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1. Questions and previous methods

Professor Hams-Bert Rademacher had given
two beautiful lectures on geodesics. So I only

give a few of related notions.

A C*° Finsler metric on a C°° manifold M" is
a CY function F : TM — R with properties:

(i) C°*° in TM \ {0},

(i) F(v) > 0Vv e TM\ {0},

(iii) F(tv) =tF(v) Vt >0 and v € T M,

(iv) F? is fiberwise strongly convex, i.e., for
any (z,y) € TM \ Op,s the symmetric bilinear
form gt (z,vy) : TeM x To M — R given by

1 0% 5
) = ———— | F?(x, t
(u U> 2888?5 |: (w y —I_ o _I_ U>:| 3:1;:0
is positive definite. Call ¢f" the fundamental

tensor of (M, F).




Geodesics on (M, F') can be characterized as
critical points of the energy functional on a
Hilbert manifold:

WA2([0,1], M) 3 5 £0) = [ F2((0), A1)t

Since our theory is of local nature we restrict

to a compact Finsler manifold (M, F') below.

Let I = [0, 1] and the Hilbert manifold W1:2(1, M)
be equipped with the Riemannian structure

induced by a Riemann metric g on M:
1
(XY = [ g@@)X@), Y ®ldt

+ [ o)X D), vy ()t

For a C'°° closed submanifold @Q of M x M we



have a Riemannian-Hilbert submanifold

No(M) = {z € WH2(I, M) | (2(0),z(1)) € Q}.

Theorem 1 (I) On Ag(M) the functional £ is
C2-0, and satisfies the (PS) condition.

(II) A curve v € Ng(M) is a (non constant)
critical point of E iff it is a constant (nonzero)
speed geodesic on (M, F) with (BC):

g (7(0), ¥(0)[V;#(0)] = ¢" (v (1), ¥(1)) [W, (1)]

for any (V, W) - T(’y(O),’y(l))Q'

[Caponio-Javaloyes-Masiello, Math.Ann. 2010],
[Mercuri, Math.Z,156(1977),231-245] for Q =
A, [Kozma-Kristaly-Varga, Contributions to
Algebraic Geometry, 45(2004),47-59] for Q =
My x Mo with submanifolds M; of M, 1 =1, 2.



Note: Abbondandolo and Schwarz in
[Advanced Nonlinear Studies, 9(2009),597-623]
showed: the above energy functional € is

twice differentiable at a (nonconstant) crit-
ical point ~ iff F2 is Riemannian along ~.

In order to study existence and multiplicity
of critical points of £ with Morse theory one
need:

e tO compute critical groups

C«(&,70, K) = Hx(Ag(v0) U {0}, Ng(70): K)
at a critical point vg (where Ag(v) = {€ <
€(v0)}), or

Ci(&, 81 70, K) = He(A(70) U ST - 40, A(10); K)

at a critical orbit St .~q if Q = Ay,



e to prove the induced homomorphism

(om)« : He(A(70) U{S™ - 70}, A(70)i K)
— Hyi(A(3§) U{ST 181 A8 K)
are isomorphisms under suitable conditions, where
the m-th iterate

om : ANM — AM,~v — ~™ (1)

by v"(t) = v(mt) Vt € R.

On Riemannian manifolds the energy functional
£ are smooth and these can be completed with
the Gromoll-Meyer splitting lemma for C2-
functionals on Hilbert spaces and its corollary—

shifting theorem.

So one cannot directly apply Gromoll-Meyer

theory to the Finsler energy functional £. In



past almost all literatures one completed the
related arguments by using Gromoll-Meyer the-
ory on the Morse’s finite-dimensional ap-
proximation of Ag(M). For a € (0,00) and
a large k£ € N let

oM) ={y e Ng(M) : E(7) < a},

Mok, M) = { € AG(M) 1AL, S

] is F-geodesic}.

Then A% (k: M)° = a(k M) ﬂInt(/\ (M)) is
a smooth manifold of finite dimension, and

e the restriction of £ to A% (k M)® is smooth,
and has the same critical set as £ in Int(/\ (M)),

e for each ¢ < a the set
(k M)_/\ (k, M)ﬂ/\ (M)

IS compact, and a deformation retract of
EQ(M) (this is also true for ¢ = a).



Hence by applying Gromoll-Meyer theory to the
restriction of £ to /\aQ(k, M)° one can complete
the desired arguments. These can be found in
e H.H.Matthias [Bonner Math.Schr.128(1980)],
eH.B.Rademacher[[Bonner Math.Schr.229(1992)]
e Z.Shen [Lecture on Finsler Geometry, 2001]
e V.Bangert & Y.Long[Math.Ann.346(2010)335].

As on Riemannian manifolds it is expected to
develop infinite-dimensional Morse theory meth-
ods for geodesics problem on Finsler manifolds

for conveniences in some cases.

We state the expected first result for Q = {p} x
{q} with p #% ¢q. Let g9 be a nonconstant cpt

of

1
AQ(M) 37 = E() = [ F2(3(), 4(D)dt.



Then Ao € CEQO(I, M) and 3 ¢ > 0 such that

F(vo(t),70(t)) =+vc Vte[0,1].  (2)
Note the restriction of £ to Banach manifold

CoU, M) ={z € C'(1,M) | (2(0),2(1)) € Q}

is C2 near each regular curve, but it does not

satisfy the (PS) condition on this space.

Let exp be the exponential map of a Riemann

metric g on M, and take

0 < 2p < inf{inj(yo(t),9)|t € [0,1]}.

Let eq,--- ,en be a parallel orthonormal frame

along ~g. Define ¢ : I x B"(0,p) — M by

Sp(ta L1,y 737’0) — exD’yo(t) (CE]_EB]_(t)—I—- : —|—$n€n(t>)

It induces a chart

s Hg (I, B™(0,p)) — H5H(I, M)



by w«(z)(t) = (t,z(t)). Then ¢«(0) = o and
- 1
E(x) 1= € o0 pu(z) = /O F2(¢, 2(t), &(1))dt.
Here F : I x B"(0,p) x R" — R is defined by
F’(t, x,v) = F(p(t,xz),de(t,z)[(1,v)]).
It is C2 in (I x B™(0,p) x R")\ Z, where Z =
{(t,xz,v) € IXxB"(0,p)xR"|dp(t,z)[(1,v)] = 0}.
et us define

H := Hi(I,R™),

X = {z e C'(I,R") | z(0) = z(1) = 0},

U := Hi(I,B™(0,p)) = {x € H:z(I) C B*0,p)},
Uy =XNU={zec X |z(I) C B"(0,p)}.

Note that ¢« restricts to a chart

ox Uy — Cé(I,M).



Let BX(0) :={z € X : |z||x < é}. Then
B (0) c Uy for small § > 0.

Since F2(yo(t),40(t)) = ¢ > 0 by (2), we shrink
§ > 0 so that Vo = ¢ (&) with Z € B (0),

F2(z(t), z(t)) > %c vt € [0, 1]. (3)

Then
o X 1=CEopd =&|y, is C% on B (0) and
e 1 a Fredholm operator Bg € Ls(H) s.t.

dEX (0)(u,v) = (Bou,v)g Yu,v € X, (4)

(Bg is the second G-differential at 0 of &£X.
m~ (y9) = max{dim S|subspaceS C H, Bplg <
0} is called Morse index £ at ~g.)

e N = Ker(Bg) C X and so orthogonal de-
composition H = N® N-L induces a topological

direct sum decomposition of closed subspaces



X = N @& (NL n X) with projection operator
(I —Py)|x: X - NtNnX.
e The gradient V€ on H maps Bz (0) into X,

and thus give Cl-maps
A:Bf(0) = X, z— VE(x), (5)
E:(NNB&(0) & (NtBf(0)) - NtnXx

given by E(u +v) = (I — Py)|x o A(u + v).
Applying IFT to E we get r € (0,6), Cl-map

h:BX(0)NN — N+ nBF(0) (6)
such that
(I-Pn)|xoA(u+h(u)) = E(u+h(u)) =0 (7)
for all u € BX(0) N N. Define

E°:BX(0)NN = R,u — E(u+ h(w))
= E(px(u+ h(w)).



It is C2 and has an isolated critical point O.
(Expected) shifting theorem: Vq € NU {0},

Cq(E,70;K) =2 Cy(€,0;K) (8)
2 Cfmn () (€0 K)? (9)

Since ¢« is a coordinate chart, (8) is obvious.

E. Caponio, M. A. Javaloyes, A. Masiello [ Anal-

yse Nonlinéaire 27(2010)857] used some ideas
of K.-C. Chang in [Sci.Sinica Ser.A26(1983)
1241] and book(1993) to prove a splitting lemma
of Ex near 0 € X = {z € C1(I,R")|z(0) =
z(1) = 0}:3 homeomorphism ¢ : B (0) —
¢(B;' (0)) with ¢(0) =0 (n <r) such that

EX(9(2)) = (Bov, )z + E(u + h(w))

for any =z € BX(0), u = Pyz and v =z — u.



(Actually, this splitting lemma can also be
proved by a generalization of Morse lemma
by M. Jiang [Nonl.Anal,36(1999)943], see au-
thor’s paper [arXiv:0909.0609 v1, 3 Sep 2009].)

As usual this implies for any ¢ € NU {0},
Cq(EX,0;K) 2 C, - (,0)(E°,0;K).  (10)
However, they can only prove
C«(€,0;K) = Cu(£%,0;K) (11)
and so the shifting theorem in (9) if

~vo (so 0) is a nondegenerate cpt.

See [E. Caponio, M. A. Javaloyes, A. Masiello,
Addendum to " Morse theory... of a Finsler
metric” [Ann.I.H.Poincaré-AN 27 (3)(2010)857-
876].Ann.I.H.Poincaré-AN 30(5)(2013)961-968].



T heir proof used ideas and techniques in

e Abbondandolo and Schwarz [Advanced Non-
linear Studies, 9(2009),597-623],

e K.-C. Chang in [Sci.Sinica Ser.A26(1983)
1241-1255],

e Palais [Th. 16,17, Topology 5(1966)1-16].
And nondegeneracy of cpt g was essential to

their Proposition 3. 34 ug > 0 s.t.

d€(w)[Bou] > uol||VE(w)||? Vu near 0 € H,

where Bg represents the second G-differential
at 0 of £X as in (4).



Our methods

Follow author’s preprint [arXiv:1212.2078v5].
We begin with our new splitting lemma in [Cor-
rigendum: The Conley conjecture..., J.Funct.
Anal.261(2011)542-589] (a more general ver-
sion is in [The splitting lemmas for nonsmooth
functionals on Hilbert spaces, Discr.Cont.Dyna.
Syst-A. 33(2013)2939, arXiv:1102.2062v1]).

Hilbert space (H,(-,-)p), || - || = /()& and
Banach space (X, || - || x) satisfy

(S) X C H is dense in H and ||z|| < ||z||x V.
U— open neighborhood of O € H,

Ux :=UN X open neighborhood of 0 € X.

£ e CY(U,R) has 0 as an isolated cpt.
Assumptions: 3 maps A € CY(Ux,X) and B €




C(Ux,Ls(H)) such that

L'(z)(uw) = (A(z),w)y VxclUUxy & uc X,
(A'(z)(w),v)yg = (B(x)u,v)yg Ve € Uy, u,v € X.

(These imply: (a) Ly, € C*(Ux,R),

(b) d2£|uX(w)(u,v) = (B(x)u,v)g Ve e Ux &u,v €
X, (c) B(x)(X) C X VxelUy).

Furthermore we also assume B to satisfy:

(Bl1) {ue H|B(0O)(u) € X} C X, and

BOu=M uforuc H&A<0 = ueX.

(B2) B:Uxy — Ls(H) has a decomposition

B(z) = P(z) + Q(z) Vz €Uy,

P(x) € Ls(H) is positive definite, Q(x) € Ls(H)
IS compact, and also satisfy:
(i) V (z) C U with ||zi]| — O it holds that

|P(xr)u — P(O)u|| - 0 Vu € H,;



(ii) V (zy) cUN X with ||xt|| = 0 we have

1Q(zg) — QO) |l £,y = 0 as k — oo;

(iii) 3 constants ng > 0 and Cpy > 0 such that

(P(z)u,u) > Collull® Vu€ H, Yz € B (0)NX.

N = Ker(B(0)), H~ =maximal negative defi-
nite subspace of B(0). ((B1)+(B2)=

dm(N+H )<oco& N+ H™ C X.

Call m® = dim N nullity, m— = dim H— Morse

index, the cpt 0 nondegenerate if m° =

Py : H — N is the orthogonal projection,
X=N& (NL N X) is a topological direct sum
decomposition. For § > 0O let

Bf(O) ={x e H : ||x|| < d}. (Note: norms |||



and || - ||x are equivalent on N since dimN <

c0.) The following is our splitting lemma.

Theorem 2 Under (S) and (B1)-(B2), de > 0,
cl map h : BN(0O) = BEH(O)ONN - NtnXx
satisfying h(0) = 0 and

(I — PN)A(z+h(2)) =0 Vze BYN(0), (12)

e an open neighborhood W of O in H,

e an origin-preserving homeomorphism
& : BN(0) x BN (0) = W
such that for all (z,u) € BN(0) x BN"(0),
Lod(z,u) = |lu— Pyu— Pgy-ul®— || Py—ul®
+ L(z+ h(2)).
(i) ©(2,0) = z4+ h(z) Vz € By(0,¢€).



(ii) Vz € BN(0), h/(2) is equal to

[Py A'(z + h(2) | yiqx)t o Pyl A'(z + h(2))|y-

(iii) BN(0) 3 z — £°(2) := L(z + h(2)) is C?,
has O as an isolated cpt , d?2£°(0) = 0, and

dL(20)(2) = (A(z0 + h(20)),2) H
for all (zg,z) € BN(0) x N.
(iv) Let ¢ = £(0), £LX = L|,;x, W C U be a
neighborhood of 0 (so Wx :=W N X a neigh-
borhood of 0 in X ), K be an Abel group. Then

the inclusion

(L5 N Wi, £X N Wx \ {0}) = (LeNW, LN W\ {0})
(13)
induces surjective homomorphisms

H (L5 nWx, £X N Wy \ {0} K) —
Hy (LW, Len W\ {0} K).  (14)



Corollary 3 (Shifting) For any Abel group K

Ce(L,0;K)=C,_,,,- (L% 0;K) Vg=0,1,---.

Corollary 4 For any field K the surjective ho-

momorphisms in (14) are all isomorphisms !

e Th.2=Cor. 3 is standard, see Mawhin-Willem's
book (89) and Chang’'s book (93).

e Under assumptions of Th.2 we use a general-
ized Morse lemma by M.Jiang [Nonl.Anal,36(1999)
943] to prove a splitting lemma for £X at 0:

3 ball B (0) c UxnBE(0), an origin-preserving
local homeomorphism ¢ from BESX(O) to a

neighbor. of 0 in Uy such that

X o) = Z(BO e )y +£2()  (15)

for = ¢ B;SX(O),where z = Pn(2), 21t =2 — 2.



So for any Abel group K and ¢ € NU {0},
Co(L¥,0,K) =2 C,_,,—(£°,0;K). (16)

When K is a field, this, Cor.3 and (14) lead to

Cor.4, which is important for our methods.

A Lagrangian L : [0,1]xTM — R is called con-
vex quadratic growth (CQG) if it satisfies:
(L1) 3 constant ¢5 > 0 such that

8’U’UL(t7wav) Z 6017
(L2) 3 constant ¢1 > 0 such that
anUL(t,CU,'U) S El and

ava(taxa’U> < 21(1 + |U|CI3)7
Oy L(t, x,v)| < £1(1 4+ |v]2)

with respect to some Riemann metric g (with

vz = gz(v,v)).



In [J.Funct. Anal.261(2011)542-589] we had
proved that for a CQG Lagrangian L : [0, 1] X
TM — R the corresponding energy functional
on W12(s1 M) satisfies the conditions of The-

orem 2 in a suitable chart.

Assume (M, F') is a compact Finsler manifold

for simplicity. Since F? is not C2 on T M, our
idea is to deform F? to a CQG Lagrangian
L*. Fix a Riemann metric g and write |v|Z =

gz(v,v). 3 constant C; > 1,

v|z < F2(2,0) < Cylvlz  V(z,v) € TM. (17)

Given ¢ > 0, choose 0 <e < d < 32(51' VWe have

suitable constants Kk > 0, oo < 0, © > 0 and
b > 0, and C° functions

¢6,5 : [07 OO) — R) ¢,Ll,,b : [07 OO) — R



as in the following figure:

Define L* : TM — R by
_ e s(F2(2,0)) + dpp(1012) + 16 — 20

K

L*(z,v)

Clearly, L* is of C*¥ if F is only of CF (k > 2).

Proposition 5 (i) L* is CQG,

(i) L*(z,v) = F2(x,v) if F2(z,v) > 32—51,
(iii) L* > 0, and L*(z,v) =0 < v = 0,
(iv) L*(z,v) < F2(z,v) V(z,v) € TM,

(v) if F is reversible, so is L*,

For 7 € [0,1] we define L™ : TM — R by

L (z,v) = (1 — 7)F?(z,v) + 7L*(x,v). (18)



We present our results for two kinds of bound-
ary conditions:

o () = Mgy x My, Mg and My are two disjoint
boundaryless submanifolds of M,

o () = /Ayy.

Case 1

Let 79 € Ag(M) be an isolated nonconstant
cpt of £ on Ag(M). Then 3c >0, s.t.
F(vo(t),v0(t)) = v/c > 0. We can choose the

Riemannian metric g such that:

Mgy (resp. M) is totally geodesic
near o(0) (resp. vo(1)).

/\Q(M) is equipped with Hilbert-Riemannian

structure induced by g. Let exp denote the



exponential map of g, and for p > 0 let

Bop(ThoNg(M)) = {§ € ThoNo(M) [[[€]l1 < 2p}.
dp > 0 such that
EXP’YO : sz(TfyO/\Q(M)> — /\Q(M) (19)
given by EXP,,(£)(t) = exp%(t)(g(t)), iS a co-
ordinate chart around g on Ag(M). Define
1
L7() = [ LT, 7))t ¥y € Ag(M) (20)

for L™ in (18).

Then L™ o EXP, is C?70 and has an isolated
1,2

cpt 0 € TyoAg(M) = Wy2(yTM). Let I =

[0,1]. Consider the Banach manifold

X =ChH(I,M) = {yeC(I,M)|(v(0),v(1)) € Q}.

ToX = {€ € CLTM)|(£(0),£(1) € TQ)



with usual Cl-norm. Let £X = &|y and

Bop(ThoX) = {€ € Ty X : [[€llo1 < 2p}.
Then Bo,(Ty,X) C Bo,(ThoAg(M))NTH,X. Let
We can shrink p > 0 so that

. . 2c
min F2(y(t), 7(1)) > —— ¥y € EXPnyq (BQP(T,YOX)).
t 3C4

By Prop.5(ii), for any = € [0, 1]

is a Cl-map to T,,X and

(dAT(O)[E], )1 = d*EX () [€,m] V&, m € ThoX.

The symmetric bilinear form d2£% () can be
extended into such a form on T, ,Ag(M), also
denoted by d2£+*(~gp). The associated self-

adjoint operator is Fredholm, has finite dimen-



sional negative definite and null spaces
H™(d°€% (70)) and H°(d?€™ (10)),
which are actually contained in T5,X. Call
m~ (7o) ;= dimH " (d?€* (vy)) and
m®(y0) 1= dim H°(d*€* (70))

Morse index and nullity of ~g, respectively. J

the orthogonal decomposition
TyoNo(M) = H™(d?E*(70)) ® HO(d?E* (70))
& HT(d?e* (1)), (21)

which induces a (topological) direct sum de-

composition of Banach spaces
TyoX = H(d°€" (70))+H(d%E™ (10))
+ (HF (6% (30)) N Top).

Using IFT, 3 6§ € (0,2p] and a unique Cl-map



h from ball B5(H0(d2£‘X (70))) C Bo,(Th,X) to
H (d°€¥ (y0) +(H (@6 (30)) N T X)

such that A(0) = 0, dh(0) = 0 and

(I—-P°)A(§+N(£)) = 0 V¢ € Bs(H(d*EX (10))),

where P* : Ty Ag(M) — H*(d?€X(vp)), * =
—, 0,4+, are orthogonal projections given by (21).
Define £° : B5(HO(d2£X (10))) — R by

£°(8) = E0 EXPy(6+R(9)).  (22)
It is C2, has an isolated cpt 0, and d2£°(0) = 0.

Theorem 6 Let K be an Abel group.

(1) C«(L7,70;K) = Cx(€,70:K) V7 € [0, 1].

(i) 3 a splitting lemma for L* o EXP~, =
L1oEXP,, at 0 € TyyAg(M), i.e. (by shrinking

d > 0) 3 an origin-preserving homeomorphism



Yy from Bs(Ty,Ag(M)) to an open neighbor-
hood of 0 in Ty,Ag(M) such that

L*0EXPrgop(&) = ||[PTE|T— |P€(IT+E°(PO%)
V¢ € Bs(TyyAg(M)), and hence Vq € NU {0}

Cq(L,0;K) = C, (£°,0;K). (23)

—m~(70)
(iii) 3 a splitting lemma for £X c EXP,, at 0 €
Ty, X, i.e. 3 €€ (0,6) and an origin-preserving
homeomorphism ¢ from B¢(Ty,X) to an open
neighborhood of O in Ty,X such that for any
£ € Be(Th,X),

1
E% 0 EXPygop(€) = ~d*€” (10)[PTE PT¢]
— ||P7¢lIf + £°(PP9),

and hence Vq e NU {0}

Cq(E,0;K) 2 C - (40)(E°,0:K).  (24)



(iv) Let £** = L*|x, W C Ag(M) be a neigh-
borhood of v (so Wx (= WnNX a neighbor-
hood of vy in X ). Then the inclusion

(£8* nwx, £ nWx \ {yo}) —
(Le W, Lo WA {0}) (25)

induces surjective homomorphisms

Hi (L5 Wy, £2X nWx \ {70} K) —
Hy (CEOW, LENWN\ {30} K),  (26)

which are also isomorphisms if K is a field.

When W C Ag(M) is a closed neighborhood of
Y0, Wx = WNAX is also a closed neighborhood
of 7o in X'). Choose an open neighborhood O
of 7o in X such that Wx \ O is contained in
the interior of Wx \ {70} and that £* = £ in
O. Then by excision theorem for singular



homology groups the inclusion

(EXN0,EXNON\{v0}) —
(L5 W, £ nWx \ {o}) (27)

induces isomorphisms

H (500,65 N0\ {30} K) —
Hi (L3 0 Wi, L5 0 Wi \ {70} K)(28)

for any abel group K.

These and Theorem 6 are sufficient for Morse

theory arguments needed.

The above versions are convenient in applica-
tions. Their proofs can be completed in an-
other chart. Since My (resp. M;j) is totally
geodesic near v9(0) (resp. vo(1)) with respect

to the metric g on M. Since ~g is of class C°



we may take a parallel orthogonal C°° frame
field along ~p with respect to the metric g,
I 5t — (e1(t),---,en(t)). For a small open
ball B"(0,2p) C R™ we get a C*° map

¢ 1 IxB"(0,2p) — M, (t,v) r exp, () (Z ’Uiei(t)> .
1=1

Since d linear subspaces V; C R", + = 0,1, such
that v eV, & ZZ:]. Ukek(i) c T’Yo(i)Mi’ 1 =20,1,
by shrinking p > 0 (if necessary) we get
veV;NB"0,2p) & ¢(i,v) € M;,i=0,1.
Set V:=Vy x V7 and
Hy :={¢ € WH2(I,R™") | (¢(0),¢(1)) € V},
Xy = {¢ € C(I,R")|(¢(0),¢(1)) € V}.

Use (-,-)y12 and || - |12 to denote the inner
product and norm in Hy,. Let Bo,(Hy) ;= {¢ €



Hy | |[<llywi2 < 2p}. Then the map
D ng(H‘/) — /\Q(M) (29)

defined by ®({)(t) = o(t,((t)), gives a co-
ordinate chart around ~g on Ag(M). Define
ZTIIXBBP(O)XRW’—)R by

L7(t,z,v) = L7($(t,2), d(t, ) [(1,)]),
and L7 : By, (Hy) — R by

£(©) = [ I7(&0,. &)t e € Boy(Hy),

We can prove that this family of functionals
satisfies stability theorem of critical groups
(see Th.8.8 in Mawhin-Willem's book (89) or
Th.5.6 in Chang’s book (93), or Cingolani and
Degiovanni [Adv.Nonl.Stud.9(2009)679]). So



for any ¢ =0,1,---, we get
CC](gvf)/OrK) — Cq(anO,K)
= Cq(L1,0;K) = Cy(L*, 70 K).

Moreover we can prove that Theorem 2 can be

applied to £* := £1. Hence Theorem 6 follows.
Case 2

For Q = AM:

No(M) = AM = wt2(st M)

= {y € WEZ(R, M) |4(t + 1) = »(t) Vt € R}.
Here S1 := R/Z = {[s]|[s] = s+ Z, s € R}.
3 equivariant and isometric operations of S1-
action on Wh2(s1 ar) and TwW12(St, M):

[s] - v(t) =~(s+1), V[s] €St veAM,

[s] €(t) =&(s+1), VIs] € St €€ TyAM,



which are continuous, but not differentiable.
£ is Sl-invariant. Let g € AM be a (noncon-
stant) cpt of & with critical value ¢ > 0. The
orbit © := S1.~45 is a smooth critical sub-
manifold of £ in AM. We assume: O is an
iIsolated critical orbit.

Let X = C1(S1, M), = : NO — O be the normal
bundle of O in AM. Then XNO :=TpnX "TNO

is a Banach vector bundle over @O. Define

NO(e) = {(z,v) € NO|||v]|1 < e}, }
XNO(e) = {(z,v) € XNO||[v]| o1 < &}

Clearly, XNO(e) C NO(e). (Replacing M by a
compact neighborhood of ©®) we may assume

e > 0 so small that the map

EXP : TAM(e) = {(z,v) € TAM | ||v]|1 < e} = AM

defined by EXP(z,v)(t) = expyyv(t) vVt € R,



restricts to a Sl—equivariant diffeomorphism from
the normal disk bundle NO(¢) onto a S1i-
invariant open neighborhood of O in AM,

F:NO(e) - N(O,e). (30)
Then
F:=EoF and F:=L'of (31)
are C279, Sl invariant and satisfy (PS). Let
FX = FINO(NXNO, F** = F*INO(e) NXNO

and let Fp, Fx, FX, FiX be restrictions of F,F*
and FX F*X to the fibres at z € O. Let

When § > 0 is small A, is a C1 map from
XNO(8)z to XNO, (5o FX isC?2on XNO(8)z).

Asz(sv) = s Az (v) Vs € ST, v € NO(e)sNXNO,.



Denote by B, the symmetric bilinear form d2F:X (0)
and by its extension on NO,. The associated
self-adjoint operator is Fredholm, has finite di-

mensional negative definite and null spaces
H (B:;) and HOY(B.).

Moreover, H™(B;) + H%(B;) € XNO,, and 3

orthogonal decomposition
NO; =H (Bz) @H(By) o HT(B:).  (32)

Since Bs.a(s-&,s-n) = Be(&,n)Vs € S1,z € O,
(32) leads to a natural Hilbert vector bundle

orthogonal decomposition
NO=H (B)®sH°(B) s H"(B) (33)

with H*(B); = H*(Bz) for x € O and x =

+,0, —, which induces a Banach vector bundle



(topological) direct sum decomposition
XNO =H (B)+H%B)+(HT(B)N XNO).

m~(0) := rankH~(B) and m°(0) := rankH®(B)
are called Morse index and nullity of ©. When
mP(®) = 0 the orbit O is called nondegener-
ate. Moreover 0 < m9%(0) < 2n —1.

Let P*: NO — H*(B) be the orthogonal bun-

dle projections, x = 4,0, —, and let
HO(B)(¢) = HY(B) N NO(¢) for e > 0.

Then HO(B)(e) € XNO and we may shrink € >
0 so that HO(B)(e) € X NO(§) since rankHO(B) <
oo and O is compact. By IFT, shrinking ¢ > 0O

assures: Vx € O 3 unique S%—equivariant 1



map

ho - HO(B)(€)s — H™ (B)s+(HT(B)s N XNOy)
(34)
such that h;(0;) = 04, dbh(0;) = O, and

(PH+P;)o Aa;(v + hx(v)) = 0 Vo € HO(B)(¢)..

Moreover, the functional £ given by

HO(B)(e) 3 (z,v) = € 0 EXPy(v+ ha(v)) (35)

is C1 has the isolated critical orbit @ and re-
stricts to a C? functional €2 in fiber HO(B)(e€)..

Theorem 7 (i) C«(L7,0;K) = C«(&,O;K) Vr.
(ii) 3 a splitting lemma for F* := L* o F near
O C NO(e): shrinking € > 0, 3 a Sl-invariant
open neighborhood U of © ¢ NO, a Sl-equivariant
fiber-preserving, 1 map h given by (34), and a



Sl—equivariant fiber-preserving homeomorphism
T : NO(e) — U such that for all (z,u) € NO(e),

FoY(z,u) =L o EXPoY(z,u)
= [P ullf — [Prull + X, (Pou).

(iii) 3 a splitting lemma for FX = EX o F
near ® C XNO(e): shrinking ¢ > 0 3 S1-
invariant open neighborhood V of O C XNO,
Sl—equivariant fiber-preserving C1 map § given
by (34), Sl-equivariant fiber-preserving home-
omorphism W : XNO(e) — V such that for all
(z,v) € XNO(e),

1
EX GEXP o W(z,v) = §d2£|x(az)[P;v,Piv]

— [P v|If + LA, (PHv).

(iv) For any open neighborhood W of O in
AM and a field K, write Wx =W NAX as an
open subset of X, then the inclusion

((L7x)e N Wi, (L7x)e M Wx \ O) = (LENW, LLNAWN O)



induces isomorphisms
Hy (L% x)e N Wx, (L5 |x)e N Wx \ O;K) —
Hy (LZNW, LENWN O;K).

The corresponding conclusion is still true if
(L x)e N Wx, (L x)eNWx \ O) and

(LENW, LN W\ O) are replaced by

((ﬁo*bc)c NWyx UO, (L x)eN WX> and

(Zz NWUO,LEN W), respectively, where L} =
{£* < c} and (L¥x)e = {L*x < c}.

Let HO—(B) = H(B) + H(B) and
HO™(B)(e) = (H°(B) + H™(B)) N NO(e).
Then HO=(B) ¢ XNO. Define

¢ H " (B)(e) = R (36)

by £(z,v) = —||Pzv[|? + £ (Pv). The usual



deformation arguments and two splitting lem-
mas in Th.7(ii)-(iii) lead to

Ci(L*,0;K) 2 Cu(£,0;K)
C(EX,0:K), (37)

112

which can also be derived from Th.7(iv). This
and Th.7(i) yield

112

Cx(EX, 0;K)
Ce(£, 0: K). (38)

C«(&,0,K)

112

Let S1 c S! denote the stabilizer of x € O. It
is a finite cyclic group and £ is Si-invariant.
Let Cx(LS 0 K)S% denote the subgroup of all
elements in C«(L% ., 0;K), which are fixed by
the induced action of S! on the homology.
Since HO—(B) ¢ XNO is a smooth manifold of

finite dimension using (38) and repeating the



arguments by Bangert and Long [Prop.3.7,Math.
Ann., 346(2010)335] we can obtain their fol-
lowing generalization of the Gromoll-Meyer

shifting theorem for Finsler manifolds.

Theorem 8 Let K be a field of characteristic
0 or prime to order |S3 | of S1 . Then for any

xEOZSl-’yO and ¢q=0,1,---,
Cy(€,0;K) =

Sl

T

(o0 (H(B)o, H(B)\{0: 1 K)BCy - (0)(E2 01 K) )

Sl

&(Hyn (0)(H(B) H(B) {02} K)®C, i (0)-1(Las 0 K))
provided m~—(O)mP(®) > 0. Moreover,
Cy(€,0;K) = (Cp1(E2,, 0, K)) > @ (Cy(£2,,0;K))™
if m—(©) =0 and m°(®) > 0, and
C,(6,0:K) =  H(H (B),H (B)\O;K)
= (He(H (B)o H (B):\ {0.}:K))

f
& (Hy(H (B),H (B):\{0.};K))

1

x

x



if m—(©) >0 and mP(©) = 0. Finally,
Cq(€, 5 - 70;K) = Hy(SHK)

for any Abel group K if m—(0) = m°P(0) = 0.

For a field K Th. 7(iv) claimed the inclusion

((Zﬂ?ﬁ)cﬂWXUO, (Z*|X)CQWX> — (ZzﬂWUO,ZzﬂW)

induces isomorphisms

Hi ((£*|2)e "Wx U O, (£ )N Wi K)
— Hi (LENWU O, LN WIK),
and hence (by excision) the inclusion
((£¥2)e U0, (L% 2)e) = (LEV O, L)
induces isomorphisms

H, ((Z*|X)C U O, (£ x)e; K) s H, (Zz U O, L¥; K) .



Take a neighborhood V of O in X such that
L*= € in V. Using the excision again we derive

that the inclusion

(El)eNVUO, (Elx)enV) = (£:00,LF)
induces isomorphisms
H, ((Elx)eNVUO,(Elx).NV;K) = H, (LEUO, LK) .

It is £* < & (since L* < F?2 by Prop.5(iv)) that
we have the commutative diagram

Inclusion

((S\X)CHVUO, (é\x)cﬂv) (SCUO,500>

Identityl llnclusion

Inclusion

(CElx)enVUO,(Elx)enV)
and hence commutative diagram

(Lru 0O, L)

Homeomorphism

H.((€lx)eNVUO,(€x)eNV;K) » H.(E.UO,E;K)
Identityl Homeomorphisml

Isomorphism\

H*((g|)(>cmvuoa (‘ﬂX)cﬂV;K)
It follows that the homeomorphisms

H.(L£:U 0, LK)

H*((gb()cﬂVUO, (5|X)cﬂv; K) — Hy (gCUO, gc; K)



are injective, and hence isomorphisms since the
associated groups are all vector spaces of same
finite dimension. Using the excision again we

deduce

Claim 9 The inclusion

(ElR)cV O, (Elx)e) — (Ecu 0, &)

induces isomorphisms

H*((S’|X)C UO,Elx)e; K) s H, (é’c Uo,&: K).

For an integer m > O define the m-th iterate
Om  ANM — ANM,~v —~™ (39)

by v"(t) = ~(mt) Vt € R. For some integer
m > 1, suppose @m(0) = 51 -vg" is an isolated
critical orbit of £ in AM. Claim 9 implies that



the inclusion

(1) m2,00m(0), (Ela)m2.) = (Em2Iem(0), €, 2,)
induces isomorphisms

H*((g’X)mchSpm(O)a (gl?()m%; K) — H, (ngCUSOm(O)a Emae; K)
(40)

Furthermore, let

m~=(0) =m ™ (pm(0)), m°(0) = m°(em(0)).

(41)
As in Riemannian geometry using the splitting
lemma in Th. 7(iii) we may prove that

Pm - ((5|X)c UQ, (S|X)C) — ((50|X)m20 U em(0), (5|X)m20)

induces isomorphisms

(em)« : He((Ela)eU O, (Elx)ei K)
— Hi((]x)m2e U om(0), (€] x) 20 K).



Hence commutative diagram

(CEla)e VO, (Ela)e) == (EmzeU om(0), Emae)
Inclusionl Inclusionl
(.U 0O, &) 5 (Emze U om(0), Emze)
lead to the following generalization of a result

by Gromoll-Meyer on Finsler manifolds.

Theorem 10 For some integer m > 1, sup-
pose that O = St .~g and pm(0) = St -7 are
two isolated critical orbits of £ in AM and that
(41) is satisfied. Then for any field K,

©Om (fc U O, 8}) — ((‘fmgc U om (0), 5mzc)

induces isomorphisms

(om)x : Hy (ffc U O, & K) — Hy (Efmgc Uem(0),E&, 2. K)



(or in the usual notation

(pm)s:  Hx (A(v0) U ST - 40, A(70); K)
= Hy (AN U ST 18", A8 K) )

As applications we may prove the following
generalization of a famous result on Rieman-
nian manifolds by Bangert and Klingenberg [To-
pology, 23(1983)379].

Theorem 11 A connected closed Finsler man-
ifold (M, F) of dimension n > 1 has infinitely
many geometrically distinct closed geodesics
provided that there exists a nonconstant closed
geodesics 5 such that m—(3%) =0 and

Hz(AF) U ST 3,A(%);Q) # 0

with some integer p > 2.



A slightly different version of it was proved by
H.B.Rademacher [Th.7.5, Bonner Math.Schr.229

(1992)] with finite-dimensional approximations.

hank youl



