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The N-body problem

We wish to construct complex (periodic/chaotic) trajectories of N heavy
bodies which move in R

d2 under their mutual gravitational attraction.

S. Terracini Collisions and regularzation
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The N-body problem

We wish to construct complex (periodic/chaotic) trajectories of N heavy
bodies which move in R

d2 under their mutual gravitational attraction.
Motion equation:

mj ẍj(t) = −
∑

k 6=j

mjmk

|xk (t)− xj(t)|3
(xk(t)− xj(t)) ,

where xk(t) denotes the position of the k-th body at time t, and mk > 0
its mass.
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The N-body problem

We wish to construct complex (periodic/chaotic) trajectories of N heavy
bodies which move in R

d2 under their mutual gravitational attraction.
Motion equation:

mj ẍj(t) = −
∑

k 6=j

mjmk

|xk (t)− xj(t)|3
(xk(t)− xj(t)) ,

where xk(t) denotes the position of the k-th body at time t, and mk > 0
its mass.

Generally, global complex dynamics is connected with the existence of
periodic solutions featuring a complex behaviour (Poincaré conjecture).
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H. Poincaré: Les Méthodes Nouvelles de la Mécanique

Céleste (1892)

“D’ailleurs, ce qui nous rend ces solutions périodiques si précieuses, c’est
qu’elles sont, pour ainsi dire, la seule brèche par où nous puissons essayer
de pénétrer dans une place jusqu’ici réputée inabordable...”.

According to Poincaré, periodic orbits catch the complexity of the global
dynamics:

“...voici un fait que je n’ai pu démontrer rigoureusement, mais qui me
parait pourtant très vraisemblable. Étant données des équations de la
forme définie dans le n. 131 et une solution particulière quelconque de
ces équations, one peut toujours trouver une solution périodique (dont la
période peut, il est vrai, être très longue), telle que la différence entre les
deux solutions soit aussi petite qu’on le veut, pendant un temps aussi
long qu’on le veut.”

1Formula n. 13 is Hamilton equation.
S. Terracini Collisions and regularzation
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Periodic solutions: a global approach

We may try to take advantage of

Symmetries: the problem is invariant with respect to

the orthogonal group O(d),
if mi = mj , the permutations of xi and xj ,
time shift and reversal.

Topology: of the loop space over the N-body configuration space.

Due to the difficulty of the general problem, we may also think to some
(yet highly nontrivial) simplifications:

the circular planar restricted N-body problem;

the N-center problem.

S. Terracini Collisions and regularzation
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Settings

N point particles with masses m1, m2, . . .mN and positions x1, x2,
. . . , xN ∈ R

d , with d ≥ 2, which form the configuration space
X = R

Nd .

Interaction potential: U(x) =
∑

i<j

mimj

|xi − xj |α
; when α = 1 we have

the gravitational Newton potentials.

On collisions (xi = xj for some i 6= j) potential U = +∞.

Admissible configurations: X̃ = X \ {collisions} .

Collisionless T -periodic orbits: solutions of the Newton equations
(such that ∀t : x(t + T ) = x(t) ∈ X̃ ).

mi ẍi =
∂U

∂xi
.

S. Terracini Collisions and regularzation
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Action and Maupertuis’ functionals

Lagrangian: L(x , ẋ) =

K
︷ ︸︸ ︷
∑

i

1

2
mi |ẋi |2+

U
︷ ︸︸ ︷
∑

i<j

mimj

|xi − xj |α
.

Action functional: for x ∈ H1
T (T > 0 fixed period)

AT (x) =

∫ T

0

L(x(t), ẋ(t))dt.

Maupertuis functional: x ∈ H1
1 (h ∈ R fixed energy)

Jh(x) =

(∫ 1

0

Kdt

)(∫ 1

0

(h + U)dt

)

.
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Variational approach

We seek critical points of the action functional, (or the Maupertuis one)
on

A : Λ → R ∪ {+∞}, x 7→
∫ T

0

∑

i

1

2
mi |ẋi |2 +

∑

i<j

mimj

|xi − xj |α

constrained on suitable admissible linear subspaces Λ0 ⊂ Λ.

S. Terracini Collisions and regularzation
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Variational approach

We seek critical points of the action functional, (or the Maupertuis one)
on

A : Λ → R ∪ {+∞}, x 7→
∫ T

0

∑

i

1

2
mi |ẋi |2 +

∑

i<j

mimj

|xi − xj |α

constrained on suitable admissible linear subspaces Λ0 ⊂ Λ.
Special case: two bodes and α = 1.

First attempt:

A : Λ → R ∪ {+∞} x 7→
∫ T

0

1

2
m1|ẋ1|2 +

1

2
m2|ẋ2|2 +

m1m2

|x1 − x2|α

minimize A over Λ.

S. Terracini Collisions and regularzation
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Variational approach

We seek critical points of the action functional, (or the Maupertuis one)
on

A : Λ → R ∪ {+∞}, x 7→
∫ T

0

∑

i

1

2
mi |ẋi |2 +

∑

i<j

mimj

|xi − xj |α

constrained on suitable admissible linear subspaces Λ0 ⊂ Λ.
Special case: two bodes and α = 1.

First attempt:

A : Λ → R ∪ {+∞} x 7→
∫ T

0

1

2
m1|ẋ1|2 +

1

2
m2|ẋ2|2 +

m1m2

|x1 − x2|α

minimize A over Λ. No minimizer.
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Second attempt: minimize A over {x ∈ Λ : deg(x1 − x2; 0) 6= 0}.

S. Terracini Collisions and regularzation
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Second attempt: minimize A over {x ∈ Λ : deg(x1 − x2; 0) 6= 0}. A
continuous of minimizers connecting the circular trajectory with a
degenerate ellipse (collision minimizer). Very degenerate and
unstable under small perturbations.

Theorem (W. Gordon 1977)

The keplerian ellipses minimize the action among loops having nontrivial
winding number about the origin.
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Second attempt: minimize A over {x ∈ Λ : deg(x1 − x2; 0) 6= 0}. A
continuous of minimizers connecting the circular trajectory with a
degenerate ellipse (collision minimizer). Very degenerate and
unstable under small perturbations.

Theorem (W. Gordon 1977)

The keplerian ellipses minimize the action among loops having nontrivial
winding number about the origin.

◮ Third attempt: minimize A over

{x ∈ Λ : deg(x ; 0) 6= 0 & |x1(t)− x2(t)| ≥ ε}
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Second attempt: minimize A over {x ∈ Λ : deg(x1 − x2; 0) 6= 0}. A
continuous of minimizers connecting the circular trajectory with a
degenerate ellipse (collision minimizer). Very degenerate and
unstable under small perturbations.

Theorem (W. Gordon 1977)

The keplerian ellipses minimize the action among loops having nontrivial
winding number about the origin.

◮ Third attempt: minimize A over

{x ∈ Λ : deg(x ; 0) 6= 0 & |x1(t)− x2(t)| ≥ ε}

Success (?)

S. Terracini Collisions and regularzation
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Main problems:

The action functional A is not coercive on Λ. The minimum needs
not to be achieved.
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Periodic solutions G -equivariant trajectories Collisions Asymptotic estimates at collisions The Rotating Circle Property Parabolic trajectories Monotonicity

Main problems:

The action functional A is not coercive on Λ. The minimum needs
not to be achieved.

We can seek critical point others than minimizers: e.g.

Local minimizers
Constrained minimizers
Other type of critical points (mountain pass).
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Main problems:

The action functional A is not coercive on Λ. The minimum needs
not to be achieved.

We can seek critical point others than minimizers: e.g.

Local minimizers
Constrained minimizers
Other type of critical points (mountain pass).

The action functional A does not satisfy the Palais-Smale
compactness condition on Λ: sequences of almost–critical points
may diverge.

S. Terracini Collisions and regularzation
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Main problems:

The action functional A is not coercive on Λ. The minimum needs
not to be achieved.

We can seek critical point others than minimizers: e.g.

Local minimizers
Constrained minimizers
Other type of critical points (mountain pass).

The action functional A does not satisfy the Palais-Smale
compactness condition on Λ: sequences of almost–critical points
may diverge.

The potential U is singular on collisions, and thus miminizers or
other critical points can a priori have collisions.

S. Terracini Collisions and regularzation
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Action minimizing G -equivariant solutions

A. Chenciner and R. Montgomery, A remarkable periodic solution of
the three-body problem in the case of equal masses. Ann. of Math.
(2) 152 (2000)

Ferrario, D. L. and Terracini, S., On the existence of collisionless
equivariant minimizers for the classical n-body problem. Invent.
Math. 155 (2004)

Ferrario, Davide L. Transitive decomposition of symmetry groups for
the n-body problem. Adv. Math. 213 (2007)

Chen, Kuo-Chang, Existence and minimizing properties of retrograde
orbits to the three-body problem with various choices of masses.
Ann. of Math. (2) 167 (2008),

G. Fusco, G. F. Gronchi and P. Negrini, Platonic polyhedra,
topological constraints and periodic solutions of the classical N-body
problem Invent. Math., (2011)
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Symmetry groups and equivariant orbits

G finite group.

τ : G → O(2) orthogonal representation of dimension 2 (on cyclic
time T = R mod T ∼= S1).

ρ : G → O(d) orthogonal representation on the euclidean space R
d .

σ : G → Σn homomorphism on the symmetric group on n elements
( =⇒ G on the index set n = {1, 2, . . . , n})

G acts on time (translation and reversal) T via τ ;
G acts on the configuration space X via ρ and σ:

∀i = 1 . . . n : (gx)
i
= ρ(g)x

σ(g)−1(i).

S. Terracini Collisions and regularzation
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From Ferrario and T., 2004.

Definition

Consider the linear subspace of Λ0 = ΛG ⊂ Λ of periodic curves in Λ
which are equivariant with respect to the G -action:
∀g ∈ G : x(gt) = (gx)(t).

Consequences:

(1) ΛG is a natural constraint if m
σ(g(i)) = mi , for all i and g ∈ G , i.e.

critical points of the action constrained to ΛG are free critical points.
(2) Gain of coercivity:

Proposition

if X G is trivial we have x ∈ Λ0, |x | → ∞ =⇒ A(x) → ∞.

S. Terracini Collisions and regularzation
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Cyclic and dihedral actions

Consider the normal subgroup ker τ ✁ G and the quotient Ḡ = G/ ker τ .
Since Ḡ acts effectively on T, it is either a cyclic group or a dihedral
group.

If the group Ḡ acts trivially on the orientation of T, then Ḡ is cyclic

and we say that the action of G on Λ is of cyclic type.

If the group Ḡ consists of a single reflection on T, then we say that

action of G on Λ is of brake type.

Otherwise, we say that the action of G on Λ is of dihedral type.

S. Terracini Collisions and regularzation
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maximal 
isotropyisotropy

principal

fundamental
domain

If I = [0, 1] is the fun-
damental domain (for a
dihedral type), then G -
equivariant trajectories

correspond to paths x : I → X ker τ with x(0) ∈ XH0 and x(1) ∈ XH1 ,
where H0 and H1 are the maximal isotropy subgroups of the boundary of
I.

S. Terracini Collisions and regularzation
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Symmetries of the Chenciner and Montgomery eight

The group is generated by two following space-time reflections, which fix
the following space of loops.

x1(−t) = −x3(t) , x2(−t) = −x2(t) , x3(−t) = −x1(t) .

x1(1− t) = −x2(t) , x2(1− t) = −x1(t) , x3(1− t) = −x3(t)

S. Terracini Collisions and regularzation
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G -equivariancy and boundary conditions

G -equivariance can be split into:

proper boundary conditions on the fundamental domain;

a time-independent constraint on the space of configurations.

S. Terracini Collisions and regularzation
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A plethora of periodic trajectories

A systematic use of equivariant variational methods involves:

The classification of all the admissible symmetry groups.

The analysis of possible collisions for equivariant minimizers and
the determination of those groups whose minimizers are free of
collisions.

A further study of qualitative properties of equivariant
minimizers to understand whether different classes of symmetric
loops may share the same minimizers.

Further possible developments

1 Develop an equivariant Morse Theory specific for the N–body
problem, taking into account of all possible collisions.

2 Fully understand the impact of collisions on the variational
characterization (Morse index) of periodic trajectories.

S. Terracini Collisions and regularzation
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Absence of collision for locally minimal paths

Solutions to the Newtonian n–body problem which are minimals for the
action are, very likely, free of any collision. This fact was observed by the
construction of suitable local variation arguments for the 2 and 3–body
cases by Serra and Terracini (1992 and 1994). The 4–body case was
treated afterward by Dell’Antonio (non really rigorously) and then by A.
Venturelli in his PhD thesis. In general, the proof goes by the sake of the
contradiction and involves the construction of a suitable variation that
lowers the action in presence of a collision. A powerful breakthrough in
this direction is due of the neat idea, due to C. Marchal, of averaging
over a family of variations parameterized on a sphere. This method has
been developed and exposed by Chenciner, and then extended to
α–homogeneous potentials and various constrained minimization
problems by Ferrario and Terracini. This argument can be used in many
of the known cases to prove that minimizing trajectories are collisionless.

S. Terracini Collisions and regularzation
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Notation

Assume time t = 0 is an isolated collision (possibly more than one
colliding cluster).

k ⊂ n: colliding cluster.

The momentum of inertia with respect to the center of mass:

I k =
∑

i∈ k

mi(xi − x0)
2

(x0 =
∑

i∈ k mixi/m0, m0 =
∑

i∈ k mi ). All the bodies in k collide in
x0 if and only if I k = 0

The partial kinetic energy K k and the partial potential function

K k =
∑

i∈ k

mi

2
|ẋi |2 , U k =

∑

i ,j∈ k,i<j

mimj

|xi − xj |α
.

The partial energy and the partial Lagrangian:

E k = K k − U k ; L k = K k + U k.

S. Terracini Collisions and regularzation
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Generalized Sundman–Sperling estimates

For every colliding cluster k ⊂ n the partial energy E k is bounded.

There is κ > 0 such that the following asymptotic estimates hold:

I k ∼ (κt)
4

2+α

İ k ∼
4

2 + α
κ(κt)

2−α

2+α ,

and

K k ∼ U k ∼
1

4− 2α
Ï k ∼

2

(2 + α)2
κ2(κt)

−2α
2+α .

Let s be the normalized configuration of a colliding cluster

s = I
−1/2
k (x − x0). Then, by a classical monotonicity formula, the

trajectory s(t) of normalized configurations converge, as t → +∞ to
the set central configuration (for the k-body problem).

S. Terracini Collisions and regularzation
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Blow-ups

For every λ > 0 let
xλ(t) = λ−2/(2+α)x(λt)

If {λn}n is a sequence of positive real numbers such that s(λn) converges
to a normalized configuration s̄, then
∀t ∈ (0, 1) : limn→∞ s(λnt) = limn→∞ s(λn) = s̄. Hence the rescaled
sequence will converge uniformly to the blow-up of x(t) relative to the
colliding cluster k ⊂ n (in t = 0).

The blow-up x̄ is parabolic: where a parabolic collision trajectory for
the cluster k is the path

x̄i (t) = |t|2/(2+α)ξi , i ∈ k, t ∈ R

where ξ = (ξi )i∈k is a central configuration with k bodies.

S. Terracini Collisions and regularzation
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Proposition; The sequences xλn and
dxλn

dt
converge to the blow-up x̄

and its derivative ˙̄x respectively, uniformly in [0,T ].

Proposition: Let ϕ be a variation of the particles in k which is C 1 in a
neighborhood of T > 0, defined and centered for every t ∈ [0,T ]. Then
there is a sequence ψn of H1-functions with support in [0,T ], converging
to 0 with the following property:

lim
n→∞

∫ T

0

[
L k(x

λn + ϕ+ ψn)− L(xλn)
]
dt =

∫ T

0

[L k(x̄ + ϕ)− L(q̄)] dt.

S. Terracini Collisions and regularzation
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The standard variation

Let G0 be the isotropy group at the collision time, then the blow–up
procedure implies the existence of q, a G0-equivariant minimizing
parabola homiletic collision trajectory.
The standard variation associated to δ and T is defined as

vδ(t) =







δ if 0 ≤ |t| ≤ T − |δ|
(T − t) δ

|δ| if T − |δ| ≤ |t| ≤ T

0 if |t| ≥ T .

Our next goal is to find a G0-equivariant standard variation vδ such that
the trajectory q + vδ does not have a collision at t = 0 and

∆A :=

∫ +∞

−∞

[Lk(q + vδ)− Lk(q)]dt < 0.

S. Terracini Collisions and regularzation
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Introduce the potential displacement function

S(ξ, δ) =

∫ +∞

0

(

1
∣
∣ξt2/(2+α) − δ

∣
∣
α − 1

∣
∣ξt2/(2+α)

∣
∣
α

)

dt

where ξ, δ ∈ R
2.

Theorem: Let q = {q}i = {t2/(2+α)ξi}, i = 1, . . . , k be a parabolic
collision trajectory and vδ a G0-equivariant standard variation. Then, as
δ → 0

∆A = 2|δ|1−α/2
∑

i<j
i,j∈k

mimjS(ξi − ξj ,
δi − δj
|δ| ) + O(|δ|).

S. Terracini Collisions and regularzation
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The function S

We observe that

S(λξ, µδ) = |λ|−1−α/2 |µ|1−α/2S(ξ, δ)

and hence the sign of S only depends on the angle between ξ and δ. Let

Φ(ϑ) =

∫ +∞

0

1
(

t
4

α+2 − 2 cosϑt
2

α+2 + 1
)α/2

− 1

t
2α
α+2

dt, α ∈ (0, 2)

Φ(θ) represents the potential differential needed for displacing the
colliding particle from zero to e iθ. We can expand interns of
hypergeometric functions:

Φ(ϑ) =
α(α + 2)

2

{

1

α− 2
β

(
α+ 2

4
,
α+ 2

4

)

+
1

α

+∞∑

k=1

(−α/2
k

)

(−1)k2k−1(cosϑ)kβ

(
α

4
− 1

2
+

k

2
,
α

4
+

1

2
+

k

2

)}

.
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Some properties of Φ

The value of Φ(θ) ranges from +∞ to some negative value, depending
on α. However, thanks to some harmonic analysis one can prove that
suitable averages are always negative: the first inequality is particularity
useful for dealing with reflected triple collisions from the Lagrange central
configuration:

Φ(
2π

3
+ γ) + Φ(

2π

3
− γ) < 0, ∀γ ∈ [0, π/2].

A key remark was made by Christian Marchal: being the Newton
potential a harmonic map averaging it on a sphere results in a truncation
in the interior. In fact, is not so much a matter of harmonicity.
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A crucial estimate

A crucial estimate was proved in [FT] about the averages of Φ on circles:

For every α > 0, ξ ∈ R
3 \ {0} and for every circle S

d−1 ⊂ R
d

with center in 0,

S̃(ξ, Sd−1) =
1

|Sd−1|

∫

Sd−1

S(ξ, δ)dδ

= |ξ|−1−α/2 |δ|1−α/2 1

2π

∫ 2π

0

Φ(θ)dθ < 0.

Consider ξ = xi − xj and δ ranging in a circle. Then we obtain the
principle, a generalization of the result announced in :
Chenciner, A., Action minimizing solutions of the
Newtonian n–body problem: from homology to symmetry,
August 2002, ICM, Peking
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Marchal’s Principle

It is more convenient (from the point of view of the integral of the
potential on the time line) to replace one of the point particles
with a homogeneous circle of same mass and fixed radius which is
moving keeping its center in the position of the original particle
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If the action of G on T and X fulfills some conditions
(computable) then (local) minimizers of the action functional AG

in ΛG ⊂ Λ do not have collisions.

The rotating circle property
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The rotating circle property

For a group H acting orthogonally on R
d , a circle S

d−1 ⊂ R
d (with

center in 0) is termed rotating under H if Sd−1 is invariant under H (that
is, for every g ∈ H gSd−1 = S

d−1) and for every g ∈ H the restriction
g |Sd−1 : Sd−1 → S

d−1 is a rotation (the identity is meant as a rotation of
angle 0).
Let i ∈ n be an index and H ⊂ G a subgroup. A circle S

d−1 ⊂ R
d = V

(with center in 0) is called rotating for i under H if Sd−1 is rotating
under H and

S
d−1 ⊂ VHi ⊂ V = R

d ,

where Hi ⊂ H denotes the isotropy subgroup of the index i in H relative
to the action of H on the index set n induced by restriction (that is, the
isotropy Hi = {g ∈ H | gi = i}).

S. Terracini Collisions and regularzation



Periodic solutions G -equivariant trajectories Collisions Asymptotic estimates at collisions The Rotating Circle Property Parabolic trajectories Monotonicity

Table of Contents

1 Periodic solutions

2 G -equivariant trajectories

3 Collisions

4 Asymptotic estimates at collisions

5 The Rotating Circle Property

6 Parabolic trajectories

7 Monotonicity formula

8 Devaney’s Work

9 Parabolic trajectories as minimal phase transitions

S. Terracini Collisions and regularzation



Periodic solutions G -equivariant trajectories Collisions Asymptotic estimates at collisions The Rotating Circle Property Parabolic trajectories Monotonicity

A group G acts with the rotating circle property if for every
T-isotropy subgroup Gt ⊂ G and for at least n− 1 indexes i ∈ n

there exists in R
d a rotating circle S

d−1 under Gt for i .

If the action has the rotating circle property, then for every g ∈ G
the linear map 1− g sends the rotating circle into another circle
(thus we can use the averaging trick).

In most of the known examples the property is fulfilled.

There are several infinite families with the rotating circle property.
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Theorems with the RCP

Theorem: Consider a finite group K acting on Λ with the rotating
circle property. Then a minimizer of the K -equivariant fixed–ends
(Bolza) problem is free of collisions.

Corollary: For every α > 0, minimizers of the fixed-ends (Bolza)
problem are free of interior collisions.

Corollary: If the action of G on Λ is of cyclic type and ker τ has the
rotating circle property (or it is trivial) then any local minimizer of
AG in ΛG is collisionless.

Theorem: Consider a finite group G acting on Λ so that every
maximal T-isotropy subgroup of G either has the rotating circle
property or acts trivially on the index set n. Then any local
minimizer of AG yields a collision-free periodic solution of the
Newton equations for the n-body problem in R

d .
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Klein groups
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The reduced potential

Let us consider the quotient configuration space in the case of a Klein
group. The reduced potential takes the form:

U(x) =
∑

r∈R

mr

d(x , r)α

where R is the set of rotation axes
and mr > 0 depends depends on
the order of the rotation.
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The reduced potential

Let us consider the quotient configuration space in the case of a Klein
group. The reduced potential takes the form:

U(x) =
∑

r∈R

mr

d(x , r)α

where R is the set of rotation axes
and mr > 0 depends depends on
the order of the rotation.

The reduced potential is anisotropic and homogenous. It has many lines
of singularity
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Collisions

The general Marchal-Chenciner-Ferrario-T. theorem, has many useful
applications, but fails a number of relevant cases.

For potentials of the form

U(x) =
∑

r∈R

mr

d(x , r)α

does not hold. In other word, for the Kein group, ker τ does not
have the rotating circle property.

Moreover Averaging destroys topology.
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Collisions

The general Marchal-Chenciner-Ferrario-T. theorem, has many useful
applications, but fails a number of relevant cases.

For potentials of the form

U(x) =
∑

r∈R

mr

d(x , r)α

does not hold. In other word, for the Kein group, ker τ does not
have the rotating circle property.

Moreover Averaging destroys topology.

For topologically constrained minimizers Marchal’s argument does not
work, and other devices have to be designed to avoid the occurrence of
collisions.
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Problems:

Include topological constraints.

Anisotropic and logarithmic potentials (for which the averaged
variation does not hold).

Study the contributions to the Morse index given by the possible
collisions (Barutello, Secchi, 2006).

Connection between collision and parabolic trajectories.

Symbolic dynamics.
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Blowing up

On the other hand, topology plays a fundamental role in the very same
existence of non trivial motions. We wish to study the possible
occurrence of collisions in the minimization process in the presence of
topological contraints. Let us assume that, when minimizing:

min{A(x) : x ∈ Λ : deg(x ; 0) 6= 0 & |x1(t)− x2(t)| ≥ ε}
the minimizer hits the obstacle for every ǫ > 0. By rescaling and letting
ǫ→ 0, in the limit we find two minimal parabolic arcs connected by a
circular arc:
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Blowing up

On the other hand, topology plays a fundamental role in the very same
existence of non trivial motions. We wish to study the possible
occurrence of collisions in the minimization process in the presence of
topological contraints. Let us assume that, when minimizing:

min{A(x) : x ∈ Λ : deg(x ; 0) 6= 0 & |x1(t)− x2(t)| ≥ ε}
the minimizer hits the obstacle for every ǫ > 0. By rescaling and letting
ǫ→ 0, in the limit we find two minimal parabolic arcs connected by a
circular arc:

the excess angle indicates the tendency to
collisions of minimal arcs.
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Absence of collisions for minimizers of Bolza problems

In the planar case, we use polar coordinates (r , θ).

Definition

We say that x = (r , ϑ) ∈ AC(t1, t2) is a fixed-time Bolza minimizer
associated to the ends x1 = r1e

iϕ1 , x2 = r2e
iϕ2 , in the sector (ϑ−, ϑ+), if

ϑ− ≤ ϑ(t) ≤ ϑ+ ∀t ∈ [t1, t2];

r(ti ) = ri and ϑ(ti ) = ϕi , i = 1, 2;

for every z = (ρ, ζ) ∈ AC(t1, t2) taking values in the sector
(ϑ−, ϑ+), there holds

ρ(ti ) = ri , ζ(ti ) = ϕi , =⇒ A([t1, t2]; x) ≤ A([t1, t2]; z).

If mint∈[t1,t2] r(t) > 0 we say that the Bolza minimizer is collisionless.
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Theorem

Consider a perturbed Kepler potential V =
1

rα
+W, with α > α′ and

lim
r→0

rα
′

(W (x) + r |∇W (x)|) = 0 .

Given any pair of points x1 and x2 in the sector (ϑ−, ϑ+), if
ϑ+ − ϑ− < 2π/(2− α) then all fixed-time Bolza minimizers associated to
x1, x2 within the sector (ϑ−, ϑ+) are free of collisionless.

The restriction that the minimizing path stays in the sector (ϑ−, ϑ+) can
be removed, when W ≡ 0, as it is implied by the conservation of the
angular momentum. The theorem easily extends to R

3 \ {x1 = x2 = 0}
for potentials with cylindrical symmetry (Hip-hop, T.- Venturelli)
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Some remarks

If conversely ϑ+ − ϑ− ≥ 2π/(2− α), then there are always some
Bolza problems which admit only collision minimizers. It is enough
to chose x1 = ϑ− and x2 = ϑ+ and T as the natural time of the free
time minimizer.
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Some remarks

If conversely ϑ+ − ϑ− ≥ 2π/(2− α), then there are always some
Bolza problems which admit only collision minimizers. It is enough
to chose x1 = ϑ− and x2 = ϑ+ and T as the natural time of the free
time minimizer.

If ϑ+ − ϑ− = 2π/(2− α) and W ≡ 0, then the following alternative
holds:

either the minimizer is collisionless,

or (x1, x2) = (ϑ−, ϑ+) and the minimizer is a
collision–ejection homothetic trajectory.

The latter statement is a generalization of the Marchal’s statement
about the existence of direct and inverse action–minimizing keplerian
arcs.
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Parabolic trajectories for homogeneous potentials

Let us give an exponent α ∈ (0, 2), and a

positive potential V , homogeneous of degree −α,

possibly singular on some cone Σ.

Definition

A (global) completely parabolic trajectory of

ẍ(t) = ∇V (x(t)), x ∈ R
d \∆,

is a collisionless solution having null energy and vanishing velocities at
infinity:

1

2
|ẋ(t)|2 = V (x(t)), for every t ∈ R and lim

|t|→+∞
|ẋ(t)| = 0 .

In the Kepler problem (V (x) = 1/|x |) all global zero-energy trajectories
are indeed parabola.
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Central configurations

Similar to collisions, parabolic trajectories enjoy nice asymptotic
properties, regarding ẋ , |x | and x/|x |. First of all, ẋ(t) → 0 and
|x(t)| → ∞ as t → ±∞ with a definite rate; recall that

Definition

A central configuration for V is a unitary vector which is a critical point
of the restriction of V to the sphere S

d−1.

The normalized configuration x(t)/|x(t)| has infinitesimal distance from
the set of central configurations of V , as t → ±∞. In particular,
whenever this set is discrete, we have that

x(t)

|x(t)| → ξ±, as t → ±∞,

where ξ± are central configurations.
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A Lagrangian version of Mc Gehee coordinates

Start with a Morse minimizer path x = rs, using polar coordinates, and
write the formal Lagrangian

∫
1

2
(ṙ2 + r2|ṡ |2) + U(s)

rα

Now, we change time and space variables:

dt = r (2+α)/2dτ , (·)′ = d

dτ
, ρ = r (2−α)/4

and find

∫
1

2

(
4

2− α

)2

(ρ′)2 + ρ2
(
1

2
|s ′|2 + U(s)

)

.
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A new Lagrangian system

The metric has been deformed in the radial direction, The
Euler-Lagrange equations for the new functional are







−
(

4
2−α

)2

ρ′′ +

(
1

2
|s ′|2 + U(s)

)

ρ = 0

−
(
ρ2s ′

)′
+ ρ2∇sU(s) = ρ2|s ′|2s

and the null energy condition transforms into a new null energy condition

1

2

(
4

2− α

)2

(ρ′)2 + ρ2
(
1

2
|s ′|2 − U(s)

)

= 0 .
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The monotonicity formula

Let v = 4
2−α

ρ′

ρ , so that

|s ′|2 − 2U(s) = −v2 = −
(

4

2− α

)2(
ρ′

ρ

)2

.

Then we have, as we my assume ρ′ > 0,

(v2)′ = 4
ρ′

ρ
|s ′|2 = (2− α)v |s ′|2 =⇒ v ′ =

2− α

2
|s ′|2.

So that we can eliminate ρ from the system:







v ′ =
2− α

2
|s ′|2

−2− α

2
vs ′ − s ′′ +∇sU(s) = |s ′|2s .
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Back to Morse minimizers

Given ξ− and ξ+ ingoing and outgoing asymptotic directions, we consider
the following class of minimizers.

Definition

We say that x ∈ H1
loc(R) is a (free) minimizer of A of parabolic type, in

the sense of Morse with asymptotic configurations ξ±, if

mint∈R |x(t)| > 0;

|x(t)| → +∞, x(t)/|x(t)| → ξ± as t → ±∞;

for every a < b, a′ < b′, and z ∈ H1(a′, b′), there holds

z(a′) = x(a), z(b′) = x(b) =⇒
A([a, b]; x) ≤ A([a′, b′]; z).

In many cases, one may be also interested in Morse minimizers in a local
sense, for instance imposing some topological constraints.
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Structural instability of parabolic trajectories connecting

minimal central configurations

A parabolic Morse minimizer is a minimal geodesic for the Jacobi metric.
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Structural instability of parabolic trajectories connecting

minimal central configurations

A parabolic Morse minimizer is a minimal geodesic for the Jacobi metric.

As we shall see, a potential V needs not to admit a parabolic Morse
minimizer connecting two minimal central configurations.
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Structural instability of parabolic trajectories connecting

minimal central configurations

A parabolic Morse minimizer is a minimal geodesic for the Jacobi metric.

As we shall see, a potential V needs not to admit a parabolic Morse
minimizer connecting two minimal central configurations.

To deal with this intrinsic structural instability we need to introduce an
auxiliary parameter (the homogeneity) and look for parabolic orbits as
pairs trajectory-parameter. To clarify the role of the additional
parameter, it is worthwhile to let the potential vary in a class.

Definition

We denote by V = V(ξ−, ξ+) the class of all α homogenous potentials
sharing ξ± as minimal central configurations.
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The property of a potential to admit parabolic minimizers is related to its
behavior with respect to the following fixed-endpoints problem. For any
V ∈ V , let us define

c(U , α) := inf
{
A ([a, b]; x) : a < b, x(a) = ξ−, x(b) = ξ+

}
;

such ithe minimum is achieved by a possibly colliding solution.

Proposition

Let U ∈ V ; then one of the following alternatives is satisfied:

(1) c(U , α) = 4
√
2Umin/(2− α) is achieved by the juxtaposition of two

self-similar (homothetic) motions, the first connecting ξ− to the
origin and the second the origin to ξ+;

(2) c(U , α) < 4
√
2Umin/(2− α), and it is achieved by trajectories which

are uniformly bounded away from the origin.
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Focal behavior

ξ−

ξ+

0
Bξ−

ξ+

Figure: at left, c(U, α) is achieved by a double-homothetic motion (case (1) of
the Proposition); at right c(U, α) is achieved by a non-collision trajectory (case
(2) of the Proposition). When the second situation occurs, there exists a ball
B, centered at the origin, such that any trajectory that achieves c(U, α) does
not intersect B.

We distinguish potentials with “inner” minimizers (i.e. minimizers which
pass through the origin) from potential with “outer” ones:
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Focal behavior

ξ−

ξ+

0
Bξ−

ξ+

Figure: at left, c(U, α) is achieved by a double-homothetic motion (case (1) of
the Proposition); at right c(U, α) is achieved by a non-collision trajectory (case
(2) of the Proposition). When the second situation occurs, there exists a ball
B, centered at the origin, such that any trajectory that achieves c(U, α) does
not intersect B.

We distinguish potentials with “inner” minimizers (i.e. minimizers which
pass through the origin) from potential with “outer” ones:

In :=
{

(U , α) ∈ V : c(U , α) = 4
√

2Umin/(2− α)
}

,

Out :=
{

(U , α) ∈ V : c(U , α) < 4
√

2Umin/(2− α)
}

.
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It is easy to see that these two sets are disjoint and their union is the
whole V ; moreover, we can show that In is closed while Out is open. We
are interested in their common boundary, that is

Π := ∂In ∩ ∂Out.

The separating property of the common boundary is highlighted by the
following result.

Lemma (Barutello, Verzini, T.)

There exists an open nonempty set Σ ⊂ U , and a continuous function
ᾱ : Σ → (0, 2) such that

Π = {(V , ᾱ(U)) : U ∈ Σ} .

Of course, we can exhibit explicit criteria in order to establish whether a
potential U ∈ U belongs to the domain of the function ᾱ.
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The Structure Theorem

Our main result states that the above graph coincides with the set of
potentials admitting parabolic Morse minimizers.

Theorem (Barutello, Verzini, T.)

V ∈ V admits a parabolic Morse minimizer if and only if V ∈ Π.

Of course, due to the invariance by homothetity of the problem, such
Morse minimizing parabolic trajectories always come in one-parameter
families and give rise to a 2-dimensional Lagrangian submanifold having
boundary corresponding to the two homothetic solutions.
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Smooth solutions of Hamilton–Jacobi equation in two

dimensions

By a conformal map, we can always reduce to the case ϑ+ = ϑ− + 2π.
Let us chose the threshold exponent α = ᾱ(U , ϑ∗, ϑ∗ + 2π). The above
mentioned Lagrangian submanifold is laminated by the family of
parabolic trajectories. Such a structure determines a smooth solution of
the stationary Hamilton-Jacobi equation associated to the newton
equation, of class C1 on the double covering of R2 \ {0}.

ξ+ ≡ ξ−0

Figure: one parameter family of Morse minimizing parabolic trajectories having
the same asymptotic configuration at +∞ e −∞ ond a nontrivial winding
number.
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Remarks

In spite of their fragility, parabolic trajectories carry precious information:

they mark a transition between different focal properties of the
origin with respect to the minimal geodesics;

are connected with the possible absence/occurrence of collisions for
solutions to the Bolza problems (fixed ends);

they can be used as carriers to travel at very low cost from one to
another region of the phase space;
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Remarks

In spite of their fragility, parabolic trajectories carry precious information:

they mark a transition between different focal properties of the
origin with respect to the minimal geodesics;

are connected with the possible absence/occurrence of collisions for
solutions to the Bolza problems (fixed ends);

they can be used as carriers to travel at very low cost from one to
another region of the phase space;

As remarked by de Luz and Maderna, the property to be collisionless
for all Bolza minimizers implies the absence of parabolic trajectories
which are Morse minimal for the usual n–body problem with α = 1
(without topological constraints). This can be easily seen by a
rescaling and limiting argument.

In contrast, minimal parabolic arcs (i.e., defined only on the half
line) exist for every starting configuration, as proven recently by
Maderna and Venturelli.
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Parabolic solutions and complex dynamics

Moreover, parabolic trajectories are building blocks to construct
collisionless complex trajectories featuring strong oscillations:

Theorem (Soave-T., DCDS 2012)

The planar N-center problem displays (slightly) negative energy non
collision symbolic dynamics if N ≥ 3 and α ∈ [1, 2), interacting with the
boundary of the Hill’s region.
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Devaney’s Work: the Anisotropic Kepler Problem in R
2

In 1978 R.L. Devaney (Invent. Math., 45) considered the planar
anisotropic Kepler potential

V (r cosϑ, r sinϑ) =
U(ϑ)

rα
, ϑ ∈ R, r > 0,

where U is a 2π-periodic function such that U(ϑ) ≥ Umin > 0, ∀ϑ ∈ R.
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Devaney’s Work: the Anisotropic Kepler Problem in R
2

In 1978 R.L. Devaney (Invent. Math., 45) considered the planar
anisotropic Kepler potential

V (r cosϑ, r sinϑ) =
U(ϑ)

rα
, ϑ ∈ R, r > 0,

where U is a 2π-periodic function such that U(ϑ) ≥ Umin > 0, ∀ϑ ∈ R.

Following Devaney, a remarkable variant of MacGehee coordinates makes
the parabolic motion equations equivalent to a planar first order system.
Let

z =
√

2U(ϑ)

and, assuming x = re iθ, ẋ = r−α/2ze iϕ, introduce the new parameter τ
as

dt

dτ
= zr1+α/2
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Now rewrite the dynamical system as (here “ ′ ” denotes the derivative
with respect to τ)







r ′ = rz2 cos(ϕ− ϑ) = 2rU(ϑ) cos(ϕ− ϑ)

z ′ = zU ′(ϑ) sin(ϕ− ϑ)

ϑ′ = z2 sin(ϕ− ϑ) = 2U(ϑ) sin(ϕ− ϑ)

ϕ′ = U ′(ϑ) cos(ϕ− ϑ) + αU(ϑ) sin(ϕ− ϑ),
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The above system contains the independent planar system

{

ϑ′ = 2U(ϑ) sin(ϕ− ϑ)

ϕ′ = U ′(ϑ) cos(ϕ− ϑ) + αU(ϑ) sin(ϕ− ϑ).

Stationary points: (ϑ∗, ϕ∗), where U ′(ϑ∗) = 0 and ϕ∗ = ϑ∗ + hπ,
for some h ∈ Z. Minima of U correspond to saddles, maxima to
sinks/sources. Other trajectories: heteroclinics between the above.
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The above system contains the independent planar system

{

ϑ′ = 2U(ϑ) sin(ϕ− ϑ)

ϕ′ = U ′(ϑ) cos(ϕ− ϑ) + αU(ϑ) sin(ϕ− ϑ).

Stationary points: (ϑ∗, ϕ∗), where U ′(ϑ∗) = 0 and ϕ∗ = ϑ∗ + hπ,
for some h ∈ Z. Minima of U correspond to saddles, maxima to
sinks/sources. Other trajectories: heteroclinics between the above.

The function

v(τ) =
√

U(ϑ(τ)) cos (ϕ(τ) − ϑ(τ)) ,

is non-decreasing on the solutions.

S. Terracini Collisions and regularzation



Periodic solutions G -equivariant trajectories Collisions Asymptotic estimates at collisions The Rotating Circle Property Parabolic trajectories Monotonicity

The above system contains the independent planar system

{

ϑ′ = 2U(ϑ) sin(ϕ− ϑ)

ϕ′ = U ′(ϑ) cos(ϕ− ϑ) + αU(ϑ) sin(ϕ− ϑ).

Stationary points: (ϑ∗, ϕ∗), where U ′(ϑ∗) = 0 and ϕ∗ = ϑ∗ + hπ,
for some h ∈ Z. Minima of U correspond to saddles, maxima to
sinks/sources. Other trajectories: heteroclinics between the above.

The function

v(τ) =
√

U(ϑ(τ)) cos (ϕ(τ) − ϑ(τ)) ,

is non-decreasing on the solutions.

The corresponding solutions of the systems are:
global and unbounded if cos(ϕ− ϑ) → ±1 as τ → ±∞;
colliding in finite t if cos(ϕ− ϑ) → ∓1 as τ → ±∞
(in the future/past).
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Corollary

Let ϑ− < ϑ+ belong to Θϑ1ϑ2 and let x = (r , ϑ) be an associated
parabolic Morse minimizer for (U , α). Then the corresponding (ϑ, ϕ) is a
heteroclinic connection between the saddles

(ϑ−, ϑ− + π) and (ϑ+, ϑ+).

Moreover ϑ is strictly increasing between ϑ− and ϑ+.
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Corollary

Let ϑ− < ϑ+ belong to Θϑ1ϑ2 and let x = (r , ϑ) be an associated
parabolic Morse minimizer for (U , α). Then the corresponding (ϑ, ϕ) is a
heteroclinic connection between the saddles

(ϑ−, ϑ− + π) and (ϑ+, ϑ+).

Moreover ϑ is strictly increasing between ϑ− and ϑ+.

In the isotropic case (U ≡ 1) we have

{

ϑ′ = 2 sin(ϕ− ϑ)

ϕ′ = α sin(ϕ− ϑ).

Heteroclinic connections must satisfy

ϑ+ − ϑ− =
2π

2− α
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Structural instability of Morse minimizing parabolic

trajectories

Parabolic trajectories for (DS) correspond to saddle-saddle
heteroclinic connections for a planar dynamical system.
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Structural instability of Morse minimizing parabolic

trajectories

Parabolic trajectories for (DS) correspond to saddle-saddle
heteroclinic connections for a planar dynamical system.

But generically the unstable manifold at a saddle falls into a sink,
while the stable one emanates from a source, implying that parabolic
trajectories do not exist.
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Parabolic Trajectories as Phase Transition

Figure: the two pictures represent the phase portrait of the planar dynamical
system with U(ϑ) = 2− cos(2ϑ), when α = 0.5 (at left) or α = 1 (at right).
We focus our attention on the saddles (0, π) and (π, π): from the mutual
positions of the unstable manifold departing from (0, π) and the stable one
ending in (π, π) we deduce that the two vector fields are not topologically
equivalent. By structural stability we infer the existence, for some ᾱ ∈ (0.5, 1),
of a saddle connection between (0, π) and (π, π).
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Introducing a Transition Parameter

We deal with the anisotropic Kepler problem in any dimension: more
precisely V is such that:

V ∈ C2(Rd \ {0}), in particular X = {0};
V (x) = V (s) /rα, α ∈ (0, 2);

V > 0;

V admits (at least) two non-degenerate and globally minimal c.c.
ξ±.

The previous discussion suggests to choose the homogeneity exponent
−α as parameter. To clarify the role of the parameter, we let the
potential vary in a class.
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Introducing a Transition Parameter

We deal with the anisotropic Kepler problem in any dimension: more
precisely V is such that:

V ∈ C2(Rd \ {0}), in particular X = {0};
V (x) = V (s) /rα, α ∈ (0, 2);

V > 0;

V admits (at least) two non-degenerate and globally minimal c.c.
ξ±.

The previous discussion suggests to choose the homogeneity exponent
−α as parameter. To clarify the role of the parameter, we let the
potential vary in a class.
For ξ+ 6= ξ− in S

d−1 and Vmin > 0, and let us define the metric spaces

U =







V ∈ C2(Sd−1) :

s ∈ S
d−1 implies V (s) ≥ V (ξ±) = Vmin;

∃δ > 0, µ > 0 such that |s − ξ±| < δ

implies V (s) − V (ξ±) ≥ µ|s − ξ±|2







,

V =
{
(V , α) ∈ C2(Sd−1)× (0, 2) : V ∈ U

}
,

the latter being equipped with the product distance.
S. Terracini Collisions and regularzation
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Inner and Outer Potentials

The property of a potential to admit parabolic minimizers is related to its
behavior w.r.t. the fixed-endpoints problem

c(V ) := inf
{
A ([a, b]; x) : a < b, x ∈ H1(a, b), x(a) = ξ−, x(b) = ξ+

}
.

The value c(V ) is always achieved according to the following alternative.
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Inner and Outer Potentials

The property of a potential to admit parabolic minimizers is related to its
behavior w.r.t. the fixed-endpoints problem

c(V ) := inf
{
A ([a, b]; x) : a < b, x ∈ H1(a, b), x(a) = ξ−, x(b) = ξ+

}
.

The value c(V ) is always achieved according to the following alternative.

In := {V : c(V ) is achieved by the juxtaposition of
two homothetic motions, the first connecting ξ− to
the origin and the second the origin to ξ+} ξ−

ξ+

0

Out := {V : c(V ) is achieved by motions which are
uniformly bounded away from the origin }

Bξ−

ξ+
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Inner and Outer Potentials

The property of a potential to admit parabolic minimizers is related to its
behavior w.r.t. the fixed-endpoints problem

c(V ) := inf
{
A ([a, b]; x) : a < b, x ∈ H1(a, b), x(a) = ξ−, x(b) = ξ+

}
.

The value c(V ) is always achieved according to the following alternative.

In := {V : c(V ) is achieved by the juxtaposition of
two homothetic motions, the first connecting ξ− to
the origin and the second the origin to ξ+} ξ−

ξ+

0

Out := {V : c(V ) is achieved by motions which are
uniformly bounded away from the origin }

Bξ−

ξ+

The sets In and Out enjoy the following properties:

In ∩Out = ∅, In ∪Out = V ;
In is closed;

Out is open.
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Structure Theorem

The role of the homogeneity parameter can be now clarified by the
following property. Let Π := ∂In ∩ ∂Out.

Lemma (Separation Property)

There exists an open nonempty set Σ ⊂ U , and a continuous function
ᾱ : Σ → (0, 2) such that

Π = {(V , ᾱ(V )) : V ∈ Σ} .

S. Terracini Collisions and regularzation



Periodic solutions G -equivariant trajectories Collisions Asymptotic estimates at collisions The Rotating Circle Property Parabolic trajectories Monotonicity

Structure Theorem

The role of the homogeneity parameter can be now clarified by the
following property. Let Π := ∂In ∩ ∂Out.

Lemma (Separation Property)

There exists an open nonempty set Σ ⊂ U , and a continuous function
ᾱ : Σ → (0, 2) such that

Π = {(V , ᾱ(V )) : V ∈ Σ} .

We can now characterize the set of potentials admitting parabolic Morse
minimizers as the graph of the above function.

Main Theorem.

V ∈ V admits a parabolic Morse minimizer ⇐⇒ V ∈ Π.
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Back to R
2: Topological Constraints

Let d = 2, U(ϑ) := V (cosϑ, sinϑ). In this last part, for the sake of
simplicity, let U be a positive, C2 Morse function such that every local
minimum is indeed a global one.
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Back to R
2: Topological Constraints

Let d = 2, U(ϑ) := V (cosϑ, sinϑ). In this last part, for the sake of
simplicity, let U be a positive, C2 Morse function such that every local
minimum is indeed a global one.

Since R
2 \ {0} is not simply connected, we can search for minimizers

with respect to a given homotopy class:

connecting ξ− and ξ+

with h ∈ Z rotations around 0
⇐⇒

connecting ϑ− := arg ξ−,
ϑ+ := arg ξ+ + 2hπ
in the universal covering
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Back to R
2: Topological Constraints

Let d = 2, U(ϑ) := V (cosϑ, sinϑ). In this last part, for the sake of
simplicity, let U be a positive, C2 Morse function such that every local
minimum is indeed a global one.

Since R
2 \ {0} is not simply connected, we can search for minimizers

with respect to a given homotopy class:

connecting ξ− and ξ+

with h ∈ Z rotations around 0
⇐⇒

connecting ϑ− := arg ξ−,
ϑ+ := arg ξ+ + 2hπ
in the universal covering

Motivated by this, we introduce the set

Θ := {ϑ ∈ R : ϑ is a (non-degenerate global) minimum for u} .
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Parabolic Threshold and Collisionless Minimizers

Theorem

Let ϑ−, ϑ+ ∈ Θ, ϑ− 6= ϑ+. Then there exists at most one
ᾱ = ᾱ(ϑ−, ϑ+) ∈ (0, 2) such that V = (U , α) admits a corresponding
parabolic Morse minimizer associated with (ϑ−, ϑ+,U) if and only if
α = ᾱ.

If such a ᾱ does not exist, we define ᾱ(ϑ−, ϑ+) := 0.

S. Terracini Collisions and regularzation



Periodic solutions G -equivariant trajectories Collisions Asymptotic estimates at collisions The Rotating Circle Property Parabolic trajectories Monotonicity

Parabolic Threshold and Collisionless Minimizers

Theorem

Let ϑ−, ϑ+ ∈ Θ, ϑ− 6= ϑ+. Then there exists at most one
ᾱ = ᾱ(ϑ−, ϑ+) ∈ (0, 2) such that V = (U , α) admits a corresponding
parabolic Morse minimizer associated with (ϑ−, ϑ+,U) if and only if
α = ᾱ.

If such a ᾱ does not exist, we define ᾱ(ϑ−, ϑ+) := 0.

Theorem

For any x1, x2 in the sector (ϑ−, ϑ+), if α > ᾱ(ϑ−, ϑ+) then all
fixed-time Bolza minimizers with endpoints x1, x2, within the sector, are
collisionless.
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Parabolic Threshold and Collisionless Minimizers

Theorem

Let ϑ−, ϑ+ ∈ Θ, ϑ− 6= ϑ+. Then there exists at most one
ᾱ = ᾱ(ϑ−, ϑ+) ∈ (0, 2) such that V = (U , α) admits a corresponding
parabolic Morse minimizer associated with (ϑ−, ϑ+,U) if and only if
α = ᾱ.

If such a ᾱ does not exist, we define ᾱ(ϑ−, ϑ+) := 0.

Theorem

For any x1, x2 in the sector (ϑ−, ϑ+), if α > ᾱ(ϑ−, ϑ+) then all
fixed-time Bolza minimizers with endpoints x1, x2, within the sector, are
collisionless.

Theorem

For any k ∈ Z \ {0} and T > 0, if α > ᾱ(ϑ∗, ϑ∗ + 2kπ), for every
minimum ϑ∗ ∈ Θ, then there exists an action minimizing collisionless
T–periodic trajectory winding k times around zero.

S. Terracini Collisions and regularzation



Periodic solutions G -equivariant trajectories Collisions Asymptotic estimates at collisions The Rotating Circle Property Parabolic trajectories Monotonicity

Proof: From Bolza to Morse Minimizers

To construct Morse minimizers of parabolic type, we will first
consider analogous problems on bounded intervals (Bolza problems),
and then pass to the limit.
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Proof: From Bolza to Morse Minimizers

To construct Morse minimizers of parabolic type, we will first
consider analogous problems on bounded intervals (Bolza problems),
and then pass to the limit.

This procedure may fail for two main reasons: sequences of
approximating trajectories may either converge to the singularity, or
escape to infinity.
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Proof: From Bolza to Morse Minimizers

To construct Morse minimizers of parabolic type, we will first
consider analogous problems on bounded intervals (Bolza problems),
and then pass to the limit.

This procedure may fail for two main reasons: sequences of
approximating trajectories may either converge to the singularity, or
escape to infinity.

This naturally leads to introduce some constraints and to study the
constrained minimization problem

m = m(ε, x1, x2) := inf
x∈Γ

A(x) where Γ :=
⋃

T>0

ΓT , and

ΓT :=
{
x ∈ H1(−T ,T ) : x(−T ) = x1, x(T ) = x2,

min
t∈[−T ,T ]

|x(t)| = ε

}

,

where ε > 0 and x1, x2 ∈ R
d \ B2ε(0) are fixed.
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Basic Properties of Bolza Constrained Minimizers

• If x̄ = r̄ s̄ ∈ ΓT̄ is a constrained minimizer and r̄(t) > ε for
t ∈ (a, b), then

¨̄x(t) = ∇V (x̄(t)) and
1

2
| ˙̄x(t)| = V (x̄(t)), for every t ∈ (a, b).

• If x̄ achieves m and it does interact with the constraint, then there
exist t∗ ≤ t∗∗ such that

r̄ (t) = ε ⇔ t ∈ [t∗, t∗∗];
t ∈ (−T , t∗) ⇒ ˙̄r(t) < 0;
t ∈ (t∗∗,T ) ⇒ ˙̄r(t) > 0;

|x | ≤ ε

x1

x2

x̄(t∗∗)
x̄(t∗)

if t∗ < t∗∗ and t ∈ (t∗, t∗∗) ⇒





¨̄x(t) = ∇TV (x̄(t)) − 1

ε2
| ˙̄x(t)|2x̄(t),

1

2
| ˙̄x(t)| = V (x̄(t)).
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Interaction with the Constraint

⇒ If x̄ achieves m then it may be not regular only in t∗ and t∗∗.

Proposition

If x̄ achieves m, then one of the following situations occurs:

(a) t∗ < t∗∗ and x̄ ∈ C1(−T̄ , T̄ );

(b) t∗ = t∗∗ and x̄ ∈ C1(−T̄ , T̄ );

(c) t∗ = t∗∗ and ˙̄x(t−∗ ) 6= ˙̄x(t+∗ ); in such a case x̄ undergoes a radial
reflection,

that is ˙̄r(t−∗ ) = − ˙̄r(t+∗ ) 6= 0 and ˙̄s(t−∗ ) = ˙̄s(t+∗ ).
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⇒ We can classify Bolza minimizers with respect to the discontinuity of
the quantities x and ẋ on the constraint.

Definition

Given a constrained Bolza minimizer x = rs we define :

∆pos(x) := |s(t∗∗)− s(t∗)| =
|x(t∗∗)− x(t∗)|

ε
,

∆vel(x) := εα/2
[
ṙ (t+∗∗)− ṙ(t−∗ )

]
=

ẋ(t+∗∗) · x(t∗∗)− ẋ(t−∗ ) · x(t∗)
ε−α/2 · ε ,

respectively as the normalized position-jump and velocity-jump of x .
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x1

x2

x(t∗)

x(t∗∗)

ϑ

(a) t∗ < t∗∗, x̄ ∈ C1, ∆pos > 0,
∆vel = 0,
x is position-jumping

x1

x2

x(t∗)
(b) t∗ = t∗∗, x̄ ∈ C1, ∆pos = 0,
∆vel = 0,
x is parabolic

x1

x2
x(t∗)ϑ

(c) t∗ = t∗∗, ˙̄x(t−∗ ) 6= ˙̄x(t+∗ ),
∆pos = 0, ∆vel > 0,
x is velocity-jumping
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Existence of Constrained Morse Minimizers

Definition

We say that x ∈ H1
loc(R) is an ε-constrained Morse minimizer if

mint |x(t)| = ε;

|x(t)| → +∞ and
x(t)

|x(t)| → ξ±, as t → ±∞;

for every a < b and T > 0, and for every z ∈ H1(−T ,T ), with
mint∈[−T ,T ] |z(t)| = mint∈[a,b] |x(t)|, there holds

z(−T ) = x(a), z(T ) = x(b) =⇒ A([a, b]; x) ≤ A([−T ,T ]; z).

Proposition

M = {ε-constrained Morse minimizer} 6= ∅.

We argue by approximation, solving the Bolza problem with x1 = Rξ−

and x2 = Rξ+ and then letting R → +∞.
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Jump-classification of Constrained Morse Minimizers

Of course, also Morse minimizers can be classified according to their
jumps.

Proposition

If x = rs ∈ M then there exist t∗ ≤ t∗∗ such that:

r(t) = ε if and only if t ∈ [t∗, t∗∗], ṙ(t) < 0 (resp. > 0) if and only
if t < t∗ (resp. t > t∗∗);

ẍ(t) = ∇V (x(t)), for every t 6∈ [t∗, t∗∗];

both ∆pos(x) and ∆vel(x) are non-negative and at least one
vanishes;
1

2
|ẋ(t)|2 = V (x(t)), for every t ∈ R.

In general, for any fixed ε and potential V , we do not expect uniqueness
for the Morse minimizers. Nevertheless, it is possible to show that, with
respect to the jump classification, they are all of the same type.
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Constrained Morse Minimizers have all the same jumps

Theorem

Let V ∈ V be fixed. For any x1, x2 in M it holds:

∆pos(x1) = ∆pos(x2) =: ∆pos(V ),

∆vel(x1) = ∆vel(x2) =: ∆vel(V ),

Lemma

Let 0 < α1 < α2 < 1 and let us assume that there exists xi ∈ M(U , αi),
i = 1, 2, such that

∆pos(x1) > 0 and ∆vel(x2) > 0.

Then there exist ᾱ ∈ (α1, α2) and x̄ ∈ M(U , ᾱ) such that

∆pos(x̄) = ∆vel(x̄) = 0 and x̄ is a corresponding free Morse minimizer.
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