q(I,M) = {x ∈ C1(I,M) | (x(0), x(1)) ∈ Q}

is C2 near each regular curve, but it does not

satisfy the (PS) condition on this space.

Let exp be the exponential map of a Riemann

metric g on M , and take

0 < 2ρ < inf{inj(γ0(t), g)|t ∈ [0,1]}.

Let e1, · · · , en be a parallel orthonormal frame

along γ0. Define ϕ : I ×Bn(0, ρ)→M by

ϕ(t, x1, · · · , xn) = expγ0(t)(x1e1(t)+· · ·+xnen(t)).

It induces a chart

ϕ∗ : H1
0(I, Bn(0, ρ))→ H1

Q(I,M)



by ϕ∗(x)(t) = ϕ(t, x(t)). Then ϕ∗(0) = γ0 and

Ẽ(x) := E ◦ ϕ∗(x) =
∫ 1

0
F̃2(t, x(t), ẋ(t))dt.

Here F̃ : I ×Bn(0, ρ)× Rn → R is defined by

F̃ (t, x, v) := F (ϕ(t, x), dϕ(t, x)[(1, v)]).

It is C2 in (I ×Bn(0, ρ)× Rn) \ Z, where Z =

{(t, x, v) ∈ I×Bn(0, ρ)×Rn | dϕ(t, x)[(1, v)] = 0}.

Let us define

H := H1
0(I,Rn),

X := {x ∈ C1(I,Rn) |x(0) = x(1) = 0},

U := H1
0(I, Bn(0, ρ)) = {x ∈ H : x(I) ⊂ Bn(0, ρ)},

UX := X ∩ U = {x ∈ X |x(I) ⊂ Bn(0, ρ)}.

Note that ϕ∗ restricts to a chart

ϕX∗ : UX → C1
Q(I,M).



Let BXδ (0) := {x ∈ X : ‖x‖X < δ}. Then

BXδ (0) ⊂ UX for small δ > 0.

Since F2(γ0(t), γ̇0(t)) ≡ c > 0 by (2), we shrink

δ > 0 so that ∀x = ϕX∗ (x̃) with x̃ ∈ BXδ (0),

F2(x(t), ẋ(t)) >
2

3
c ∀t ∈ [0,1]. (3)

Then

• ẼX := E ◦ ϕX∗ = Ẽ|UX is C2 on BXδ (0) and

• ∃ a Fredholm operator B0 ∈ Ls(H) s.t.

d2ẼX(0)(u, v) = (B0u, v)H ∀u, v ∈ X. (4)

(B0 is the second G-differential at 0 of ẼX.

m−(γ0) = max{dimS|subspaceS ⊂ H,B0|S <

0} is called Morse index E at γ0.)

• N := Ker(B0) ⊂ X and so orthogonal de-

composition H = N⊕N⊥ induces a topological

direct sum decomposition of closed subspaces



X = N ⊕ (N⊥ ∩ X) with projection operator

(I − PN)|X : X → N⊥ ∩X.

• The gradient ∇Ẽ on H maps BXδ (0) into X,

and thus give C1-maps

A : BXδ (0)→ X, x 7→ ∇Ẽ(x), (5)

E : (N ∩BXδ (0))⊕ (N⊥BXδ (0))→ N⊥ ∩X

given by E(u + v) = (I − PN)|X ◦ A(u + v).

Applying IFT to E we get r ∈ (0, δ), C1-map

h : BXr (0) ∩N → N⊥ ∩BXδ (0) (6)

such that

(I−PN)|X◦A(u+h(u)) = E(u+h(u)) = 0 (7)

for all u ∈ BXr (0) ∩N . Define

Ẽ◦ : BXr (0) ∩N → R, u 7→ Ẽ(u+ h(u))

= E(ϕ∗(u+ h(u)).



It is C2 and has an isolated critical point 0.

(Expected) shifting theorem: ∀q ∈ N ∪ {0},

Cq(E, γ0;K) ∼= Cq(Ẽ,0;K) (8)

∼= Cq−m−(γ0)(Ẽ◦,0;K)? (9)

Since ϕ∗ is a coordinate chart, (8) is obvious.

E. Caponio, M. A. Javaloyes, A. Masiello [ Anal-

yse Nonlinéaire 27(2010)857] used some ideas

of K.-C. Chang in [Sci.Sinica Ser.A26(1983)

1241] and book(1993) to prove a splitting lemma

of ẼX near 0 ∈ X = {x ∈ C1(I,Rn)|x(0) =

x(1) = 0}:∃ homeomorphism φ : BXη (0) →
φ(BXη (0)) with φ(0) = 0 (η < r) such that

ẼX(φ(x)) =
1

2
(B0v, v)H + Ẽ(u+ h(u))

for any x ∈ BXr (0), u = PNx and v = x− u.



(Actually, this splitting lemma can also be

proved by a generalization of Morse lemma

by M. Jiang [Nonl.Anal,36(1999)943], see au-

thor’s paper [arXiv:0909.0609 v1, 3 Sep 2009].)

As usual this implies for any q ∈ N ∪ {0},

Cq(ẼX ,0;K) ∼= Cq−m−(γ0)(Ẽ◦,0;K). (10)

However, they can only prove

C∗(Ẽ,0;K) ∼= C∗(ẼX ,0;K) (11)

and so the shifting theorem in (9) if

γ0 (so 0) is a nondegenerate cpt.

See [E. Caponio, M. A. Javaloyes, A. Masiello,

Addendum to ”Morse theory... of a Finsler

metric” [Ann.I.H.Poincaré-AN 27 (3)(2010)857-

876].Ann.I.H.Poincaré-AN 30(5)(2013)961-968].



Their proof used ideas and techniques in

• Abbondandolo and Schwarz [Advanced Non-

linear Studies, 9(2009),597-623],

• K.-C. Chang in [Sci.Sinica Ser.A26(1983)

1241-1255],

• Palais [Th. 16,17, Topology 5(1966)1-16].

And nondegeneracy of cpt γ0 was essential to

their Proposition 3: ∃ µ0 > 0 s.t.

dẼ(u)[B0u] ≥ µ0‖∇Ẽ(u)‖2 ∀u near 0 ∈ H,

where B0 represents the second G-differential

at 0 of ẼX as in (4).



Our methods

Follow author’s preprint [arXiv:1212.2078v5].

We begin with our new splitting lemma in [Cor-

rigendum: The Conley conjecture..., J.Funct.

Anal.261(2011)542-589] (a more general ver-

sion is in [The splitting lemmas for nonsmooth

functionals on Hilbert spaces, Discr.Cont.Dyna.

Syst-A. 33(2013)2939, arXiv:1102.2062v1]).

Hilbert space (H, (·, ·)H), ‖ · ‖ =
√

(·, ·)H, and

Banach space (X, ‖ · ‖X) satisfy

(S) X ⊂ H is dense in H and ‖x‖ ≤ ‖x‖X ∀x.

U— open neighborhood of 0 ∈ H,

UX := U ∩X open neighborhood of 0 ∈ X.

L ∈ C1(U ,R) has 0 as an isolated cpt.

Assumptions: ∃ maps A ∈ C1(UX , X) and B ∈



C(UX ,Ls(H)) such that

L′(x)(u) = (A(x), u)H ∀x ∈ UX & u ∈ X,

(A′(x)(u), v)H = (B(x)u, v)H ∀x ∈ UX , u, v ∈ X.

(These imply: (a) L|UX ∈ C
2(UX ,R),

(b) d2L|UX(x)(u, v) = (B(x)u, v)H ∀x ∈ UX &u, v ∈
X, (c) B(x)(X) ⊂ X ∀x ∈ UX).

Furthermore we also assume B to satisfy:

(B1) {u ∈ H |B(0)(u) ∈ X} ⊂ X, and

B(0)u = λu for u ∈ H &λ < 0 ⇒ u ∈ X.

(B2) B : UX → Ls(H) has a decomposition

B(x) = P (x) +Q(x) ∀x ∈ UX ,

P (x) ∈ Ls(H) is positive definite, Q(x) ∈ Ls(H)

is compact, and also satisfy:

(i) ∀ (xk) ⊂ U with ‖xk‖ → 0 it holds that

‖P (xk)u− P (0)u‖ → 0 ∀u ∈ H;



(ii) ∀ (xk) ⊂ U ∩X with ‖xk‖ → 0 we have

‖Q(xk)−Q(0)‖Ls(H) → 0 as k →∞;

(iii) ∃ constants η0 > 0 and C0 > 0 such that

(P (x)u, u) ≥ C0‖u‖2 ∀u ∈ H, ∀x ∈ BHη0
(0) ∩X.

N := Ker(B(0)), H− =maximal negative defi-

nite subspace of B(0). ((B1)+(B2)⇒

dim(N +H−) <∞ & N +H− ⊂ X.

Call m0 = dimN nullity, m− = dimH− Morse

index, the cpt 0 nondegenerate if m0 = 0.

PN : H → N is the orthogonal projection,

X = N ⊕ (N⊥ ∩X) is a topological direct sum

decomposition. For δ > 0 let

BHδ (0) = {x ∈ H : ‖x‖ < δ}. (Note: norms ‖·‖



and ‖ · ‖X are equivalent on N since dimN <

∞.) The following is our splitting lemma.

Theorem 2 Under (S) and (B1)-(B2), ∃ε > 0,

C1 map h : BNε (0) = BHε (0) ∩ N → N⊥ ∩ X
satisfying h(0) = 0 and

(I − PN)A(z + h(z)) = 0 ∀z ∈ BNε (0), (12)

• an open neighborhood W of 0 in H,

• an origin-preserving homeomorphism

Φ : BNε (0)×BN
⊥

ε (0)→W

such that for all (z, u) ∈ BNε (0)×BN⊥ε (0),

L ◦Φ(z, u) = ‖u− PNu− PH−u‖
2 − ‖PH−u‖

2

+ L(z + h(z)).

(i) Φ(z,0) = z + h(z) ∀z ∈ BN(0, ε).



(ii) ∀z ∈ BNε (0), h′(z) is equal to

−[PN⊥A
′(z + h(z))|N⊥∩X]−1 ◦ PN⊥A

′(z + h(z))|N .

(iii) BNε (0) 3 z 7→ L◦(z) := L(z + h(z)) is C2,

has 0 as an isolated cpt , d2L◦(0) = 0, and

dL◦(z0)(z) = (A(z0 + h(z0)), z)H

for all (z0, z) ∈ BNε (0)×N .

(iv) Let c = L(0), LX = L|UX , W ⊂ U be a

neighborhood of 0 (so WX :=W ∩X a neigh-

borhood of 0 in X), K be an Abel group. Then

the inclusion(
LXc ∩WX ,LXc ∩WX \ {0}

)
↪→ (Lc ∩W,Lc ∩W \ {0})

(13)

induces surjective homomorphisms

H∗
(
LXc ∩WX ,LXc ∩WX \ {0};K

)
→

H∗ (Lc ∩W,Lc ∩W \ {0};K) . (14)



Corollary 3 (Shifting) For any Abel group K

Cq(L,0;K) ∼= Cq−m−(L◦,0;K) ∀q = 0,1, · · · .

Corollary 4 For any field K the surjective ho-

momorphisms in (14) are all isomorphisms !

• Th. 2⇒Cor. 3 is standard, see Mawhin-Willem’s

book (89) and Chang’s book (93).

• Under assumptions of Th.2 we use a general-

ized Morse lemma by M.Jiang [Nonl.Anal,36(1999)

943] to prove a splitting lemma for LX at 0:

∃ ball BXδ (0) ⊂ UX∩BHε (0), an origin-preserving

local homeomorphism ϕ from BXδ (0) to a

neighbor. of 0 in UX such that

LX ◦ ϕ(x) =
1

2
(B(0)x⊥, x⊥)H + L◦(z) (15)

for x ∈ BXδ (0),where z = PN(x), x⊥ = x − z.



So for any Abel group K and q ∈ N ∪ {0},

Cq(LX ,0;K) ∼= Cq−m−(L◦,0;K). (16)

When K is a field, this, Cor.3 and (14) lead to

Cor.4, which is important for our methods.

A Lagrangian L : [0,1]×TM → R is called con-

vex quadratic growth (CQG) if it satisfies:

(L1) ∃ constant `0 > 0 such that

∂vvL(t, x, v) ≥ `0I,

(L2) ∃ constant `1 > 0 such that

‖∂vvL(t, x, v)‖ ≤ `1 and

‖∂xvL(t, x, v)‖ ≤ `1(1 + |v|x),

‖∂xxL(t, x, v)‖ ≤ `1(1 + |v|2x)

with respect to some Riemann metric g (with

|v|2x = gx(v, v)).



In [J.Funct. Anal.261(2011)542-589] we had

proved that for a CQG Lagrangian L : [0,1]×
TM → R the corresponding energy functional

on W1,2(S1,M) satisfies the conditions of The-

orem 2 in a suitable chart.

Assume (M,F ) is a compact Finsler manifold

for simplicity. Since F2 is not C2 on TM , our

idea is to deform F2 to a CQG Lagrangian

L∗. Fix a Riemann metric g and write |v|2x =

gx(v, v). ∃ constant C1 ≥ 1,

|v|2x ≤ F2(x, v) ≤ C1|v|2x ∀(x, v) ∈ TM. (17)

Given c > 0, choose 0 < ε < δ < 2c
3C1

. We have

suitable constants κ > 0, %0 < 0, µ > 0 and

b > 0, and C∞ functions

ψε,δ : [0,∞)→ R, φµ,b : [0,∞)→ R



as in the following figure:

Define L∗ : TM → R by

L∗(x, v) =
ψε,δ(F

2(x, v)) + φµ,b(|v|2x) + µδ − %0

κ
.

Clearly, L∗ is of Ck if F is only of Ck (k ≥ 2).

Proposition 5 (i) L∗ is CQG,

(ii) L∗(x, v) = F2(x, v) if F2(x, v) ≥ 2c
3C1

,

(iii) L∗ ≥ 0, and L∗(x, v) = 0⇐⇒ v = 0,

(iv) L∗(x, v) ≤ F2(x, v) ∀(x, v) ∈ TM ,

(v) if F is reversible, so is L∗,

For τ ∈ [0,1] we define Lτ : TM → R by

Lτ(x, v) = (1− τ)F2(x, v) + τL∗(x, v). (18)



We present our results for two kinds of bound-

ary conditions:

• Q = M0 ×M1, M0 and M1 are two disjoint

boundaryless submanifolds of M ,

• Q = 4M .

Case 1

Let γ0 ∈ ΛQ(M) be an isolated nonconstant

cpt of L on ΛQ(M). Then ∃c > 0, s.t.

F (γ0(t), γ̇0(t)) ≡
√
c > 0. We can choose the

Riemannian metric g such that:

M0 (resp. M1) is totally geodesic

near γ0(0) (resp. γ0(1)).

ΛQ(M) is equipped with Hilbert-Riemannian

structure induced by g. Let exp denote the



exponential map of g, and for ρ > 0 let

B2ρ(Tγ0ΛQ(M)) = {ξ ∈ Tγ0ΛQ(M) | ‖ξ‖1 < 2ρ}.

∃ρ > 0 such that

EXPγ0 : B2ρ(Tγ0ΛQ(M))→ ΛQ(M) (19)

given by EXPγ0(ξ)(t) = expγ0(t)(ξ(t)), is a co-

ordinate chart around γ0 on ΛQ(M). Define

Lτ(γ) =
∫ 1

0
Lτ(γ(t), γ̇(t))dt ∀γ ∈ ΛQ(M) (20)

for Lτ in (18).

Then Lτ ◦ EXPγ0 is C2−0 and has an isolated

cpt 0 ∈ Tγ0ΛQ(M) = W
1,2
Q (γ∗0TM). Let I =

[0,1]. Consider the Banach manifold

X = C1
Q(I,M) = {γ ∈ C1(I,M) | (γ(0), γ(1)) ∈ Q}.

Tγ0X = {ξ ∈ C1(γ∗0TM) | (ξ(0), ξ(1)) ∈ TQ}



with usual C1-norm. Let EX = E|X and

B2ρ(Tγ0X ) = {ξ ∈ Tγ0X : ‖ξ‖C1 < 2ρ}.

Then B2ρ(Tγ0X ) ⊂ B2ρ(Tγ0ΛQ(M))∩Tγ0X . Let

Aτ = ∇(Lτ ◦ EXPγ0)|B2ρ(Tγ0X ).

We can shrink ρ > 0 so that

min
t
F2(γ(t), γ̇(t)) ≥

2c

3C1
∀γ ∈ EXPγ0

(
B2ρ(Tγ0X )

)
.

By Prop.5(ii), for any τ ∈ [0,1]

Aτ = A = ∇(E ◦ EXPγ0)|B2ρ(Tγ0X )

is a C1-map to Tγ0X and

〈dAτ(0)[ξ], η〉1 = d2EX(γ0)[ξ, η] ∀ξ, η ∈ Tγ0X .

The symmetric bilinear form d2EX(γ0) can be

extended into such a form on Tγ0ΛQ(M), also

denoted by d2EX(γ0). The associated self-

adjoint operator is Fredholm, has finite dimen-



sional negative definite and null spaces

H−(d2EX(γ0)) and H0(d2EX(γ0)),

which are actually contained in Tγ0X . Call

m−(γ0) := dimH−(d2EX(γ0)) and

m0(γ0) := dimH0(d2EX(γ0))

Morse index and nullity of γ0, respectively. ∃
the orthogonal decomposition

Tγ0ΛQ(M) = H−(d2EX(γ0))⊕H0(d2EX(γ0))

⊕ H+(d2EX(γ0)), (21)

which induces a (topological) direct sum de-

composition of Banach spaces

Tγ0X = H−(d2EX(γ0))+̇H0(d2EX(γ0))

+̇
(
H+(d2EX(γ0)) ∩ Tγ0X

)
.

Using IFT, ∃ δ ∈ (0,2ρ] and a unique C1-map



h from ball Bδ
(
H0(d2EX(γ0))

)
⊂ B2ρ(Tγ0X ) to

H−(d2EX(γ0))+̇
(
H+(d2EX(γ0)) ∩ Tγ0X

)
such that h(0) = 0, dh(0) = 0 and

(I−P0)A(ξ+h(ξ)) = 0 ∀ξ ∈ Bδ
(
H0(d2EX(γ0))

)
,

where P ? : Tγ0ΛQ(M) → H?(d2EX(γ0)), ? =

−,0,+, are orthogonal projections given by (21).

Define E◦ : Bδ
(
H0(d2EX(γ0))

)
→ R by

E◦(ξ) = E ◦ EXPγ0

(
ξ + h(ξ)

)
. (22)

It is C2, has an isolated cpt 0, and d2E◦(0) = 0.

Theorem 6 Let K be an Abel group.

(i) C∗(Lτ , γ0;K) ∼= C∗(E, γ0;K) ∀τ ∈ [0,1].

(ii) ∃ a splitting lemma for L∗ ◦ EXPγ0 :=

L1 ◦EXPγ0 at 0 ∈ Tγ0ΛQ(M), i.e. (by shrinking

δ > 0) ∃ an origin-preserving homeomorphism



ψ from Bδ(Tγ0ΛQ(M)) to an open neighbor-

hood of 0 in Tγ0ΛQ(M) such that

L∗◦EXPγ0 ◦ψ(ξ) = ‖P+ξ‖21−‖P
−ξ‖21 +E◦(P0ξ)

∀ξ ∈ Bδ(Tγ0ΛQ(M)), and hence ∀q ∈ N ∪ {0}

Cq(L∗,0;K) ∼= Cq−m−(γ0)(E◦,0;K). (23)

(iii) ∃ a splitting lemma for EX ◦EXPγ0 at 0 ∈
Tγ0X , i.e. ∃ ε ∈ (0, δ) and an origin-preserving

homeomorphism ϕ from Bε(Tγ0X ) to an open

neighborhood of 0 in Tγ0X such that for any

ξ ∈ Bε(Tγ0X ),

EX ◦ EXPγ0 ◦ ϕ(ξ) =
1

2
d2EX(γ0)[P+ξ, P+ξ]

− ‖P−ξ‖21 + E◦(P0ξ),

and hence ∀q ∈ N ∪ {0}

Cq(EX ,0;K) ∼= Cq−m−(γ0)(E◦,0;K). (24)



(iv) Let L∗X = L∗|X , W ⊂ ΛQ(M) be a neigh-

borhood of γ0 (so WX := W ∩ X a neighbor-

hood of γ0 in X ). Then the inclusion(
L∗Xc ∩WX ,L∗Xc ∩WX \ {γ0}

)
↪→(

L∗c ∩W,L∗c ∩W \ {γ0}
)

(25)

induces surjective homomorphisms

H∗
(
L∗Xc ∩WX ,L∗Xc ∩WX \ {γ0};K

)
→

H∗
(
L∗c ∩W,L∗c ∩W \ {γ0};K

)
, (26)

which are also isomorphisms if K is a field.

When W ⊂ ΛQ(M) is a closed neighborhood of

γ0, WX :=W∩X is also a closed neighborhood

of γ0 in X ). Choose an open neighborhood O
of γ0 in X such that WX \ O is contained in

the interior of WX \ {γ0} and that L∗ = E in

O. Then by excision theorem for singular



homology groups the inclusion(
EXc ∩ O, EXc ∩ O \ {γ0}

)
↪→(

L∗Xc ∩WX ,L∗Xc ∩WX \ {γ0}
)

(27)

induces isomorphisms

H∗
(
EXc ∩ O, EXc ∩ O \ {γ0};K

)
→

H∗
(
L∗Xc ∩WX ,L∗Xc ∩WX \ {γ0};K

)
(28)

for any abel group K.

These and Theorem 6 are sufficient for Morse

theory arguments needed.

The above versions are convenient in applica-

tions. Their proofs can be completed in an-

other chart. Since M0 (resp. M1) is totally

geodesic near γ0(0) (resp. γ0(1)) with respect

to the metric g on M . Since γ0 is of class C∞



we may take a parallel orthogonal C∞ frame

field along γ0 with respect to the metric g,

I 3 t → (e1(t), · · · , en(t)). For a small open

ball Bn(0,2ρ) ⊂ Rn we get a C∞ map

φ : I×Bn(0,2ρ)→M, (t, v) 7→ expγ0(t)

 n∑
i=1

viei(t)

 .
Since ∃ linear subspaces Vi ⊂ Rn, i = 0,1, such

that v ∈ Vi ⇔
∑n
k=1 vkek(i) ∈ Tγ0(i)Mi, i = 0,1,

by shrinking ρ > 0 (if necessary) we get

v ∈ Vi ∩Bn(0,2ρ)⇔ φ(i, v) ∈Mi, i = 0,1.

Set V := V0 × V1 and

HV := {ζ ∈W1,2(I,Rn) | (ζ(0), ζ(1)) ∈ V },

XV := {ζ ∈ C1(I,Rn) | (ζ(0), ζ(1)) ∈ V }.

Use (·, ·)W1,2 and ‖ · ‖W1,2 to denote the inner

product and norm in HV . Let B2ρ(HV ) := {ζ ∈



HV | ‖ζ‖W1,2 < 2ρ}. Then the map

Φ : B2ρ(HV )→ ΛQ(M) (29)

defined by Φ(ζ)(t) = φ(t, ζ(t)), gives a co-

ordinate chart around γ0 on ΛQ(M). Define

L̃τ : I ×Bn2ρ(0)× Rn → R by

L̃τ(t, x, v) = Lτ
(
φ(t, x), dφ(t, x)[(1, v)]

)
,

and L̃τ : B2ρ(HV )→ R by

L̃τ(ξ) =
∫ 1

0
L̃τ(t, ξ(t), ξ̇(t))dt ∀ξ ∈ B2ρ(HV ).

We can prove that this family of functionals

satisfies stability theorem of critical groups

(see Th.8.8 in Mawhin-Willem’s book (89) or

Th.5.6 in Chang’s book (93), or Cingolani and

Degiovanni [Adv.Nonl.Stud.9(2009)679]). So



for any q = 0,1, · · · , we get

Cq(E, γ0;K) = Cq(L̃0,0;K)

= Cq(L̃1,0;K) = Cq(L∗, γ0;K).

Moreover we can prove that Theorem 2 can be

applied to L̃∗ := L̃1. Hence Theorem 6 follows.

Case 2

For Q = 4M ,

ΛQ(M) = ΛM := W1,2(S1,M)

= {γ ∈W1,2
loc (R,M) | γ(t+ 1) = γ(t) ∀t ∈ R}.

Here S1 := R/Z = {[s] | [s] = s + Z, s ∈ R}.
∃ equivariant and isometric operations of S1-

action on W1,2(S1,M) and TW1,2(S1,M):

[s] · γ(t) = γ(s+ t), ∀[s] ∈ S1, γ ∈ ΛM,

[s] · ξ(t) = ξ(s+ t), ∀[s] ∈ S1, ξ ∈ TγΛM,



which are continuous, but not differentiable.

E is S1-invariant. Let γ0 ∈ ΛM be a (noncon-

stant) cpt of E with critical value c > 0. The

orbit O := S1 · γ0 is a smooth critical sub-

manifold of E in ΛM . We assume: O is an

isolated critical orbit.

Let X = C1(S1,M), π : NO → O be the normal

bundle of O in ΛM . Then XNO := TOX ∩NO
is a Banach vector bundle over O. Define

NO(ε) = {(x, v) ∈ NO | ‖v‖1 < ε},
XNO(ε) = {(x, v) ∈ XNO | ‖v‖C1 < ε}.

}
Clearly, XNO(ε) ⊂ NO(ε). (Replacing M by a

compact neighborhood of O) we may assume

ε > 0 so small that the map

EXP : TΛM(ε) = {(x, v) ∈ TΛM | ‖v‖1 < ε} → ΛM

defined by EXP(x, v)(t) = expx(t) v(t) ∀t ∈ R,



restricts to a S1-equivariant diffeomorphism from

the normal disk bundle NO(ε) onto a S1-

invariant open neighborhood of O in ΛM ,

z : NO(ε)→ N (O, ε). (30)

Then

F := E ◦ z and F∗ := L∗ ◦ z (31)

are C2−0, S1-invariant and satisfy (PS). Let

FX = F|NO(ε)∩XNO, F∗X = F∗|NO(ε)∩XNO

and let Fx,F∗x,FXx ,F∗Xx be restrictions of F,F∗

and FX, F∗X to the fibres at x ∈ O. Let

Ax := ∇Fx|NO(ε)x ∩XNOx.

When δ > 0 is small Ax is a C1 map from

XNO(δ)x to XNOx (so FXx is C2 on XNO(δ)x).

As·x(s·v) = s·Ax(v) ∀s ∈ S1, v ∈ NO(ε)x∩XNOx.



Denote by Bx the symmetric bilinear form d2FXx (0)

and by its extension on NOx. The associated

self-adjoint operator is Fredholm, has finite di-

mensional negative definite and null spaces

H−(Bx) and H0(Bx).

Moreover, H−(Bx) + H0(Bx) ⊂ XNOx, and ∃
orthogonal decomposition

NOx = H−(Bx)⊕H0(Bx)⊕H+(Bx). (32)

Since Bs·x(s · ξ, s · η) = Bx(ξ, η)∀s ∈ S1, x ∈ O,

(32) leads to a natural Hilbert vector bundle

orthogonal decomposition

NO = H−(B)⊕H0(B)⊕H+(B) (33)

with H?(B)x = H?(Bx) for x ∈ O and ? =

+,0,−, which induces a Banach vector bundle



(topological) direct sum decomposition

XNO = H−(B)+̇H0(B)+̇(H+(B) ∩XNO).

m−(O) := rankH−(B) and m0(O) := rankH0(B)

are called Morse index and nullity of O. When

m0(O) = 0 the orbit O is called nondegener-

ate. Moreover 0 ≤ m0(O) ≤ 2n− 1.

Let P? : NO → H?(B) be the orthogonal bun-

dle projections, ? = +,0,−, and let

H0(B)(ε) = H0(B) ∩NO(ε) for ε > 0.

Then H0(B)(ε) ⊂ XNO and we may shrink ε >

0 so that H0(B)(ε) ⊂ XNO(δ) since rankH0(B) <

∞ and O is compact. By IFT, shrinking ε > 0

assures: ∀x ∈ O ∃ unique S1
x-equivariant C1



map

hx : H0(B)(ε)x → H−(B)x+̇(H+(B)x ∩XNOx)

(34)

such that hx(0x) = 0x, dhx(0x) = 0x and

(P+
x + P−x ) ◦Ax

(
v + hx(v)

)
= 0 ∀v ∈ H0(B)(ε)x.

Moreover, the functional E◦4 given by

H0(B)(ε) 3 (x, v)→ E ◦EXPx
(
v + hx(v)

)
(35)

is C1, has the isolated critical orbit O and re-

stricts to a C2 functional E◦4x in fiber H0(B)(ε)x.

Theorem 7 (i) C∗(Lτ ,O;K) = C∗(E,O;K) ∀τ .

(ii) ∃ a splitting lemma for F∗ := L∗ ◦ z near

O ⊂ NO(ε): shrinking ε > 0, ∃ a S1-invariant

open neighborhood U of O ⊂ NO, a S1-equivariant

fiber-preserving, C1 map h given by (34), and a



S1-equivariant fiber-preserving homeomorphism

Υ : NO(ε)→ U such that for all (x, u) ∈ NO(ε),

F∗ ◦Υ(x, u) = L∗ ◦ EXP ◦Υ(x, u)

= ‖P+
x u‖21 − ‖P

−
x u‖21 + E◦4x(P0

xu).

(iii) ∃ a splitting lemma for FX := EX ◦ z
near O ⊂ XNO(ε): shrinking ε > 0 ∃ S1-

invariant open neighborhood V of O ⊂ XNO,

S1-equivariant fiber-preserving C1 map h given

by (34), S1-equivariant fiber-preserving home-

omorphism Ψ : XNO(ε) → V such that for all

(x, v) ∈ XNO(ε),

EX ◦ EXP ◦Ψ(x, v) =
1

2
d2L|X (x)[P+

x v,P
+
x v]

− ‖P−x v‖21 + L◦4x(P0
xv).

(iv) For any open neighborhood W of O in
ΛM and a field K, write WX = W ∩ X as an
open subset of X , then the inclusion

((L∗|X)c ∩WX, (L∗|X)c ∩WX \ O) ↪→ (L∗c ∩W,L∗c ∩W \ O)



induces isomorphisms

H∗
(
(L∗|X )c ∩WX , (L∗|X )c ∩WX \ O;K

)
→

H∗
(
L∗c ∩W,L∗c ∩W \ O;K

)
.

The corresponding conclusion is still true if

((L∗|X )c ∩WX , (L∗|X )c ∩WX \ O) and

(L∗c ∩W,L∗c ∩W \ O) are replaced by(
(L̊∗|X )c ∩WX ∪ O, (L̊∗|X )c ∩WX

)
and(

L̊∗c ∩W ∪O, L̊∗c ∩W
)
, respectively, where L̊∗c =

{L∗ < c} and (L̊∗|X )c = {L∗|X < c}.

Let H0−(B) = H0(B) + H−(B) and

H0−(B)(ε) = (H0(B) + H−(B)) ∩NO(ε).

Then H0−(B) ⊂ XNO. Define

L : H0−(B)(ε)→ R (36)

by L(x, v) = −‖P−x v‖21 + L◦4x(P0
xv). The usual



deformation arguments and two splitting lem-

mas in Th.7(ii)-(iii) lead to

C∗(L∗,O;K) ∼= C∗(L,O;K)

∼= C∗(EX ,O;K), (37)

which can also be derived from Th.7(iv). This

and Th.7(i) yield

C∗(E,O;K) ∼= C∗(EX ,O;K)

∼= C∗(L,O;K). (38)

Let S1
x ⊂ S1 denote the stabilizer of x ∈ O. It

is a finite cyclic group and L◦4x is S1
x-invariant.

Let C∗(L◦4x,0;K)S
1
x denote the subgroup of all

elements in C∗(L◦4x,0;K), which are fixed by

the induced action of S1
x on the homology.

Since H0−(B) ⊂ XNO is a smooth manifold of

finite dimension using (38) and repeating the



arguments by Bangert and Long [Prop.3.7,Math.

Ann., 346(2010)335] we can obtain their fol-

lowing generalization of the Gromoll-Meyer

shifting theorem for Finsler manifolds.

Theorem 8 Let K be a field of characteristic
0 or prime to order |S1

γ0
| of S1

γ0
. Then for any

x ∈ O = S1 · γ0 and q = 0,1, · · · ,

Cq(E,O;K) =(
Hm−(O)(H

−(B)x,H
−(B)x\{0x};K)⊗Cq−m−(O)(E◦4x,0;K)

)S1
x

⊕
(
Hm−(O)(H

−(B)x,H
−(B)x\{0x};K)⊗Cq−m−(O)−1(L◦4x,0;K)

)S1
x

.

provided m−(O)m0(O) > 0. Moreover,

Cq(E,O;K) =
(
Cq−1(E◦4x,0;K)

)S1
x ⊕

(
Cq(E◦4x,0;K)

)S1
x

if m−(O) = 0 and m0(O) > 0, and

Cq(E,O;K) = Hq(H
−(B),H−(B) \ O;K)

=
(
Hq−1(H−(B)x,H

−(B)x \ {0x};K)
)S1

x

⊕
(
Hq(H

−(B)x,H
−(B)x \ {0x};K)

)S1
x



if m−(O) > 0 and m0(O) = 0. Finally,

Cq(E, S1 · γ0;K) = Hq(S
1;K)

for any Abel group K if m−(O) = m0(O) = 0.

For a field K Th. 7(iv) claimed the inclusion(
(L̊∗|X )c∩WX∪O, (L̊∗|X )c∩WX

)
↪→

(
L̊∗c∩W∪O, L̊∗c∩W

)
induces isomorphisms

H∗
(
(L̊∗|X )c ∩WX ∪ O, (L̊∗|X )c ∩WX;K

)
→ H∗

(
L̊∗c ∩W ∪O, L̊∗c ∩W;K

)
,

and hence (by excision) the inclusion(
(L̊∗|X )c ∪ O, (L̊∗|X )c

)
↪→

(
L̊∗c ∪ O, L̊∗c

)
induces isomorphisms

H∗
(
(L̊∗|X )c ∪ O, (L̊∗|X )c;K

)
→ H∗

(
L̊∗c ∪ O, L̊∗c;K

)
.



Take a neighborhood V of O in X such that

L∗ = E in V. Using the excision again we derive

that the inclusion(
(E̊|X )c ∩ V ∪ O, (E̊|X )c ∩ V

)
↪→

(
L̊∗c ∪ O, L̊∗c

)
induces isomorphisms

H∗
(
(E̊|X)c ∩ V ∪ O, (E̊|X)c ∩ V;K

)
→ H∗

(
L̊∗c ∪ O, L̊∗c;K

)
.

It is L∗ ≤ E (since L∗ ≤ F2 by Prop.5(iv)) that
we have the commutative diagram(

(E̊|X)c ∩ V ∪ O, (E̊|X)c ∩ V
) Inclusion−−−−−→

(
E̊c ∪ O, E̊c

)
Identity

y yInclusion(
(E̊|X)c ∩ V ∪ O, (E̊|X)c ∩ V

) Inclusion−−−−−→
(
L̊∗c ∪ O, L̊∗c

)
and hence commutative diagram

H∗
(
(E̊|X)c ∩ V ∪ O, (E̊|X)c ∩ V;K

) Homeomorphism−−−−−−−−−−→ H∗
(
E̊c ∪ O, E̊c;K

)
Identity

y Homeomorphism

y
H∗
(
(E̊|X)c ∩ V ∪ O, (E̊|X)c ∩ V;K

) Isomorphism−−−−−−−−→ H∗
(
L̊∗c ∪ O, L̊∗c;K

)
It follows that the homeomorphisms

H∗
(
(E̊|X )c∩V∪O, (E̊|X )c∩V;K

)
→ H∗

(
E̊c∪O, E̊c;K

)



are injective, and hence isomorphisms since the

associated groups are all vector spaces of same

finite dimension. Using the excision again we

deduce

Claim 9 The inclusion(
(E̊|X )c ∪ O, (E̊|X )c

)
↪→

(
E̊c ∪ O, E̊c

)
induces isomorphisms

H∗
(
(E̊|X )c ∪ O, (E̊|X )c;K

)
→ H∗

(
E̊c ∪ O, E̊c;K

)
.

For an integer m > 0 define the m-th iterate

ϕm : ΛM → ΛM,γ → γm (39)

by γm(t) = γ(mt) ∀t ∈ R. For some integer

m > 1, suppose ϕm(O) = S1 · γm0 is an isolated

critical orbit of E in ΛM . Claim 9 implies that



the inclusion(
(E̊|X )m2c∪ϕm(O), (E̊|X )m2c

)
↪→

(
E̊m2c∪ϕm(O), E̊m2c

)
induces isomorphisms

H∗
(
(E̊|X)m2c∪ϕm(O), (E̊|X)m2c;K

)
→ H∗

(
E̊m2c∪ϕm(O), E̊m2c;K

)
.

(40)

Furthermore, let

m−(O) = m−(ϕm(O)), m0(O) = m0(ϕm(O)).

(41)
As in Riemannian geometry using the splitting
lemma in Th. 7(iii) we may prove that

ϕm :
(
(E̊|X)c ∪ O, (E̊|X)c

)
→
(
(E̊|X)m2c ∪ ϕm(O), (E̊|X)m2c

)
induces isomorphisms

(ϕm)∗ : H∗
(
(E̊|X )c ∪ O, (E̊|X )c;K

)
→ H∗

(
(E̊|X )m2c ∪ ϕm(O), (E̊|X )m2c;K

)
.



Hence commutative diagram(
(E̊|X)c ∪ O, (E̊|X)c

) ϕm−−→
(
E̊m2c ∪ ϕm(O), E̊m2c

)
Inclusion

y Inclusion

y(
Ec ∪ O, Ec

) ϕm−−→
(
Em2c ∪ ϕm(O), Em2c

)
lead to the following generalization of a result

by Gromoll-Meyer on Finsler manifolds.

Theorem 10 For some integer m > 1, sup-

pose that O = S1 · γ0 and ϕm(O) = S1 · γm0 are

two isolated critical orbits of E in ΛM and that

(41) is satisfied. Then for any field K,

ϕm :
(
E̊c ∪ O, E̊c

)
→
(
E̊m2c ∪ ϕm(O), E̊m2c

)
induces isomorphisms

(ϕm)∗ : H∗
(
E̊c ∪ O, E̊c;K

)
→ H∗

(
E̊m2c ∪ ϕm(O), E̊m2c;K

)



(or in the usual notation

(ϕm)∗ : H∗
(
Λ(γ0) ∪ S1 · γ0,Λ(γ0);K

)
→ H∗

(
Λ(γm0 ) ∪ S1 · γm0 ,Λ(γm0 );K

) )

As applications we may prove the following

generalization of a famous result on Rieman-

nian manifolds by Bangert and Klingenberg [To-

pology, 23(1983)379].

Theorem 11 A connected closed Finsler man-

ifold (M,F ) of dimension n > 1 has infinitely

many geometrically distinct closed geodesics

provided that there exists a nonconstant closed

geodesics γ̄ such that m−(γ̄k) ≡ 0 and

Hp̄(Λ(γ̄) ∪ S1 · γ̄,Λ(γ̄);Q) 6= 0

with some integer p̄ ≥ 2.



A slightly different version of it was proved by

H.B.Rademacher [Th.7.5, Bonner Math.Schr.229

(1992)] with finite-dimensional approximations.

Thank you!


