Infinite dimensional Morse theory for geodesics on Finsler manifolds

Guangcun Lu
Beijing Normal University
May 22, 2014, Nankai University

1. Questions and previous methods

Professor Hams-Bert Rademacher had given two beautiful lectures on geodesics. So I only give a few of related notions.

A C^{∞} Finsler metric on a C^{∞} manifold M^{n} is a C^{0} function $F: T M \rightarrow \mathbb{R}$ with properties:
(i) C^{∞} in $T M \backslash\{0\}$,
(ii) $F(v)>0 \forall v \in T M \backslash\{0\}$,
(iii) $F(t v)=t F(v) \forall t>0$ and $v \in T M$,
(iv) F^{2} is fiberwise strongly convex, i.e., for any $(x, y) \in T M \backslash 0_{T M}$ the symmetric bilinear form $g^{F}(x, y): T_{x} M \times T_{x} M \rightarrow \mathbb{R}$ given by

$$
\left.(u, v) \mapsto \frac{1}{2} \frac{\partial^{2}}{\partial s \partial t}\left[F^{2}(x, y+s u+t v)\right]\right|_{s=t=0}
$$

is positive definite. Call g^{F} the fundamental tensor of (M, F).

Geodesics on (M, F) can be characterized as critical points of the energy functional on a Hilbert manifold:
$W^{1,2}([0,1], M) \ni \gamma \mapsto \mathcal{E}(\gamma)=\int_{0}^{1} F^{2}(\gamma(t), \dot{\gamma}(t)) d t$.

Since our theory is of local nature we restrict to a compact Finsler manifold (M, F) below.

Let $I=[0,1]$ and the Hilbert manifold $W^{1,2}(I, M)$ be equipped with the Riemannian structure induced by a Riemann metric g on M :

$$
\begin{aligned}
\langle X, Y\rangle_{1} & =\int_{0}^{1} g(x(t))[X(t), Y(t)] d t \\
& +\int_{0}^{1} g(x(t))\left[\nabla_{t}^{g} X(t), \nabla_{t}^{g} Y(t)\right] d t .
\end{aligned}
$$

For a C^{∞} closed submanifold Q of $M \times M$ we
have a Riemannian-Hilbert submanifold

$$
\wedge_{Q}(M):=\left\{x \in W^{1,2}(I, M) \mid(x(0), x(1)) \in Q\right\} .
$$

Theorem 1 (I) On $\wedge_{Q}(M)$ the functional \mathcal{E} is C^{2-0}, and satisfies the (PS) condition.
(II) A curve $\gamma \in \wedge_{Q}(M)$ is a (non constant) critical point of E iff it is a constant (nonzero) speed geodesic on (M, F) with (BC):
$g^{F}(\gamma(0), \dot{\gamma}(0))[V, \dot{\gamma}(0)]=g^{F}(\gamma(1), \dot{\gamma}(1))[W, \dot{\gamma}(1)]$ for any $(V, W) \in T_{(\gamma(0), \gamma(1))} Q$.
[Caponio-Javaloyes-Masiello, Math.Ann. 2010], [Mercuri, Math.Z,156(1977),231-245] for $Q=$ \triangle_{M}, [Kozma-Kristaly-Varga, Contributions to Algebraic Geometry, 45(2004),47-59] for $Q=$ $M_{1} \times M_{2}$ with submanifolds M_{i} of $M, i=1,2$.

Note: Abbondandolo and Schwarz in
[Advanced Nonlinear Studies, 9(2009),597-623]
showed: the above energy functional \mathcal{E} is twice differentiable at a (nonconstant) critical point γ iff F^{2} is Riemannian along γ.

In order to study existence and multiplicity of critical points of \mathcal{E} with Morse theory one need:

- to compute critical groups

$$
C_{*}\left(\mathcal{E}, \gamma_{0} ; \mathbb{K}\right)=H_{*}\left(\wedge_{Q}\left(\gamma_{0}\right) \cup\left\{\gamma_{0}\right\}, \wedge_{Q}\left(\gamma_{0}\right) ; \mathbb{K}\right)
$$

at a critical point γ_{0} (where $\wedge_{Q}\left(\gamma_{0}\right)=\{\mathcal{E}<$ $\left.\left.\mathcal{E}\left(\gamma_{0}\right)\right\}\right)$, or

$$
C_{*}\left(\mathcal{E}, S^{1} \cdot \gamma_{0} ; \mathbb{K}\right)=H_{*}\left(\wedge\left(\gamma_{0}\right) \cup S^{1} \cdot \gamma_{0}, \wedge\left(\gamma_{0}\right) ; \mathbb{K}\right)
$$

at a critical orbit $S^{1} \cdot \gamma_{0}$ if $Q=\triangle_{M}$,

- to prove the induced homomorphism

$$
\begin{aligned}
\left(\varphi_{m}\right)_{*}: & H_{*}\left(\wedge\left(\gamma_{0}\right) \cup\left\{S^{1} \cdot \gamma_{0}\right\}, \wedge\left(\gamma_{0}\right) ; \mathbb{K}\right) \\
& \rightarrow H_{*}\left(\wedge\left(\gamma_{0}^{m}\right) \cup\left\{S^{1} \cdot \gamma_{0}^{m}\right\}, \wedge\left(\gamma_{0}^{m}\right) ; \mathbb{K}\right)
\end{aligned}
$$

are isomorphisms under suitable conditions, where the m-th iterate

$$
\begin{equation*}
\varphi_{m}: \wedge M \rightarrow \wedge M, \gamma \rightarrow \gamma^{m} \tag{1}
\end{equation*}
$$

by $\gamma^{m}(t)=\gamma(m t) \forall t \in \mathbb{R}$.

On Riemannian manifolds the energy functional \mathcal{E} are smooth and these can be completed with the Gromoll-Meyer splitting lemma for C^{2} functionals on Hilbert spaces and its corollaryshifting theorem.

So one cannot directly apply Gromoll-Meyer theory to the Finsler energy functional \mathcal{E}. In
past almost all literatures one completed the related arguments by using Gromoll-Meyer theory on the Morse's finite-dimensional approximation of $\Lambda_{Q}(M)$. For $a \in(0, \infty)$ and a large $k \in \mathbb{N}$ let

$$
\wedge_{Q}^{a}(M)=\left\{\gamma \in \wedge_{Q}(M): \mathcal{E}(\gamma) \leq a\right\},
$$

$\wedge_{Q}^{a}(k, M)=\left\{\gamma \in \wedge_{Q}^{a}(M): \gamma \left\lvert\,\left[\frac{i}{k}, \frac{i+1}{k}\right]\right.\right.$ is F-geodesic $\}$.
Then $\wedge_{Q}^{a}(k, M)^{\circ}:=\wedge_{Q}^{a}(k, M) \cap \operatorname{Int}\left(\wedge_{Q}^{a}(M)\right)$ is a smooth manifold of finite dimension, and

- the restriction of \mathcal{E} to $\wedge_{Q}^{a}(k, M)^{\circ}$ is smooth, and has the same critical set as \mathcal{E} in $\operatorname{Int}\left(\wedge_{Q}^{a}(M)\right)$,
- for each $c<a$ the set

$$
\wedge_{Q}^{c}(k, M)=\wedge_{Q}^{a}(k, M) \cap \wedge_{Q}^{c}(M)
$$

is compact, and a deformation retract of $\Lambda_{Q}^{c}(M)$ (this is also true for $\left.c=a\right)$.

Hence by applying Gromoll-Meyer theory to the restriction of \mathcal{E} to $\wedge_{Q}^{a}(k, M)^{\circ}$ one can complete the desired arguments. These can be found in

- H.H.Matthias [Bonner Math.Schr.128(1980)],
-H.B.Rademacher[[Bonner Math.Schr.229(1992)]
- Z.Shen [Lecture on Finsler Geometry, 2001]
- V.Bangert \& Y.Long[Math.Ann.346(2010)335].

As on Riemannian manifolds it is expected to develop infinite-dimensional Morse theory methods for geodesics problem on Finsler manifolds for conveniences in some cases.

We state the expected first result for $Q=\{p\} \times$ $\{q\}$ with $p \neq q$. Let γ_{0} be a nonconstant cpt of

$$
\wedge_{Q}(M) \ni \gamma \mapsto \mathcal{E}(\gamma)=\int_{0}^{1} F^{2}(\gamma(t), \dot{\gamma}(t)) d t
$$

Then $\gamma_{0} \in C_{Q}^{\infty}(I, M)$ and $\exists c>0$ such that

$$
\begin{equation*}
F\left(\gamma_{0}(t), \dot{\gamma}_{0}(t)\right)=\sqrt{c} \quad \forall t \in[0,1] \tag{2}
\end{equation*}
$$

Note the restriction of \mathcal{E} to Banach manifold

$$
C_{Q}^{1}(I, M)=\left\{x \in C^{1}(I, M) \mid(x(0), x(1)) \in Q\right\}
$$

is C^{2} near each regular curve, but it does not satisfy the (PS) condition on this space.

Let exp be the exponential map of a Riemann metric g on M, and take

$$
0<2 \rho<\inf \left\{\operatorname{inj}\left(\gamma_{0}(t), g\right) \mid t \in[0,1]\right\}
$$

Let e_{1}, \cdots, e_{n} be a parallel orthonormal frame along γ_{0}. Define $\varphi: I \times B^{n}(0, \rho) \rightarrow M$ by
$\varphi\left(t, x_{1}, \cdots, x_{n}\right)=\exp _{\gamma_{0}(t)}\left(x_{1} e_{1}(t)+\cdots+x_{n} e_{n}(t)\right)$.
It induces a chart

$$
\varphi_{*}: H_{0}^{1}\left(I, B^{n}(0, \rho)\right) \rightarrow H_{Q}^{1}(I, M)
$$

by $\varphi_{*}(x)(t)=\varphi(t, x(t))$. Then $\varphi_{*}(0)=\gamma_{0}$ and

$$
\widetilde{\mathcal{E}}(x):=\mathcal{E} \circ \varphi_{*}(x)=\int_{0}^{1} \widetilde{F}^{2}(t, x(t), \dot{x}(t)) d t
$$

Here $\widetilde{F}: I \times B^{n}(0, \rho) \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined by

$$
\widetilde{F}(t, x, v):=F(\varphi(t, x), d \varphi(t, x)[(1, v)])
$$

It is C^{2} in $\left(I \times B^{n}(0, \rho) \times \mathbb{R}^{n}\right) \backslash Z$, where $Z=$

$$
\left\{(t, x, v) \in I \times B^{n}(0, \rho) \times \mathbb{R}^{n} \mid d \varphi(t, x)[(1, v)]=0\right\}
$$

Let us define

$$
\begin{aligned}
& H:=H_{0}^{1}\left(I, \mathbb{R}^{n}\right) \\
& X:=\left\{x \in C^{1}\left(I, \mathbb{R}^{n}\right) \mid x(0)=x(1)=0\right\} \\
& \mathcal{U}:=H_{0}^{1}\left(I, B^{n}(0, \rho)\right)=\left\{x \in H: x(I) \subset B^{n}(0, \rho)\right\} \\
& \mathcal{U}_{X}:=X \cap \mathcal{U}=\left\{x \in X \mid x(I) \subset B^{n}(0, \rho)\right\}
\end{aligned}
$$

Note that φ_{*} restricts to a chart

$$
\varphi_{*}^{X}: \mathcal{U}_{X} \rightarrow C_{Q}^{1}(I, M)
$$

Let $B_{\delta}^{X}(0):=\left\{x \in X:\|x\|_{X}<\delta\right\}$. Then

$$
B_{\delta}^{X}(0) \subset \mathcal{U}_{X} \quad \text { for small } \delta>0
$$

Since $F^{2}\left(\gamma_{0}(t), \dot{\gamma}_{0}(t)\right) \equiv c>0$ by (2), we shrink $\delta>0$ so that $\forall x=\varphi_{*}^{X}(\tilde{x})$ with $\tilde{x} \in B_{\delta}^{X}(0)$,

$$
\begin{equation*}
F^{2}(x(t), \dot{x}(t))>\frac{2}{3} c \quad \forall t \in[0,1] . \tag{3}
\end{equation*}
$$

Then

- $\widetilde{\mathcal{E}}^{X}:=\mathcal{E} \circ \varphi_{*}^{X}=\left.\widetilde{\mathcal{E}}\right|_{\mathcal{U}_{X}}$ is C^{2} on $B_{\delta}^{X}(0)$ and
- \exists a Fredholm operator $B_{0} \in \mathcal{L}_{s}(H)$ s.t.

$$
\begin{equation*}
d^{2} \widetilde{\mathcal{E}}^{X}(0)(u, v)=\left(B_{0} u, v\right)_{H} \forall u, v \in X . \tag{4}
\end{equation*}
$$

(B_{0} is the second G-differential at 0 of $\tilde{\mathcal{E}}^{X}$. $m^{-}\left(\gamma_{0}\right)=\max \left\{\operatorname{dim} S \mid\right.$ subspace $S \subset H,\left.B_{0}\right|_{S}<$ $0\}$ is called Morse index \mathcal{E} at γ_{0}.)

- $N:=\operatorname{Ker}\left(B_{0}\right) \subset X$ and so orthogonal decomposition $H=N \oplus N^{\perp}$ induces a topological direct sum decomposition of closed subspaces
$X=N \oplus\left(N^{\perp} \cap X\right)$ with projection operator $\left.\left(I-P_{N}\right)\right|_{X}: X \rightarrow N^{\perp} \cap X$.
- The gradient $\nabla \tilde{\mathcal{E}}$ on H maps $B_{\delta}^{X}(0)$ into X, and thus give C^{1}-maps

$$
\begin{align*}
& A: B_{\delta}^{X}(0) \rightarrow X, x \mapsto \nabla \widetilde{\mathcal{E}}(x), \tag{5}\\
& E:\left(N \cap B_{\delta}^{X}(0)\right) \oplus\left(N^{\perp} B_{\delta}^{X}(0)\right) \rightarrow N^{\perp} \cap X
\end{align*}
$$

given by $E(u+v)=\left.\left(I-P_{N}\right)\right|_{X} \circ A(u+v)$.
Applying IFT to E we get $r \in(0, \delta), C^{1}$-map

$$
h: B_{r}^{X}(0) \cap N \rightarrow N^{\perp} \cap B_{\delta}^{X}(0)
$$

It is C^{2} and has an isolated critical point 0. (Expected) shifting theorem: $\forall q \in \mathbb{N} \cup\{0\}$,

$$
\begin{align*}
C_{q}\left(\mathcal{E}, \gamma_{0} ; \mathbb{K}\right) & \cong C_{q}(\widetilde{\mathcal{E}}, 0 ; \mathbb{K}) \tag{8}\\
& \cong C_{q-m^{-}\left(\gamma_{0}\right)}\left(\widetilde{\mathcal{E}}^{\circ}, 0 ; \mathbb{K}\right) ? \tag{9}
\end{align*}
$$

Since φ_{*} is a coordinate chart, (8) is obvious.
E. Caponio, M. A. Javaloyes, A. Masiello [Analyse Nonlinéaire 27(2010)857] used some ideas of K.-C. Chang in [Sci.Sinica Ser.A26(1983) 1241] and $\operatorname{book}(1993)$ to prove a splitting lemma of $\widetilde{\mathcal{E}}_{X}$ near $0 \in X=\left\{x \in C^{1}\left(I, \mathbb{R}^{n}\right) \mid x(0)=\right.$ $x(1)=0\}: \exists$ homeomorphism $\phi: B_{\eta}^{X}(0) \rightarrow$ $\phi\left(B_{\eta}^{X}(0)\right)$ with $\phi(0)=0(\eta<r)$ such that

$$
\tilde{\mathcal{E}}^{X}(\phi(x))=\frac{1}{2}\left(B_{0} v, v\right)_{H}+\widetilde{\mathcal{E}}(u+h(u))
$$

for any $x \in B_{r}^{X}(0), u=P_{N} x$ and $v=x-u$.
(Actually, this splitting lemma can also be proved by a generalization of Morse lemma by M. Jiang [Nonl.Anal,36(1999)943], see author's paper [arXiv:0909.0609 v1, 3 Sep 2009].)

As usual this implies for any $q \in \mathbb{N} \cup\{0\}$,

$$
\begin{equation*}
C_{q}\left(\widetilde{\mathcal{E}}^{X}, 0 ; \mathbb{K}\right) \cong C_{q-m^{-}\left(\gamma_{0}\right)}\left(\widetilde{\mathcal{E}}^{\circ}, 0 ; \mathbb{K}\right) \tag{10}
\end{equation*}
$$

However, they can only prove

$$
\begin{equation*}
C_{*}(\widetilde{\mathcal{E}}, 0 ; \mathbb{K}) \cong C_{*}\left(\widetilde{\mathcal{E}}^{X}, 0 ; \mathbb{K}\right) \tag{11}
\end{equation*}
$$

and so the shifting theorem in (9) if
γ_{0} (so 0) is a nondegenerate cpt.
See [E. Caponio, M. A. Javaloyes, A. Masiello, Addendum to "Morse theory... of a Finsler metric" [Ann.I.H.Poincaré-AN 27 (3)(2010)857-876].Ann.I.H.Poincaré-AN 30(5)(2013)961-968].

Their proof used ideas and techniques in

- Abbondandolo and Schwarz [Advanced Nonlinear Studies, 9(2009),597-623],
- K.-C. Chang in [Sci.Sinica Ser.A26(1983) 1241-1255],
- Palais [Th. 16,17, Topology 5(1966)1-16]. And nondegeneracy of cpt γ_{0} was essential to their Proposition 3: $\exists \mu_{0}>0$ s.t.

$$
d \widetilde{\mathcal{E}}(u)\left[B_{0} u\right] \geq \mu_{0}\|\nabla \widetilde{\mathcal{E}}(u)\|^{2} \forall u \text { near } 0 \in H,
$$

where B_{0} represents the second G-differential at 0 of $\widetilde{\mathcal{E}}^{X}$ as in (4).

Our methods

Follow author's preprint [arXiv:1212.2078v5]. We begin with our new splitting lemma in [Corrigendum: The Conley conjecture..., J.Funct. Anal.261(2011)542-589] (a more general version is in [The splitting lemmas for nonsmooth functionals on Hilbert spaces, Discr.Cont.Dyna. Syst-A. 33(2013)2939, arXiv:1102.2062v1]).

Hilbert space $\left(H,(\cdot, \cdot)_{H}\right),\|\cdot\|=\sqrt{(\cdot, \cdot)_{H}}$, and Banach space $\left(X,\|\cdot\|_{X}\right)$ satisfy
(S) $X \subset H$ is dense in H and $\|x\| \leq\|x\|_{X} \forall x$. \mathcal{U} - open neighborhood of $0 \in H$, $\mathcal{U}_{X}:=\mathcal{U} \cap X$ open neighborhood of $0 \in X$. $\mathcal{L} \in C^{1}(\mathcal{U}, \mathbb{R})$ has 0 as an isolated cpt. Assumptions: \exists maps $A \in C^{1}\left(\mathcal{U}_{X}, X\right)$ and $B \in$
$C\left(\mathcal{U}_{X}, \mathcal{L}_{s}(H)\right)$ such that

$$
\begin{gathered}
\mathcal{L}^{\prime}(x)(u)=(A(x), u)_{H} \quad \forall x \in \mathcal{U}_{X} \& u \in X \\
\left(A^{\prime}(x)(u), v\right)_{H}=(B(x) u, v)_{H} \forall x \in \mathcal{U}_{X}, \quad u, v \in X
\end{gathered}
$$

(These imply: (a) $\left.\mathcal{L}\right|_{\mathcal{U}_{X}} \in C^{2}\left(\mathcal{U}_{X}, \mathbb{R}\right)$,
(b) $\left.d^{2} \mathcal{L}\right|_{\mathcal{U}_{X}}(x)(u, v)=(B(x) u, v)_{H} \forall x \in \mathcal{U}_{X} \& u, v \in$ X, (c) $\left.B(x)(X) \subset X \forall x \in \mathcal{U}_{X}\right)$.
Furthermore we also assume B to satisfy:
(B1) $\{u \in H \mid B(0)(u) \in X\} \subset X$, and $B(0) u=\lambda u$ for $u \in H \& \lambda<0 \Rightarrow u \in X$.
(B2) $B: \mathcal{U}_{X} \rightarrow \mathcal{L}_{s}(H)$ has a decomposition

$$
B(x)=P(x)+Q(x) \quad \forall x \in \mathcal{U}_{X}
$$

$P(x) \in \mathcal{L}_{s}(H)$ is positive definite, $Q(x) \in \mathcal{L}_{s}(H)$
is compact, and also satisfy:
(i) $\forall\left(x_{k}\right) \subset \mathcal{U}$ with $\left\|x_{k}\right\| \rightarrow 0$ it holds that

$$
\left\|P\left(x_{k}\right) u-P(0) u\right\| \rightarrow 0 \forall u \in H
$$

(ii) $\forall\left(x_{k}\right) \subset \mathcal{U} \cap X$ with $\left\|x_{k}\right\| \rightarrow 0$ we have

$$
\left\|Q\left(x_{k}\right)-Q(0)\right\|_{\mathcal{L}_{s}(H)} \rightarrow 0 \text { as } k \rightarrow \infty ;
$$

(iii) \exists constants $\eta_{0}>0$ and $C_{0}>0$ such that $(P(x) u, u) \geq C_{0}\|u\|^{2} \quad \forall u \in H, \forall x \in B_{\eta_{0}}^{H}(0) \cap X$.
$N:=\operatorname{Ker}(B(0)), H^{-}=$maximal negative definite subspace of $B(0)$. ($(\mathrm{B} 1)+(\mathrm{B} 2) \Rightarrow$

$$
\operatorname{dim}\left(N+H^{-}\right)<\infty \& N+H^{-} \subset X .
$$

Call $m^{0}=\operatorname{dim} N$ nullity, $m^{-}=\operatorname{dim} H^{-}$Morse index, the cpt 0 nondegenerate if $m^{0}=0$.
$P_{N}: H \rightarrow N$ is the orthogonal projection, $X=N \oplus\left(N^{\perp} \cap X\right)$ is a topological direct sum decomposition. For $\delta>0$ let $B_{\delta}^{H}(0)=\{x \in H:\|x\|<\delta\}$. (Note: norms $\|\cdot\|$
and $\|\cdot\|_{X}$ are equivalent on N since $\operatorname{dim} N<$ ∞.) The following is our splitting lemma.

Theorem 2 Under (S) and (B1)-(B2), $\exists \epsilon>0$, $C^{1} \operatorname{map} h: B_{\epsilon}^{N}(0)=B_{\epsilon}^{H}(0) \cap N \rightarrow N^{\perp} \cap X$ satisfying $h(0)=0$ and

$$
\begin{equation*}
\left(I-P_{N}\right) A(z+h(z))=0 \quad \forall z \in B_{\epsilon}^{N}(0), \tag{12}
\end{equation*}
$$

- an open neighborhood W of 0 in H,
- an origin-preserving homeomorphism

$$
\Phi: B_{\epsilon}^{N}(0) \times B_{\epsilon}^{N^{\perp}}(0) \rightarrow W
$$

such that for all $(z, u) \in B_{\epsilon}^{N}(0) \times B_{\epsilon}^{N^{\perp}}(0)$,

$$
\begin{aligned}
\mathcal{L} \circ \Phi(z, u) & =\left\|u-P_{N} u-P_{H^{-}} u\right\|^{2}-\left\|P_{H^{-}} u\right\|^{2} \\
& +\mathcal{L}(z+h(z)) .
\end{aligned}
$$

(i) $\Phi(z, 0)=z+h(z) \forall z \in B_{N}(0, \epsilon)$.
(ii) $\forall z \in B_{\epsilon}^{N}(0), h^{\prime}(z)$ is equal to
$-\left.\left[\left.P_{N^{\perp}} A^{\prime}(z+h(z))\right|_{N^{\perp} \cap X}\right]^{-1} \circ P_{N^{\perp}} A^{\prime}(z+h(z))\right|_{N}$.
(iii) $B_{\epsilon}^{N}(0) \ni z \mapsto \mathcal{L}^{\circ}(z):=\mathcal{L}(z+h(z))$ is C^{2}, has 0 as an isolated $c p t, d^{2} \mathcal{L}^{\circ}(0)=0$, and

$$
d \mathcal{L}^{\circ}\left(z_{0}\right)(z)=\left(A\left(z_{0}+h\left(z_{0}\right)\right), z\right)_{H}
$$

for all $\left(z_{0}, z\right) \in B_{\epsilon}^{N}(0) \times N$.
(iv) Let $c=\mathcal{L}(0), \mathcal{L}^{X}=\left.\mathcal{L}\right|_{\mathcal{U}^{X}}, \mathcal{W} \subset \mathcal{U}$ be a neighborhood of 0 (so $\mathcal{W}_{X}:=\mathcal{W} \cap X$ a neighborhood of 0 in $X), \mathbb{K}$ be an Abel group. Then the inclusion
$\left(\mathcal{L}_{c}^{X} \cap \mathcal{W}_{X}, \mathcal{L}_{c}^{X} \cap \mathcal{W}_{X} \backslash\{0\}\right) \hookrightarrow\left(\mathcal{L}_{c} \cap \mathcal{W}, \mathcal{L}_{c} \cap \mathcal{W} \backslash\{0\}\right)$
(13)
induces surjective homomorphisms

$$
\begin{gather*}
H_{*}\left(\mathcal{L}_{c}^{X} \cap \mathcal{W}_{X}, \mathcal{L}_{c}^{X} \cap \mathcal{W}_{X} \backslash\{0\} ; \mathbb{K}\right) \rightarrow \\
H_{*}\left(\mathcal{L}_{c} \cap \mathcal{W}, \mathcal{L}_{c} \cap \mathcal{W} \backslash\{0\} ; \mathbb{K}\right) . \tag{14}
\end{gather*}
$$

Corollary 3 (Shifting) For any Abel group \mathbb{K}

$$
C_{q}(\mathcal{L}, 0 ; \mathbb{K}) \cong C_{q-m^{-}}\left(\mathcal{L}^{\circ}, 0 ; \mathbb{K}\right) \quad \forall q=0,1, \cdots
$$

Corollary 4 For any field \mathbb{K} the surjective homomorphisms in (14) are all isomorphisms !

- Th. $2 \Rightarrow$ Cor. 3 is standard, see Mawhin-Willem's book (89) and Chang's book (93).
- Under assumptions of Th. 2 we use a generalized Morse lemma by M.Jiang [Nonl.Anal,36(1999) 943] to prove a splitting lemma for \mathcal{L}^{X} at 0 : \exists ball $B_{\delta}^{X}(0) \subset \mathcal{U}_{X} \cap B_{\epsilon}^{H}(0)$, an origin-preserving local homeomorphism φ from $B_{\delta}^{X}(0)$ to a neighbor. of 0 in \mathcal{U}_{X} such that

$$
\begin{equation*}
\mathcal{L}^{X} \circ \varphi(x)=\frac{1}{2}\left(B(0) x^{\perp}, x^{\perp}\right)_{H}+\mathcal{L}^{\circ}(z) \tag{15}
\end{equation*}
$$

for $x \in B_{\delta}^{X}(0)$, where $z=P_{N}(x), x^{\perp}=x-z$.

So for any Abel group \mathbb{K} and $q \in \mathbb{N} \cup\{0\}$,

$$
\begin{equation*}
C_{q}\left(\mathcal{L}^{X}, 0 ; \mathbb{K}\right) \cong C_{q-m^{-}}\left(\mathcal{L}^{\circ}, 0 ; \mathbb{K}\right) \tag{16}
\end{equation*}
$$

When \mathbb{K} is a field, this, Cor. 3 and (14) lead to Cor.4, which is important for our methods.

A Lagrangian $L:[0,1] \times T M \rightarrow \mathbb{R}$ is called convex quadratic growth (CQG) if it satisfies:
(L1) \exists constant $\ell_{0}>0$ such that

$$
\partial_{v v} L(t, x, v) \geq \ell_{0} I,
$$

(L2) \exists constant $\ell_{1}>0$ such that

$$
\begin{aligned}
& \left\|\partial_{v v} L(t, x, v)\right\| \leq \ell_{1} \quad \text { and } \\
& \left\|\partial_{x v} L(t, x, v)\right\| \leq \ell_{1}\left(1+|v|_{x}\right) \\
& \left\|\partial_{x x} L(t, x, v)\right\| \leq \ell_{1}\left(1+|v|_{x}^{2}\right)
\end{aligned}
$$

with respect to some Riemann metric g (with $\left.|v|_{x}^{2}=g_{x}(v, v)\right)$.

In [J.Funct. Anal.261(2011)542-589] we had proved that for a CQG Lagrangian $L:[0,1] \times$ $T M \rightarrow \mathbb{R}$ the corresponding energy functional on $W^{1,2}\left(S^{1}, M\right)$ satisfies the conditions of Theorem 2 in a suitable chart.

Assume (M, F) is a compact Finsler manifold for simplicity. Since F^{2} is not C^{2} on $T M$, our idea is to deform F^{2} to a CQG Lagrangian L^{*}. Fix a Riemann metric g and write $|v|_{x}^{2}=$ $g_{x}(v, v)$. \exists constant $C_{1} \geq 1$,

$$
\begin{equation*}
|v|_{x}^{2} \leq F^{2}(x, v) \leq C_{1}|v|_{x}^{2} \quad \forall(x, v) \in T M . \tag{17}
\end{equation*}
$$

Given $c>0$, choose $0<\varepsilon<\delta<\frac{2 c}{3 C_{1}}$. We have suitable constants $\kappa>0, \varrho_{0}<0, \mu>0$ and $b>0$, and C^{∞} functions

$$
\psi_{\varepsilon, \delta}:[0, \infty) \rightarrow \mathbb{R}, \quad \phi_{\mu, b}:[0, \infty) \rightarrow \mathbb{R}
$$

as in the following figure:

Define $L^{*}: T M \rightarrow \mathbb{R}$ by
$L^{*}(x, v)=\frac{\psi_{\varepsilon, \delta}\left(F^{2}(x, v)\right)+\phi_{\mu, b}\left(|v|_{x}^{2}\right)+\mu \delta-\varrho_{0}}{\kappa}$.
Clearly, L^{*} is of C^{k} if F is only of $C^{k}(k \geq 2)$.

Proposition 5 (i) L^{*} is $C Q G$,
(ii) $L^{*}(x, v)=F^{2}(x, v)$ if $F^{2}(x, v) \geq \frac{2 c}{3 C_{1}}$,
(iii) $L^{*} \geq 0$, and $L^{*}(x, v)=0 \Longleftrightarrow v=0$,
(iv) $L^{*}(x, v) \leq F^{2}(x, v) \forall(x, v) \in T M$,
(v) if F is reversible, so is L^{*},

For $\tau \in[0,1]$ we define $L^{\tau}: T M \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
L^{\tau}(x, v)=(1-\tau) F^{2}(x, v)+\tau L^{*}(x, v) \tag{18}
\end{equation*}
$$

We present our results for two kinds of boundary conditions:

- $Q=M_{0} \times M_{1}, M_{0}$ and M_{1} are two disjoint boundaryless submanifolds of M,
- $Q=\triangle_{M}$.

Case 1

Let $\gamma_{0} \in \Lambda_{Q}(M)$ be an isolated nonconstant cpt of \mathcal{L} on $\Lambda_{Q}(M)$. Then $\exists c>0$, s.t.
$F\left(\gamma_{0}(t), \dot{\gamma}_{0}(t)\right) \equiv \sqrt{c}>0$. We can choose the Riemannian metric g such that:
M_{0} (resp. M_{1}) is totally geodesic near $\gamma_{0}(0)$ (resp. $\gamma_{0}(1)$).
$\Lambda_{Q}(M)$ is equipped with Hilbert-Riemannian structure induced by g. Let exp denote the
exponential map of g, and for $\rho>0$ let
$\mathbf{B}_{2 \rho}\left(T_{\gamma_{0}} \wedge_{Q}(M)\right)=\left\{\xi \in T_{\gamma_{0}} \wedge_{Q}(M) \mid\|\xi\|_{1}<2 \rho\right\}$.
$\exists \rho>0$ such that

$$
\begin{equation*}
\operatorname{EXP}_{\gamma_{0}}: \mathbf{B}_{2 \rho}\left(T_{\gamma_{0}} \wedge_{Q}(M)\right) \rightarrow \wedge_{Q}(M) \tag{19}
\end{equation*}
$$

given by $\operatorname{EXP}_{\gamma_{0}}(\xi)(t)=\exp _{\gamma_{0}(t)}(\xi(t))$, is a coordinate chart around γ_{0} on $\wedge_{Q}(M)$. Define

$$
\begin{equation*}
\mathcal{L}^{\tau}(\gamma)=\int_{0}^{1} L^{\tau}(\gamma(t), \dot{\gamma}(t)) d t \forall \gamma \in \wedge_{Q}(M) \tag{20}
\end{equation*}
$$

for L^{τ} in (18).

Then $\mathcal{L}^{\tau} \circ \operatorname{EXP}_{\gamma_{0}}$ is C^{2-0} and has an isolated cpl $0 \in T_{\gamma_{0}} \wedge_{Q}(M)=W_{Q}^{1,2}\left(\gamma_{0}^{*} T M\right)$. Let $I=$ $[0,1]$. Consider the Banach manifold

$$
\begin{aligned}
& \mathcal{X}=C_{Q}^{1}(I, M)=\left\{\gamma \in C^{1}(I, M) \mid(\gamma(0), \gamma(1)) \in Q\right\} . \\
& T_{\gamma_{0}} \mathcal{X}=\left\{\xi \in C^{1}\left(\gamma_{0}^{*} T M\right) \mid(\xi(0), \xi(1)) \in T Q\right\}
\end{aligned}
$$

with usual C^{1}-norm. Let $\mathcal{E}^{X}=\mathcal{E} \mid \mathcal{X}$ and

$$
\mathbf{B}_{2 \rho}\left(T_{\gamma_{0}} \mathcal{X}\right)=\left\{\xi \in T_{\gamma_{0}} \mathcal{X}:\|\xi\|_{C^{1}}<2 \rho\right\}
$$

Then $\mathbf{B}_{2 \rho}\left(T_{\gamma_{0}} \mathcal{X}\right) \subset \mathbf{B}_{2 \rho}\left(T_{\gamma_{0}} \wedge_{Q}(M)\right) \cap T_{\gamma_{0}} \mathcal{X}$. Let

$$
\mathcal{A}^{\tau}=\nabla\left(\mathcal{L}^{\tau} \circ \mathrm{EXP}_{\gamma_{0}}\right) \mid \mathbf{B}_{2 \rho}\left(T_{\gamma_{0}} \mathcal{X}\right)
$$

We can shrink $\rho>0$ so that
$\min _{t} F^{2}(\gamma(t), \dot{\gamma}(t)) \geq \frac{2 c}{3 C_{1}} \forall \gamma \in \operatorname{EXP}_{\gamma_{0}}\left(\mathbf{B}_{2 \rho}\left(T_{\gamma_{0}} \mathcal{X}\right)\right)$.
By Prop.5(ii), for any $\tau \in[0,1]$

$$
\mathcal{A}^{\tau}=\mathcal{A}=\nabla\left(\mathcal{E} \circ \mathrm{EXP}_{\gamma_{0}}\right) \mid \mathrm{B}_{2 \rho}\left(T_{\gamma_{0}} \mathcal{X}\right)
$$

is a C^{1}-map to $T_{\gamma_{0}} \mathcal{X}$ and

$$
\left\langle d \mathcal{A}^{\tau}(0)[\xi], \eta\right\rangle_{1}=d^{2} \mathcal{E}^{X}\left(\gamma_{0}\right)[\xi, \eta] \quad \forall \xi, \eta \in T_{\gamma_{0}} \mathcal{X}
$$

The symmetric bilinear form $d^{2} \mathcal{E}^{X}\left(\gamma_{0}\right)$ can be extended into such a form on $T_{\gamma_{0}} \wedge_{Q}(M)$, also denoted by $d^{2} \mathcal{E}^{X}\left(\gamma_{0}\right)$. The associated selfadjoint operator is Fredholm, has finite dimen-
sional negative definite and null spaces

$$
\mathbf{H}^{-}\left(d^{2} \mathcal{E}^{X}\left(\gamma_{0}\right)\right) \quad \text { and } \quad \mathbf{H}^{0}\left(d^{2} \mathcal{E}^{X}\left(\gamma_{0}\right)\right)
$$

which are actually contained in $T_{\gamma_{0}} \mathcal{X}$. Call

$$
\begin{aligned}
& m^{-}\left(\gamma_{0}\right):=\operatorname{dim} \mathbf{H}^{-}\left(d^{2} \mathcal{E}^{X}\left(\gamma_{0}\right)\right) \quad \text { and } \\
& m^{0}\left(\gamma_{0}\right):=\operatorname{dim} \mathbf{H}^{0}\left(d^{2} \mathcal{E}^{X}\left(\gamma_{0}\right)\right)
\end{aligned}
$$

Morse index and nullity of γ_{0}, respectively. \exists the orthogonal decomposition

$$
\begin{align*}
T_{\gamma_{0}} \wedge_{Q}(M) & =\mathbf{H}^{-}\left(d^{2} \mathcal{E}^{X}\left(\gamma_{0}\right)\right) \oplus \mathbf{H}^{0}\left(d^{2} \mathcal{E}^{X}\left(\gamma_{0}\right)\right) \\
& \oplus \mathbf{H}^{+}\left(d^{2} \mathcal{E}^{X}\left(\gamma_{0}\right)\right), \tag{21}
\end{align*}
$$

which induces a (topological) direct sum decomposition of Banach spaces

$$
\begin{aligned}
T_{\gamma_{0}} \mathcal{X} & =\mathbf{H}^{-}\left(d^{2} \mathcal{E}^{X}\left(\gamma_{0}\right)\right) \dot{+} \mathbf{H}^{0}\left(d^{2} \mathcal{E}^{X}\left(\gamma_{0}\right)\right) \\
& \dot{+}\left(\mathbf{H}^{+}\left(d^{2} \mathcal{E}^{X}\left(\gamma_{0}\right)\right) \cap T_{\gamma_{0}} \mathcal{X}\right) .
\end{aligned}
$$

Using IFT, $\exists \delta \in(0,2 \rho]$ and a unique C^{1}-map
h from ball $\mathbf{B}_{\delta}\left(\mathbf{H}^{0}\left(d^{2} \mathcal{E}^{X}\left(\gamma_{0}\right)\right)\right) \subset \mathbf{B}_{2 \rho}\left(T_{\gamma_{0}} \mathcal{X}\right)$ to

$$
\mathbf{H}^{-}\left(d^{2} \mathcal{E}^{X}\left(\gamma_{0}\right)\right) \dot{+}\left(\mathbf{H}^{+}\left(d^{2} \mathcal{E}^{X}\left(\gamma_{0}\right)\right) \cap T_{\gamma_{0}} \mathcal{X}\right)
$$

such that $h(0)=0, d h(0)=0$ and
$\left(I-P^{0}\right) \mathcal{A}(\xi+h(\xi))=0 \forall \xi \in \mathbf{B}_{\delta}\left(\mathbf{H}^{0}\left(d^{2} \mathcal{E}^{X}\left(\gamma_{0}\right)\right)\right)$,
where $P^{\star}: T_{\gamma_{0}} \wedge_{Q}(M) \rightarrow \mathbf{H}^{\star}\left(d^{2} \mathcal{E}^{X}\left(\gamma_{0}\right)\right), \star=$ $-, 0,+$, are orthogonal projections given by (21). Define $\mathcal{E}^{\circ}: \mathbf{B}_{\delta}\left(\mathbf{H}^{0}\left(d^{2} \mathcal{E}^{X}\left(\gamma_{0}\right)\right)\right) \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\mathcal{E}^{\circ}(\xi)=\mathcal{E} \circ \operatorname{EXP}_{\gamma_{0}}(\xi+h(\xi)) . \tag{22}
\end{equation*}
$$

It is C^{2}, has an isolated cpt 0 , and $d^{2} \mathcal{E}^{\circ}(0)=0$.

Theorem 6 Let \mathbb{K} be an Abel group.
(i) $C_{*}\left(\mathcal{L}^{\tau}, \gamma_{0} ; \mathbb{K}\right) \cong C_{*}\left(\mathcal{E}, \gamma_{0} ; \mathbb{K}\right) \forall \tau \in[0,1]$.
(ii) \exists a splitting lemma for $\mathcal{L}^{*} \circ \operatorname{EXP}_{\gamma_{0}}:=$ $\mathcal{L}^{1} \circ \mathrm{EXP}_{\gamma_{0}}$ at $0 \in T_{\gamma_{0}} \wedge_{Q}(M)$, i.e. (by shrinking $\delta>0) \exists$ an origin-preserving homeomorphism
ψ from $\mathbf{B}_{\delta}\left(T_{\gamma_{0}} \wedge_{Q}(M)\right)$ to an open neighborhood of 0 in $T_{\gamma_{0}} \wedge_{Q}(M)$ such that
$\mathcal{L}^{*} \circ \operatorname{EXP}_{\gamma_{0}} \circ \psi(\xi)=\left\|P^{+} \xi\right\|_{1}^{2}-\left\|P^{-} \xi\right\|_{1}^{2}+\mathcal{E}^{\circ}\left(P^{0} \xi\right)$
$\forall \xi \in \mathbf{B}_{\delta}\left(T_{\gamma_{0}} \wedge_{Q}(M)\right)$, and hence $\forall q \in \mathbb{N} \cup\{0\}$

$$
\begin{equation*}
C_{q}\left(\mathcal{L}^{*}, 0 ; \mathbb{K}\right) \cong C_{q-m^{-}\left(\gamma_{0}\right)}\left(\mathcal{E}^{\circ}, 0 ; \mathbb{K}\right) \tag{23}
\end{equation*}
$$

(iii) \exists a splitting lemma for $\mathcal{E}^{X} \circ \operatorname{EXP}_{\gamma_{0}}$ at $0 \in$ $T_{\gamma_{0}} \mathcal{X}$, ie. $\exists \epsilon \in(0, \delta)$ and an origin-preserving homeomorphism φ from $\mathbf{B}_{\epsilon}\left(T_{\gamma_{0}} \mathcal{X}\right)$ to an open neighborhood of 0 in $T_{\gamma_{0}} \mathcal{X}$ such that for any $\xi \in \mathbf{B}_{\epsilon}\left(T_{\gamma_{0}} \mathcal{X}\right)$,

$$
\begin{aligned}
\mathcal{E}^{X} \circ \operatorname{EXP}_{\gamma_{0}} \circ \varphi(\xi) & =\frac{1}{2} d^{2} \mathcal{E}^{X}\left(\gamma_{0}\right)\left[P^{+} \xi, P^{+} \xi\right] \\
& -\left\|P^{-} \xi\right\|_{1}^{2}+\mathcal{E}^{\circ}\left(P^{0} \xi\right),
\end{aligned}
$$

and hence $\forall q \in \mathbb{N} \cup\{0\}$

$$
\begin{equation*}
C_{q}\left(\mathcal{E}^{X}, 0 ; \mathbb{K}\right) \cong C_{q-m^{-}\left(\gamma_{0}\right)}\left(\mathcal{E}^{\circ}, 0 ; \mathbb{K}\right) \tag{24}
\end{equation*}
$$

(iv) Let $\mathcal{L}^{* X}=\mathcal{L}^{*} \mid \mathcal{X}, \mathcal{W} \subset \wedge_{Q}(M)$ be a neighborhood of γ_{0} (so $\mathcal{W}_{X}:=\mathcal{W} \cap \mathcal{X}$ a neighborhood of γ_{0} in \mathcal{X}). Then the inclusion

$$
\begin{gather*}
\left(\mathcal{L}_{c}^{* X} \cap \mathcal{W}_{X}, \mathcal{L}_{c}^{* X} \cap \mathcal{W}_{X} \backslash\left\{\gamma_{0}\right\}\right) \hookrightarrow \\
\left(\mathcal{L}_{c}^{*} \cap \mathcal{W}, \mathcal{L}_{c}^{*} \cap \mathcal{W} \backslash\left\{\gamma_{0}\right\}\right) \tag{25}
\end{gather*}
$$

induces surjective homomorphisms

$$
\begin{align*}
& H_{*}\left(\mathcal{L}_{c}^{* X} \cap \mathcal{W}_{X}, \mathcal{L}_{c}^{* X} \cap \mathcal{W}_{X} \backslash\left\{\gamma_{0}\right\} ; \mathbb{K}\right) \rightarrow \\
& \quad H_{*}\left(\mathcal{L}_{c}^{*} \cap \mathcal{W}, \mathcal{L}_{c}^{*} \cap \mathcal{W} \backslash\left\{\gamma_{0}\right\} ; \mathbb{K}\right), \tag{26}
\end{align*}
$$

which are also isomorphisms if \mathbb{K} is a field.

When $\mathcal{W} \subset \wedge_{Q}(M)$ is a closed neighborhood of $\gamma_{0}, \mathcal{W}_{X}:=\mathcal{W} \cap \mathcal{X}$ is also a closed neighborhood of γ_{0} in \mathcal{X}). Choose an open neighborhood \mathcal{O} of γ_{0} in \mathcal{X} such that $\mathcal{W}_{X} \backslash \mathcal{O}$ is contained in the interior of $\mathcal{W}_{X} \backslash\left\{\gamma_{0}\right\}$ and that $\mathcal{L}^{*}=\mathcal{E}$ in \mathcal{O}. Then by excision theorem for singular
homology groups the inclusion

$$
\begin{align*}
& \left(\mathcal{E}_{c}^{X} \cap \mathcal{O}, \mathcal{E}_{c}^{X} \cap \mathcal{O} \backslash\left\{\gamma_{0}\right\}\right) \hookrightarrow \\
& \quad\left(\mathcal{L}_{c}^{* X} \cap \mathcal{W}_{X}, \mathcal{L}_{c}^{* X} \cap \mathcal{W}_{X} \backslash\left\{\gamma_{0}\right\}\right) \tag{27}
\end{align*}
$$

induces isomorphisms

$$
\begin{aligned}
& H_{*}\left(\mathcal{E}_{c}^{X} \cap \mathcal{O}, \mathcal{E}_{c}^{X} \cap \mathcal{O} \backslash\left\{\gamma_{0}\right\} ; \mathbb{K}\right) \rightarrow \\
& H_{*}\left(\mathcal{L}_{c}^{* X} \cap \mathcal{W}_{X}, \mathcal{L}_{c}^{* X} \cap \mathcal{W}_{X} \backslash\left\{\gamma_{0}\right\} ; \mathbb{K}\right)(28)
\end{aligned}
$$

for any abel group \mathbb{K}.

These and Theorem 6 are sufficient for Morse theory arguments needed.

The above versions are convenient in applications. Their proofs can be completed in another chart. Since M_{0} (resp. M_{1}) is totally geodesic near $\gamma_{0}(0)\left(r e s p . \gamma_{0}(1)\right)$ with respect to the metric g on M. Since γ_{0} is of class C^{∞}
we may take a parallel orthogonal C^{∞} frame field along γ_{0} with respect to the metric g, $I \ni t \rightarrow\left(e_{1}(t), \cdots, e_{n}(t)\right)$. For a small open ball $B^{n}(0,2 \rho) \subset \mathbb{R}^{n}$ we get a C^{∞} map
$\phi: I \times B^{n}(0,2 \rho) \rightarrow M,(t, v) \mapsto \exp _{\gamma_{0}(t)}\left(\sum_{i=1}^{n} v_{i} e_{i}(t)\right)$.
Since \exists linear subspaces $V_{i} \subset \mathbb{R}^{n}, i=0,1$, such that $v \in V_{i} \Leftrightarrow \sum_{k=1}^{n} v_{k} e_{k}(i) \in T_{\gamma_{0}(i)} M_{i}, i=0,1$, by shrinking $\rho>0$ (if necessary) we get

$$
v \in V_{i} \cap B^{n}(0,2 \rho) \Leftrightarrow \phi(i, v) \in M_{i}, i=0,1
$$

Set $V:=V_{0} \times V_{1}$ and

$$
\begin{aligned}
& H_{V}:=\left\{\zeta \in W^{1,2}\left(I, \mathbb{R}^{n}\right) \mid(\zeta(0), \zeta(1)) \in V\right\}, \\
& X_{V}:=\left\{\zeta \in C^{1}\left(I, \mathbb{R}^{n}\right) \mid(\zeta(0), \zeta(1)) \in V\right\} .
\end{aligned}
$$

Use $(\cdot, \cdot)_{W^{1,2}}$ and $\|\cdot\|_{W^{1,2}}$ to denote the inner product and norm in H_{V}. Let $\mathbf{B}_{2 \rho}\left(H_{V}\right):=\{\zeta \in$
$\left.H_{V} \mid\|\zeta\|_{W^{1,2}}<2 \rho\right\}$. Then the map

$$
\begin{equation*}
\Phi: \mathbf{B}_{2 \rho}\left(H_{V}\right) \rightarrow \wedge_{Q}(M) \tag{29}
\end{equation*}
$$

defined by $\Phi(\zeta)(t)=\phi(t, \zeta(t))$, gives a coordinate chart around γ_{0} on $\wedge_{Q}(M)$. Define $\tilde{L}^{\tau}: I \times B_{2 \rho}^{n}(0) \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
\tilde{L}^{\tau}(t, x, v)=L^{\tau}(\phi(t, x), d \phi(t, x)[(1, v)])
$$

and $\tilde{\mathcal{L}}^{\tau}: \mathbf{B}_{2 \rho}\left(H_{V}\right) \rightarrow \mathbb{R}$ by

$$
\tilde{\mathcal{L}}^{\tau}(\xi)=\int_{0}^{1} \tilde{L}^{\tau}(t, \xi(t), \dot{\xi}(t)) d t \quad \forall \xi \in \mathbf{B}_{2 \rho}\left(H_{V}\right)
$$

We can prove that this family of functionals satisfies stability theorem of critical groups (see Th.8.8 in Mawhin-Willem's book (89) or Th.5.6 in Chang's book (93), or Cingolani and Degiovanni [Adv.Nonl.Stud.9(2009)679]). So
for any $q=0,1, \cdots$, we get

$$
\begin{aligned}
C_{q}\left(\mathcal{E}, \gamma_{0} ; \mathbb{K}\right) & =C_{q}\left(\widetilde{\mathcal{L}}^{0}, 0 ; \mathbb{K}\right) \\
& =C_{q}\left(\widetilde{\mathcal{L}}^{1}, 0 ; \mathbb{K}\right)=C_{q}\left(\mathcal{L}^{*}, \gamma_{0} ; \mathbb{K}\right) .
\end{aligned}
$$

Moreover we can prove that Theorem 2 can be applied to $\widetilde{\mathcal{L}}^{*}:=\widetilde{\mathcal{L}}^{1}$. Hence Theorem 6 follows.

Case 2

For $Q=\triangle_{M}$,

$$
\begin{aligned}
& \wedge_{Q}(M)=\wedge M:=W^{1,2}\left(S^{1}, M\right) \\
& =\left\{\gamma \in W_{l o c}^{1,2}(\mathbb{R}, M) \mid \gamma(t+1)=\gamma(t) \forall t \in \mathbb{R}\right\} .
\end{aligned}
$$

Here $S^{1}:=\mathbb{R} / \mathbb{Z}=\{[s] \mid[s]=s+\mathbb{Z}, s \in \mathbb{R}\}$.
\exists equivariant and isometric operations of S^{1} action on $W^{1,2}\left(S^{1}, M\right)$ and $T W^{1,2}\left(S^{1}, M\right)$:

$$
\begin{aligned}
& {[s] \cdot \gamma(t)=\gamma(s+t), \quad \forall[s] \in S^{1}, \gamma \in \wedge M,} \\
& {[s] \cdot \xi(t)=\xi(s+t), \quad \forall[s] \in S^{1}, \xi \in T_{\gamma} \wedge M,}
\end{aligned}
$$

which are continuous, but not differentiable. \mathcal{E} is S^{1}-invariant. Let $\gamma_{0} \in \wedge M$ be a (nonconstant) cpt of \mathcal{E} with critical value $c>0$. The orbit $\mathcal{O}:=S^{1} \cdot \gamma_{0}$ is a smooth critical submanifold of \mathcal{E} in $\wedge M$. We assume: \mathcal{O} is an isolated critical orbit.

Let $\mathcal{X}=C^{1}\left(S^{1}, M\right), \pi: N \mathcal{O} \rightarrow \mathcal{O}$ be the normal bundle of \mathcal{O} in $\wedge M$. Then $X N \mathcal{O}:=T_{\mathcal{O}} \mathcal{X} \cap N \mathcal{O}$ is a Banach vector bundle over \mathcal{O}. Define

$$
\left.\begin{array}{l}
N \mathcal{O}(\varepsilon)=\left\{(x, v) \in N \mathcal{O} \mid\|v\|_{1}<\varepsilon\right\} \\
X N \mathcal{O}(\varepsilon)=\left\{(x, v) \in X N \mathcal{O} \mid\|v\|_{C^{1}}<\varepsilon\right\} .
\end{array}\right\}
$$

Clearly, $X N O(\varepsilon) \subset N O(\varepsilon)$. (Replacing M by a compact neighborhood of \mathcal{O}) we may assume $\varepsilon>0$ so small that the map
$\mathrm{EXP}: T \wedge M(\varepsilon)=\left\{(x, v) \in T \wedge M \mid\|v\|_{1}<\varepsilon\right\} \rightarrow \wedge M$
defined by $\operatorname{EXP}(x, v)(t)=\exp _{x(t)} v(t) \forall t \in \mathbb{R}$,
restricts to a S^{1}-equivariant diffeomorphism from the normal disk bundle $N \mathcal{O}(\varepsilon)$ onto a S^{1} invariant open neighborhood of \mathcal{O} in $\wedge M$,

$$
\begin{equation*}
\digamma: N \mathcal{O}(\varepsilon) \rightarrow \mathcal{N}(\mathcal{O}, \varepsilon) \tag{30}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mathcal{F}:=\mathcal{E} \circ \digamma \quad \text { and } \quad \mathcal{F}^{*}:=\mathcal{L}^{*} \circ \digamma \tag{31}
\end{equation*}
$$

are C^{2-0}, S^{1}-invariant and satisfy (PS). Let
$\mathcal{F}^{X}=\mathcal{F}\left|N \mathcal{O}(\varepsilon) \cap X N \mathcal{O}, \mathcal{F}^{* X}=\mathcal{F}^{*}\right| N \mathcal{O}(\varepsilon) \cap X N \mathcal{O}$
and let $\mathcal{F}_{x}, \mathcal{F}_{x}^{*}, \mathcal{F}_{x}^{X}, \mathcal{F}_{x}^{* X}$ be restrictions of $\mathcal{F}, \mathcal{F}^{*}$ and $\mathcal{F}^{X}, \mathcal{F}^{* X}$ to the fibres at $x \in \mathcal{O}$. Let

$$
A_{x}:=\nabla \mathcal{F}_{x} \mid N \mathcal{O}(\varepsilon)_{x} \cap X N \mathcal{O}_{x} .
$$

When $\delta>0$ is small A_{x} is a C^{1} map from $X N O(\delta)_{x}$ to $X N \mathcal{O}_{x}$ (so \mathcal{F}_{x}^{X} is C^{2} on $\left.X N O(\delta)_{x}\right)$.

$$
A_{s \cdot x}(s \cdot v)=s \cdot A_{x}(v) \forall s \in S^{1}, v \in N \mathcal{O}(\varepsilon)_{x} \cap X N \mathcal{O}_{x}
$$

Denote by B_{x} the symmetric bilinear form $d^{2} \mathcal{F}_{x}^{X}(0)$ and by its extension on $N \mathcal{O}_{x}$. The associated self-adjoint operator is Fredholm, has finite dimensional negative definite and null spaces

$$
\mathbf{H}^{-}\left(B_{x}\right) \quad \text { and } \quad \mathbf{H}^{0}\left(B_{x}\right) .
$$

Moreover, $\mathbf{H}^{-}\left(B_{x}\right)+\mathbf{H}^{0}\left(B_{x}\right) \subset X N \mathcal{O}_{x}$, and \exists orthogonal decomposition

$$
\begin{equation*}
N \mathcal{O}_{x}=\mathbf{H}^{-}\left(B_{x}\right) \oplus \mathbf{H}^{0}\left(B_{x}\right) \oplus \mathbf{H}^{+}\left(B_{x}\right) \tag{32}
\end{equation*}
$$

Since $B_{s \cdot x}(s \cdot \xi, s \cdot \eta)=B_{x}(\xi, \eta) \forall s \in S^{1}, x \in \mathcal{O}$, (32) leads to a natural Hilbert vector bundle orthogonal decomposition

$$
\begin{equation*}
N \mathcal{O}=\mathbf{H}^{-}(B) \oplus \mathbf{H}^{0}(B) \oplus \mathbf{H}^{+}(B) \tag{33}
\end{equation*}
$$

with $\mathbf{H}^{\star}(B)_{x}=\mathbf{H}^{\star}\left(B_{x}\right)$ for $x \in \mathcal{O}$ and $\star=$ $+, 0,-$, which induces a Banach vector bundle
(topological) direct sum decomposition

$$
X N \mathcal{O}=\mathbf{H}^{-}(B) \dot{+} \mathbf{H}^{0}(B) \dot{+}\left(\mathbf{H}^{+}(B) \cap X N \mathcal{O}\right) .
$$

$m^{-}(\mathcal{O}):=\operatorname{rankH}^{-}(B)$ and $m^{0}(\mathcal{O}):=\operatorname{rankH}^{0}(B)$ are called Morse index and nullity of \mathcal{O}. When $m^{0}(\mathcal{O})=0$ the orbit \mathcal{O} is called nondegenerate. Moreover $0 \leq m^{0}(\mathcal{O}) \leq 2 n-1$.

Let $\mathbf{P}^{\star}: N \mathcal{O} \rightarrow \mathbf{H}^{\star}(B)$ be the orthogonal bundle projections, $\star=+, 0,-$, and let

$$
\mathbf{H}^{0}(B)(\epsilon)=\mathbf{H}^{0}(B) \cap N \mathcal{O}(\epsilon) \text { for } \epsilon>0 .
$$

Then $\mathbf{H}^{0}(B)(\epsilon) \subset X N \mathcal{O}$ and we may shrink $\epsilon>$ 0 so that $\mathbf{H}^{0}(B)(\epsilon) \subset X N O(\delta)$ since $\operatorname{rankH}^{0}(B)<$ ∞ and \mathcal{O} is compact. By IFT, shrinking $\epsilon>0$ assures: $\forall x \in \mathcal{O} \exists$ unique S_{x}^{1}-equivariant C^{1}
map

$$
\begin{equation*}
\mathfrak{h}_{x}: \mathbf{H}^{0}(B)(\epsilon)_{x} \rightarrow \mathbf{H}^{-}(B)_{x} \dot{+}\left(\mathbf{H}^{+}(B)_{x} \cap X N \mathcal{O}_{x}\right) \tag{34}
\end{equation*}
$$

such that $\mathfrak{h}_{x}\left(\mathrm{O}_{x}\right)=\mathrm{O}_{x}, d \mathfrak{h}_{x}\left(\mathrm{O}_{x}\right)=\mathrm{O}_{x}$ and

$$
\left(\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-}\right) \circ A_{x}\left(v+\mathfrak{h}_{x}(v)\right)=0 \forall v \in \mathbf{H}^{0}(B)(\epsilon)_{x}
$$

Moreover, the functional $\mathcal{E}_{\triangle}^{\circ}$ given by

$$
\mathbf{H}^{0}(B)(\epsilon) \ni(x, v) \rightarrow \mathcal{E} \circ \mathrm{EXP}_{x}\left(v+\mathfrak{h}_{x}(v)\right)
$$

is C^{1}, has the isolated critical orbit \mathcal{O} and restricts to a C^{2} functional $\mathcal{E}_{\triangle x}^{\circ}$ in fiber $\mathbf{H}^{0}(B)(\epsilon)_{x}$.

Theorem 7 (i) $C_{*}\left(\mathcal{L}^{\tau}, \mathcal{O} ; \mathbb{K}\right)=C_{*}(\mathcal{E}, \mathcal{O} ; \mathbb{K}) \forall \tau$.

(ii) \exists a splitting lemma for $\mathcal{F}^{*}:=\mathcal{L}^{*} \circ \digamma$ near $\mathcal{O} \subset N \mathcal{O}(\varepsilon)$: shrinking $\epsilon>0, \exists$ a S^{1}-invariant open neighborhood U of $\mathcal{O} \subset N \mathcal{O}$, a S^{1}-equivariant fiber-preserving, C^{1} map \mathfrak{h} given by (34), and a
S^{1}-equivariant fiber-preserving homeomorphism $\Upsilon: N \mathcal{O}(\epsilon) \rightarrow U$ such that for all $(x, u) \in N \mathcal{O}(\epsilon)$,

$$
\begin{aligned}
& \mathcal{F}^{*} \circ \Upsilon(x, u)=\mathcal{L}^{*} \circ \operatorname{EXP} \circ \Upsilon(x, u) \\
& =\left\|\mathbf{P}_{x}^{+} u\right\|_{1}^{2}-\left\|\mathbf{P}_{x}^{-} u\right\|_{1}^{2}+\mathcal{E}_{\Delta x}^{\circ}\left(\mathbf{P}_{x}^{0} u\right) .
\end{aligned}
$$

(iii) \exists a splitting lemma for $\mathcal{F}^{X}:=\mathcal{E}^{X} \circ \digamma$ near $\mathcal{O} \subset X N O(\varepsilon)$: shrinking $\epsilon>0 \exists S^{1-}$ invariant open neighborhood V of $\mathcal{O} \subset X N \mathcal{O}$, S^{1}-equivariant fiber-preserving C^{1} map \mathfrak{h} given by (34), S^{1}-equivariant fiber-preserving homeomorphism $\Psi: X N \mathcal{O}(\epsilon) \rightarrow V$ such that for all $(x, v) \in X N \mathcal{O}(\epsilon)$,

$$
\begin{aligned}
\mathcal{E}^{X} \circ \operatorname{EXP} \circ \Psi(x, v) & =\left.\frac{1}{2} d^{2} \mathcal{L}\right|_{\mathcal{X}}(x)\left[\mathbf{P}_{x}^{+} v, \mathbf{P}_{x}^{+} v\right] \\
& -\left\|\mathbf{P}_{x}^{-} v\right\|_{1}^{2}+\mathcal{L}_{\triangle x}^{\circ}\left(\mathbf{P}_{x}^{0} v\right)
\end{aligned}
$$

(iv) For any open neighborhood \mathcal{W} of \mathcal{O} in $\wedge M$ and a field \mathbb{K}, write $\mathcal{W}_{X}=\mathcal{W} \cap \mathcal{X}$ as an open subset of \mathcal{X}, then the inclusion $\left(\left(\mathcal{L}^{*} \mid \mathcal{X}\right)_{c} \cap \mathcal{W}_{X},\left(\mathcal{L}^{*} \mid \mathcal{X}\right)_{c} \cap \mathcal{W}_{X} \backslash \mathcal{O}\right) \hookrightarrow\left(\mathcal{L}_{c}^{*} \cap \mathcal{W}, \mathcal{L}_{c}^{*} \cap \mathcal{W} \backslash \mathcal{O}\right)$
induces isomorphisms

$$
\begin{aligned}
& H_{*}\left(\left(\mathcal{L}^{*} \mid \mathcal{X}\right)_{c} \cap \mathcal{W}_{X},\left(\mathcal{L}^{*} \mid \mathcal{X}\right)_{c} \cap \mathcal{W}_{X} \backslash \mathcal{O} ; \mathbb{K}\right) \rightarrow \\
& H_{*}\left(\mathcal{L}_{c}^{*} \cap \mathcal{W}, \mathcal{L}_{c}^{*} \cap \mathcal{W} \backslash \mathcal{O} ; \mathbb{K}\right)
\end{aligned}
$$

The corresponding conclusion is still true if $\left(\left(\mathcal{L}^{*} \mid \mathcal{X}\right)_{c} \cap \mathcal{W}_{X},\left(\mathcal{L}^{*} \mid \mathcal{X}\right)_{c} \cap \mathcal{W}_{X} \backslash \mathcal{O}\right)$ and $\left(\mathcal{L}_{c}^{*} \cap \mathcal{W}, \mathcal{L}_{c}^{*} \cap \mathcal{W} \backslash \mathcal{O}\right)$ are replaced by $\left(\left(\dot{\mathcal{L}}^{*} \mid \mathcal{X}\right)_{c} \cap \mathcal{W}_{X} \cup \mathcal{O},\left(\left.\dot{\mathcal{L}}^{*}\right|_{\mathcal{X}}\right)_{c} \cap \mathcal{W}_{X}\right)$ and $\left(\dot{\mathcal{L}}_{c}^{*} \cap \mathcal{W} \cup \mathcal{O}, \dot{\mathcal{L}}_{c}^{*} \cap \mathcal{W}\right)$, respectively, where $\dot{\mathcal{L}}_{c}^{*}=$ $\left\{\mathcal{L}^{*}<c\right\}$ and $\left(\dot{\mathcal{L}}^{*} \mid \mathcal{X}\right)_{c}=\left\{\mathcal{L}^{*} \mid \mathcal{X}<c\right\}$.

Let $\mathbf{H}^{0-}(B)=\mathbf{H}^{0}(B)+\mathbf{H}^{-}(B)$ and

$$
\mathbf{H}^{0-}(B)(\epsilon)=\left(\mathbf{H}^{0}(B)+\mathbf{H}^{-}(B)\right) \cap N \mathcal{O}(\epsilon)
$$

Then $\mathbf{H}^{0-}(B) \subset X N \mathcal{O}$. Define

$$
\begin{equation*}
\mathfrak{L}: \mathbf{H}^{0-}(B)(\epsilon) \rightarrow \mathbb{R} \tag{36}
\end{equation*}
$$

by $\mathfrak{L}(x, v)=-\left\|\mathbf{P}_{x}^{-} v\right\|_{1}^{2}+\mathcal{L}_{\triangle x}^{\circ}\left(\mathbf{P}_{x}^{0} v\right)$. The usual
deformation arguments and two splitting lemmas in Th.7(ii)-(iii) lead to

$$
\begin{align*}
C_{*}\left(\mathcal{L}^{*}, \mathcal{O} ; \mathbb{K}\right) & \cong C_{*}(\mathfrak{L}, \mathcal{O} ; \mathbb{K}) \\
& \cong C_{*}\left(\mathcal{E}^{X}, \mathcal{O} ; \mathbb{K}\right) \tag{37}
\end{align*}
$$

which can also be derived from Th.7(iv). This and Th.7(i) yield

$$
\begin{align*}
C_{*}(\mathcal{E}, \mathcal{O} ; \mathbb{K}) & \cong C_{*}\left(\mathcal{E}^{X}, \mathcal{O} ; \mathbb{K}\right) \\
& \cong C_{*}(\mathfrak{L}, \mathcal{O} ; \mathbb{K}) \tag{38}
\end{align*}
$$

Let $S_{x}^{1} \subset S^{1}$ denote the stabilizer of $x \in \mathcal{O}$. It is a finite cyclic group and $\mathcal{L}_{\triangle x}^{\circ}$ is S_{x}^{1}-invariant. Let $C_{*}\left(\mathcal{L}_{\Delta x}^{\circ}, 0 ; \mathbb{K}\right)^{S_{x}^{1}}$ denote the subgroup of all elements in $C_{*}\left(\mathcal{L}_{\triangle x}^{\circ}, 0 ; \mathbb{K}\right)$, which are fixed by the induced action of S_{x}^{1} on the homology. Since $\mathbf{H}^{0-}(B) \subset X N O$ is a smooth manifold of finite dimension using (38) and repeating the

arguments by Bangert and Long [Prop.3.7,Math.

Ann., 346(2010)335] we can obtain their following generalization of the Gromoll-Meyer shifting theorem for Finsler manifolds.

Theorem 8 Let \mathbb{K} be a field of characteristic 0 or prime to order $\left|S_{\gamma_{0}}^{1}\right|$ of $S_{\gamma_{0}}^{1}$. Then for any $x \in \mathcal{O}=S^{1} \cdot \gamma_{0}$ and $q=0,1, \cdots$,

$$
C_{q}(\mathcal{E}, \mathcal{O} ; \mathbb{K})=
$$

$\left(H_{m-(\mathcal{O})}\left(\mathbf{H}^{-}(B)_{x}, \mathbf{H}^{-}(B)_{x} \backslash\left\{0_{x}\right\} ; \mathbb{K}\right) \otimes C_{q-m-(\mathcal{O})}\left(\mathcal{E}_{\Delta x}^{\circ}, 0 ; \mathbb{K}\right)\right)^{S_{x}^{1}}$
$\oplus\left(H_{m-(\mathcal{O})}\left(\mathbf{H}^{-}(B)_{x}, \mathbf{H}^{-}(B)_{x} \backslash\left\{0_{x}\right\} ; \mathbb{K}\right) \otimes C_{q-m-(\mathcal{O})-1}\left(\mathcal{L}_{\Delta x}^{\circ}, 0 ; \mathbb{K}\right)\right)^{S_{x}^{t}}$. provided $m^{-}(\mathcal{O}) m^{0}(\mathcal{O})>0$. Moreover,

$$
\begin{aligned}
& C_{q}(\mathcal{E}, \mathcal{O} ; \mathbb{K})=\left(C_{q-1}\left(\mathcal{E}_{\Delta x}^{\circ}, 0 ; \mathbb{K}\right)\right)^{S_{x}^{1}} \oplus\left(C_{q}\left(\mathcal{E}_{\Delta x}^{\circ}, 0 ; \mathbb{K}\right)\right)^{S_{x}^{1}} \\
& \text { if } m^{-}(\mathcal{O})= 0 \text { and } m^{0}(\mathcal{O})>0 \text {, and } \\
& \begin{aligned}
C_{q}(\mathcal{E}, \mathcal{O} ; \mathbb{K})= & H_{q}\left(\mathbf{H}^{-}(B), \mathbf{H}^{-}(B) \backslash \mathcal{O} ; \mathbb{K}\right) \\
= & \left(H_{q-1}\left(\mathbf{H}^{-}(B)_{x}, \mathbf{H}^{-}(B)_{x} \backslash\left\{0_{x}\right\} ; \mathbb{K}\right)\right)^{S_{x}^{1}} \\
& \oplus\left(H_{q}\left(\mathbf{H}^{-}(B)_{x}, \mathbf{H}^{-}(B)_{x} \backslash\left\{0_{x}\right\} ; \mathbb{K}\right)\right)^{S_{x}^{1}}
\end{aligned}
\end{aligned}
$$

if $m^{-}(\mathcal{O})>0$ and $m^{0}(\mathcal{O})=0$. Finally,

$$
C_{q}\left(\mathcal{E}, S^{1} \cdot \gamma_{0} ; \mathbb{K}\right)=H_{q}\left(S^{1} ; \mathbb{K}\right)
$$

for any Abel group \mathbb{K} if $m^{-}(\mathcal{O})=m^{0}(\mathcal{O})=0$.

For a field \mathbb{K} Th. 7 (iv) claimed the inclusion
$\left(\left(\dot{\mathcal{L}}^{*} \mid \mathcal{X}\right)_{c} \cap \mathcal{W}_{X} \cup \mathcal{O},\left(\dot{\mathcal{L}}^{*} \mid \mathcal{X}\right)_{c} \cap \mathcal{W}_{X}\right) \hookrightarrow\left(\dot{\mathcal{L}}_{c}^{*} \cap \mathcal{W} \cup \mathcal{O}, \dot{\mathcal{L}}_{c}^{*} \cap \mathcal{W}\right)$ induces isomorphisms

$$
\begin{aligned}
& H_{*}\left(\left(\dot{\mathcal{L}}^{*} \mid \mathcal{X}\right)_{c} \cap \mathcal{W}_{X} \cup \mathcal{O},\left(\tilde{\mathcal{L}}^{*} \mid \mathcal{X}\right)_{c} \cap \mathcal{W}_{X} ; \mathbb{K}\right) \\
& \quad \rightarrow H_{*}\left(\hat{\mathcal{L}}_{c}^{*} \cap \mathcal{W} \cup \mathcal{O}, \hat{\mathcal{L}}_{c}^{*} \cap \mathcal{W} ; \mathbb{K}\right),
\end{aligned}
$$

and hence (by excision) the inclusion

$$
\left(\left(\tilde{\mathcal{L}}^{*} \mid \mathcal{X}\right)_{c} \cup \mathcal{O},\left(\dot{\mathcal{L}}^{*} \mid \mathcal{X}\right)_{c}\right) \hookrightarrow\left(\tilde{\mathcal{L}}_{c}^{*} \cup \mathcal{O}, \hat{\mathcal{L}}_{c}^{*}\right)
$$

induces isomorphisms

$$
H_{*}\left(\left(\dot{\mathcal{L}}^{*} \mid \mathcal{X}\right)_{c} \cup \mathcal{O},\left(\dot{\mathcal{L}}^{*} \mid \mathcal{X}\right)_{c} ; \mathbb{K}\right) \rightarrow H_{*}\left(\tilde{\mathcal{L}}_{c}^{*} \cup \mathcal{O}, \hat{\mathcal{L}}_{c}^{*} ; \mathbb{K}\right)
$$

Take a neighborhood \mathcal{V} of \mathcal{O} in \mathcal{X} such that $\mathcal{L}^{*}=\mathcal{E}$ in \mathcal{V}. Using the excision again we derive that the inclusion

$$
\left(\left(\left.\mathcal{E}\right|_{\mathcal{X}}\right)_{c} \cap \mathcal{V} \cup \mathcal{O},\left(\left.\tilde{\mathcal{E}}\right|_{\mathcal{X}}\right)_{c} \cap \mathcal{V}\right) \hookrightarrow\left(\dot{\mathcal{L}}_{c}^{*} \cup \mathcal{O}, \dot{\mathcal{L}}_{c}^{*}\right)
$$

induces isomorphisms
$H_{*}\left((\dot{\mathcal{E}} \mid \mathcal{X})_{c} \cap \mathcal{V} \cup \mathcal{O},(\mathcal{\mathcal { E }} \mid \chi)_{c} \cap \mathcal{V} ; \mathbb{K}\right) \rightarrow H_{*}\left(\overline{\mathcal{L}}_{c}^{*} \cup \mathcal{O}, \overline{\mathcal{L}}_{c}^{*} ; \mathbb{K}\right)$.
It is $\mathcal{L}^{*} \leq \mathcal{E}$ (since $L^{*} \leq F^{2}$ by Prop.5(iv)) that we have the commutative diagram

$$
\begin{aligned}
& \left((\tilde{\mathcal{E}} \mid \mathcal{X})_{c} \cap \mathcal{V} \cup \mathcal{O},(\tilde{\mathcal{E}} \mid \mathcal{X})_{c} \cap \mathcal{V}\right) \xrightarrow{\text { Inclusion }}\left(\tilde{\mathcal{E}}_{c} \cup \mathcal{O}, \tilde{\mathcal{E}}_{c}\right) \\
& \text { Identity } \downarrow \quad \downarrow^{\text {Inclusion }} \\
& \left((\tilde{\mathcal{E}} \mid X)_{c} \cap \mathcal{V} \cup \mathcal{O},(\tilde{\mathcal{E}} \mid \mathcal{X})_{c} \cap \mathcal{V}\right) \xrightarrow{\text { Inclusion }}\left(\tilde{\mathcal{L}}_{c}^{*} \cup \mathcal{O}, \tilde{\mathcal{L}}_{c}^{*}\right)
\end{aligned}
$$

and hence commutative diagram

$$
\begin{array}{cc}
\left.H_{*}(\tilde{\mathcal{E}} \mid \mathcal{X})_{c} \cap \mathcal{V} \cup \mathcal{O},(\tilde{\mathcal{E}} \mid \mathcal{X})_{c} \cap \mathcal{V} ; \mathbb{K}\right) & \xrightarrow{\text { Homeomorphism }} \quad H_{*}\left(\tilde{\mathcal{E}}_{c} \cup \mathcal{O}, \overline{\mathcal{E}}_{c} ; \mathbb{K}\right) \\
\text { Identity } \downarrow & \text { Homeomorphism } \downarrow \\
H_{*}\left((\tilde{\mathcal{E}} \mid \mathcal{X})_{c} \cap \mathcal{V} \cup \mathcal{O},(\tilde{\mathcal{E}} \mid \mathcal{X})_{c} \cap \mathcal{V} ; \mathbb{K}\right) & \xrightarrow{\text { Isomorphism }} \quad H_{*}\left(\overline{\mathcal{L}}_{c}^{*} \cup \mathcal{O}, \overline{\mathcal{L}}_{c}^{*} ; \mathbb{K}\right)
\end{array}
$$

It follows that the homeomorphisms

$$
H_{*}\left(\left(\dot{\mathcal{E}} \mid \mathcal{X}^{)_{c} \cap \mathcal{V} \cup \mathcal{O},\left(\left.\tilde{\mathcal{E}}\right|_{\mathcal{X}}\right)_{c} \cap \mathcal{V} ; \mathbb{K}\right) \rightarrow H_{*}\left(\tilde{\mathcal{E}}_{c} \cup \mathcal{O}, \tilde{\mathcal{E}}_{c} ; \mathbb{K}\right)\right) .}\right.\right.
$$

are injective, and hence isomorphisms since the associated groups are all vector spaces of same finite dimension. Using the excision again we deduce

Claim 9 The inclusion

$$
\left(\left(\left.\tilde{\mathcal{E}}\right|_{\mathcal{X}}\right)_{c} \cup \mathcal{O},\left(\left.\tilde{\mathcal{E}}\right|_{\mathcal{X}}\right)_{c}\right) \hookrightarrow\left(\tilde{\mathcal{E}}_{c} \cup \mathcal{O}, \hat{\mathcal{E}}_{c}\right)
$$

induces isomorphisms

$$
H_{*}\left(\left(\left.\tilde{\mathcal{E}}\right|_{\mathcal{X}}\right)_{c} \cup \mathcal{O},(\tilde{\mathcal{E}} \mid \mathcal{X})_{c} ; \mathbb{K}\right) \rightarrow H_{*}\left(\tilde{\mathcal{E}}_{c} \cup \mathcal{O}, \dot{\mathcal{E}}_{c} ; \mathbb{K}\right)
$$

For an integer $m>0$ define the m-th iterate

$$
\begin{equation*}
\varphi_{m}: \wedge M \rightarrow \wedge M, \gamma \rightarrow \gamma^{m} \tag{39}
\end{equation*}
$$

by $\gamma^{m}(t)=\gamma(m t) \forall t \in \mathbb{R}$. For some integer $m>1$, suppose $\varphi_{m}(\mathcal{O})=S^{1} \cdot \gamma_{0}^{m}$ is an isolated critical orbit of \mathcal{E} in $\wedge M$. Claim 9 implies that
the inclusion
$\left((\mathcal{E} \mid \mathcal{X})_{m^{2} c} \cup \varphi_{m}(\mathcal{O}),(\hat{\mathcal{E}} \mid \mathcal{X})_{m^{2} c}\right) \hookrightarrow\left(\dot{\mathcal{E}}_{m^{2} c} \cup \varphi_{m}(\mathcal{O}), \hat{\mathcal{E}}_{m^{2} c}\right)$ induces isomorphisms

$$
\begin{equation*}
H_{*}\left((\hat{\mathcal{E}} \mid \mathcal{X})_{m^{2} c} \cup \varphi_{m}(\mathcal{O}),(\tilde{\mathcal{E}} \mid \mathcal{X})_{m^{2} c} ; \mathbb{K}\right) \rightarrow H_{*}\left(\dot{\mathcal{E}}_{m^{2} c} \cup \varphi_{m}(\mathcal{O}), \hat{\mathcal{E}}_{m^{2} c} ; \mathbb{K}\right) . \tag{40}
\end{equation*}
$$

Furthermore, let
$m^{-}(\mathcal{O})=m^{-}\left(\varphi_{m}(\mathcal{O})\right), \quad m^{0}(\mathcal{O})=m^{0}\left(\varphi_{m}(\mathcal{O})\right)$.
(41)

As in Riemannian geometry using the splitting lemma in Th. 7 (iii) we may prove that

$$
\varphi_{m}:\left(\left(\left.\mathcal{E}\right|_{\mathcal{X}}\right)_{c} \cup \mathcal{O},\left(\left.\mathcal{E}\right|_{\mathcal{X}}\right)_{c}\right) \rightarrow\left(\left(\left.\tilde{\mathcal{E}}\right|_{\mathcal{X}}\right)_{m^{2} c} \cup \varphi_{m}(\mathcal{O}),(\mathcal{E} \mid \mathcal{X})_{m^{2} c}\right)
$$

induces isomorphisms

$$
\begin{aligned}
\left(\varphi_{m}\right)_{*}: & H_{*}\left(\left(\left.\mathcal{E}\right|_{\mathcal{X}}\right)_{c} \cup \mathcal{O},\left(\left.\hat{\mathcal{E}}\right|_{\mathcal{X}}\right)_{c} ; \mathbb{K}\right) \\
& \rightarrow H_{*}\left(\left(\mathcal{E}{\mid \mathcal{X})_{m^{2}} \cup}^{\left.\varphi_{m}(\mathcal{O}),\left(\left.\hat{\mathcal{E}}\right|_{\mathcal{X}}\right)_{m^{2} c} ; \mathbb{K}\right)}\right.\right.
\end{aligned}
$$

Hence commutative diagram

$$
\begin{array}{cc}
\left((\hat{\mathcal{E}} \mid \mathcal{X})_{c} \cup \mathcal{O},(\hat{\mathcal{E}} \mid \mathcal{X})_{c}\right) & \xrightarrow{\varphi_{m}}\left(\tilde{\mathcal{E}}_{m^{2} c} \cup \varphi_{m}(\mathcal{O}), \hat{\mathcal{E}}_{m^{2} c}\right) \\
\quad \text { Inclusion } \downarrow & \text { Inclusion } \downarrow \\
\quad\left(\mathcal{E}_{c} \cup \mathcal{O}, \mathcal{E}_{c}\right) & \xrightarrow{\varphi_{m}}\left(\mathcal{E}_{m^{2} c} \cup \varphi_{m}(\mathcal{O}), \mathcal{E}_{m^{2} c}\right)
\end{array}
$$

lead to the following generalization of a result by Gromoll-Meyer on Finsler manifolds.

Theorem 10 For some integer $m>1$, suppose that $\mathcal{O}=S^{1} \cdot \gamma_{0}$ and $\varphi_{m}(\mathcal{O})=S^{1} \cdot \gamma_{0}^{m}$ are two isolated critical orbits of \mathcal{E} in $\wedge M$ and that (41) is satisfied. Then for any field \mathbb{K},

$$
\varphi_{m}:\left(\dot{\mathcal{E}}_{c} \cup \mathcal{O}, \dot{\mathcal{E}}_{c}\right) \rightarrow\left(\dot{\mathcal{E}}_{m^{2} c} \cup \varphi_{m}(\mathcal{O}), \dot{\mathcal{E}}_{m^{2} c}\right)
$$

induces isomorphisms

$$
\left(\varphi_{m}\right)_{*}: H_{*}\left(\mathcal{E}_{c} \cup \mathcal{O}, \mathcal{E}_{c} ; \mathbb{K}\right) \rightarrow H_{*}\left(\dot{\mathcal{E}}_{m^{2} c} \cup \varphi_{m}(\mathcal{O}), \dot{\mathcal{E}}_{m^{2} c} ; \mathbb{K}\right)
$$

(or in the usual notation

$$
\begin{aligned}
\left(\varphi_{m}\right)_{*}: & H_{*}\left(\wedge\left(\gamma_{0}\right) \cup S^{1} \cdot \gamma_{0}, \wedge\left(\gamma_{0}\right) ; \mathbb{K}\right) \\
& \left.\rightarrow H_{*}\left(\wedge\left(\gamma_{0}^{m}\right) \cup S^{1} \cdot \gamma_{0}^{m}, \wedge\left(\gamma_{0}^{m}\right) ; \mathbb{K}\right)\right)
\end{aligned}
$$

As applications we may prove the following generalization of a famous result on Riemannian manifolds by Bangert and Klingenberg [Topology, 23(1983)379].

Theorem 11 A connected closed Finsler manifold (M, F) of dimension $n>1$ has infinitely many geometrically distinct closed geodesics provided that there exists a nonconstant closed geodesics $\bar{\gamma}$ such that $m^{-}\left(\bar{\gamma}^{k}\right) \equiv 0$ and

$$
H_{\bar{\gamma}}\left(\wedge(\bar{\gamma}) \cup S^{1} \cdot \bar{\gamma}, \wedge(\bar{\gamma}) ; \mathbb{Q}\right) \neq 0
$$

with some integer $\bar{p} \geq 2$.

A slightly different version of it was proved by H.B.Rademacher [Th.7.5, Bonner Math.Schr. 229

(1992)] with finite-dimensional approximations.

Thank you!

