文章编号: 0253-2409(2015)02-0235-08

大气压下甲烷火花放电制乙炔和合成气

张 婧1, 王东江1, 张家良2, 郭洪臣1

(1.大连理工大学 化工学院催化化学与工程系,精细化工国家重点实验室,辽宁 大连 116024;2.大连理工大学 物理与光电工程学院,辽宁 大连 116024)

摘 要:用大气压下火花放电方法和发射光谱原位诊断技术,对 CH₄直接转化制乙炔和间接转化制合成气进行了研究,并 与介质阻挡放电进行了比较。结果表明,火花放电具有能量效率高的突出优点,能够高效地将 CH₄ 活化成 C 原子、H 原子和 C₂ 等活泼物种。当 CH₄ 单独进料时,能得到以 C₂H₂ 为主的烃类产物。当 CH₄ 与 CO₂ 和 O₂ 共进料时,能得到 H₂/CO 比值 可调的合成气产物。在用火花放电转化 CH₄ 和 CO₂ 制合成气时,添加 O₂ 能够避免反应器的结炭问题,反应温度只需 225 ℃,与常规催化法相比具有明显的低温优势。

关键词:甲烷;火花放电;二氧化碳;合成气;发射光谱

中图分类号: O646.9 文献标识码: A

Preparation of acetylene and syngas by the atmospheric pressure spark discharge of methane

ZHANG Jing¹, WANG Dong-jiang¹, ZHANG Jia-liang², GUO Hong-chen¹

(1. State Key Laboratory of Fine Chemicals, Department of Catalytic Chemistry and Engineering,

School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China;

2. School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024, China)

Abstract: The direct conversion of methane to acetylene and the indirect conversion of mathane to syngas were studied by using the atmospheric pressure spark discharge, and with the in-situ diagnosis of optical emission spectroscopy. The results were compared with the dielectric barrier discharge. Results show that, the spark discharge, having remarkable advantage of high energy efficiency, was able to easily activate the methane molecules into species such as C, H and C₂. C₂H₂ was formed as a major hydrocarbon product when methane was fed alone, while the syngas was formed with adjustable H₂/CO ratio when CO₂ and O₂ were co-fed with methane. It is worth of mention that, the addition of O₂ overcame completely the troublesome problem of reactor coking during the spark discharge of CH₄ and CO₂, the production of syngas was allowed to be carried out at a temperature as low as 225 °C. Therefore, the new syngas preparation method is very attractive comparing with the traditional catalytic routes.

Key words: methane; spark discharge; CO2; syngas; optical emission spectroscopy

CH₄的来源十分广泛,是一种十分重要的石油 替代品。但由于 CH₄ 分子非常稳定,用常规方法进 行转化时需要高温条件^[1-4],所以通过放电等离子 体反应、尤其是通过非平衡等离子体(低温等离子 体)反应转化 CH₄ 一直备受关注^[5~10]。迄今为止, 文献已经报道的 CH₄ 放电方法主要为介质阻挡放 电、电晕放电、电弧放电以及微波等离子体等^[9~12], 主要研究兴趣集中在 CH₄ 制氢^[13,14]、制 C₂ 以上高 碳烃^[15~17]和制合成气^[18,19]等方面。其中,将 CH₄ 直接转化为高碳烃最具吸引力。近年来,随着煤化 工的兴起,尤其是费托合成、氢甲酰化(合成醋酸、 醋酸酯、乙醇和乙二醇等)和甲醇制烯烃(MTO/

MTP)等技术的不断工业应用,用甲烷制合成气的 间接转化路线也越来越受到关注。在制合成气方 面,目前,世界各国学者的研究工作都集中在 CH₄ 和 CO₂ 原料路线上^[19,20],所采用的放电方式主要 是介质阻挡放电、电晕放电和电弧放电。用 CH₄ 和 CO₂ 制合成气不但可以解决 CH₄ 的利用问题,而且 可以减少 CO₂ 温室气体的排放。但研究结果表明, 在 CH₄ 和 CO₂ 放电反应中结炭是不可避免的,很 容易导致放电终止。为此,有的研究者试图通过改 变反应器结构来解决结炭和放电稳定性问题^[21]。 尽管目前基于非平衡等离子体方法的甲烷直接和间 接转化路线距离工业应用还路途遥远,但非平衡等

收稿日期: 2014-09-09;修回日期: 2014-11-22。

联系作者: 郭洪臣, 男, 教授, E-mail: hongchenguo@163.com; Tel: +86-411-84986120。

离子体方法的低温优势,具有巨大吸引力。

研究重点对大气压下火花放电直接转化 CH_4 制乙炔和在 CO_2 、 O_2 共同存在下间接转化 CH_4 制 合成气进行了研究,还利用发射光谱原位诊断技术 分析了 CH_4 的反应路径,得到了一些有参考价值的 结果。

1 实验部分

1.1 试剂与仪器

实验采用的 CH₄ 原料纯度为 99.99% (广东华 特气体有限公司)。其他添加气如下: H₂、N₂、O₂ (纯度为 99.99%,大连气体有限公司),Ar、He (纯 度为 99.999%,大连大特气体有限公司),CO₂(纯 度为 99.995%,大连大特气体有限公司)。

实验涉及的仪器设备如下: D07-19B 质量流量 控制器(北京七星华创电子股份有限公司); CTP-2000K 低温等离子电源(南京苏曼公司); GC-7890 II 型气相色谱仪(上海天美科学仪器有限公司); DPO3012 数字示波器(美国 Tektronix 公司); SP2758 型发射光谱仪(美国 Princeton Instruments 公司)。

1.2 实验过程

图1(a)为大气压下火花放电转化 CH₄ 的实验 流程示意图。原料 CH₄ 和添加气流量由质量流量 计精确控制,经混合器混合均匀后通入等离子体放 电区。待气流稳定后接通低温等离子电源,调节电 压及频率进行高压放电。反应产物经过六通阀取 样,使用气相色谱仪(FID/TCD 双检测器,其中, FID 用于检测碳氢化合物,TCD 用于检测 H₂、CO、 CO₂等)进行在线分析。

3: digital oscilloscope; 4: gas chromatograph

图1(b)为火花放电反应器电极结构示意图。

采用内径为10 mm 的石英管作为反应器壳体,以直 径为3 mm 的不锈钢管作为高压电极,以直径为 9 mm、厚度为1 mm 的有孔圆形铝箔作为接地电极, 固定两极间距(放电间隙)为10 mm。放电电压-电 流通过示波器测量。等离子体中的激发态活性物种 由发射光谱仪原位检测。另外,研究进行对比实验 时所用的介质阻挡放电反应器采用线筒式结构,其 特征是以直径2 mm 的不锈钢棒作为高压电极,以 外径11 mm、内径9 mm 的石英管作为阻挡介质,在 石英管外壁紧密缠绕铝箔作为接地电极,放电间隙 为4.5 mm。

1.3 数据处理方法

 CH_4 转化能量效率(CEE)、 CH_4 、 CO_2 转化率定 义为:

 $\frac{\text{CH}_{4} \text{ conversion energy efficiency } (\text{mol/kWh}) =}{\frac{\text{rate of CH}_{4} \text{ consumption}(\text{L/h})}{\text{power}(\text{kW}) \times 22.4(\text{L/mol})}}$ (1)

CH₄ conversion (%) = $\frac{\text{moles of CH}_4 \text{ converted}}{\text{moles of CH}_4 \text{ introduced}}$ ×100% (2) CO₂ conversion (%) = $\frac{\text{moles of CO}_2 \text{ converted}}{\text{moles of CO}_2 \text{ introduced}}$ ×100% (3) 烃产物(C_xH_y)及 CO_xH₂ 选择性定义为: C_xH_y selectivity (%) = $\frac{x \times \text{moles of C}_x\text{H}_y \text{ produced}}{\text{moles of (CH}_4 \text{ converted}+CO_2 \text{ converted})} \times 100\%$

 $\frac{\text{CO selectivity (\%)} =}{\frac{\text{moles of CO produced}}{\text{moles of (CH}_4 \text{ converted } + \text{CO}_2 \text{ converted})} \times 100\%$

$$H_{2} \text{ selectivity } (\%) = \frac{\text{moles of } H_{2} \text{ produced}}{2 \times \text{moles of } CH_{4} \text{ converted}} \times 100\%$$
(6)
$$H_{2}/\text{CO } \text{ K} \neq \chi \text{ $\%$}:$$
$$H_{2}/\text{CO } \text{ ratio} = \frac{\text{moles of } H_{2} \text{ produced}}{\text{moles of CO produced}}$$
(7)

2 结果与讨论

2.1 火花放电对甲烷的活化

火花放电是一种比较简便的交流放电方法,放 电的功率密度以及等离子体中的电子密度都高于介 质阻挡放电。图2为不同放电模式 CH₄ 等离子体 发射光谱谱图。

b: dielectric barrier discharge, exposure time: 1 000 ms

由图2可知, CH₄火花放电的发射光谱与介质 阻挡放电相比有很大区别。其中,火花放电发射光 谱的曝光时间是5 ms, 而介质阻挡放电发射光谱的 曝光时间长达1000 ms(火花放电谱线强度太高,若 选择相同曝光时间,两者谱图则无法比较)。两者 的区别主要表现在:火花放电中 H_a 谱线(3 d^2 D → $2p^2 P^0$) 很强并有明显的 H_e 谱线 (4d² D $\rightarrow 2p^2$ P^{0})^[22],而介质阻挡放电中 H_{α} 谱线很弱, H_{α} 谱线 更弱、几乎难以看到;火花放电中有明显的 C, swan 谱带^[22~24],而介质阻挡放电 C, swan 谱带较弱,只 能辨认出位于 516.5 nm 处的谱线;在介质阻挡放电 中能观察到明显的 CH 自由基跃迁谱线 ($A^2 \Delta \rightarrow X^2$ $\Pi(0-0)$)^[25], 而在火花放电中则观察不到。从 H_a 和 H₆ 谱线强度上判断, 在火花放电产生的 CH₄ 等 离子体中, H₂和 H 的含量明显高于介质阻挡放电。 即在火花放电中 CH₄ 更容易发生 C-H 键断裂。从 CH 谱 带 和 C_2 swan 谱 带 来 判 断, 火 花 放 电 中的主要碳活性物种可能是C。自由基和C原子。

介质阻挡放电中的主要碳活性物种可能是 CH 以及 CH₂和 CH₃自由基物种(CH₂和 CH₃的发射光谱在 红外区,目前的发射光谱技术还无法检测)。上述 结果表明,CH₄分子在火花放电和介质阻挡放电中 的活化结果不同。火花放电的功率密度大、其等离 子体中的电子密度高,导致 CH₄分子脱氢程度高, 主要生成 C 原子和 H 原子;介质阻挡放电的功率 密度小,其等离子体中的电子密度低,导致 CH₄分 子脱氢程度低,主要生成 CH₃、CH₂和 CH 自由基。 根据发射光谱和文献报道的模型计算结果^[26,27]推 断,火花放电对甲烷的活化路径可能是:

- $CH_4 + e^* \rightarrow CH_4^* + e$ (8)
- $\operatorname{CH}_{4}^{*} \to \operatorname{C} + 2\operatorname{H}_{2} \tag{9}$
- $2C \to C_2 \tag{10}$
- $C + H \rightarrow CH \tag{11}$

相比之下,介质阻挡放电对甲烷的活化路径可 能是:

$CH_4 + e^* \rightarrow CH_4^* + e$	(12)
$CH_4^* \rightarrow CH_3 + H$	(13)
$CH_4^* \rightarrow CH_2 + H_2 + e$	(14)

 $CH_{4}^{*} \rightarrow CH + H_{2} + H + e \qquad (15)$

其中,*代表具有较高能量的电子或分子。

2.2 甲烷火花放电制乙炔

表1为CH₄放电能量效率及产物分布。由表1 可知,在火花放电中CH₄转化的能量效率为 905.3 mmol/kWh,大约比介质阻挡放电高出一个数 量级。另外,CH₄火花放电生成的产物碳数分布 窄,主要是不饱和烃乙炔和乙烯,其中,乙炔的选 择性高达95%以上。相比之下,在介质阻挡放电 中,CH₄生成的烃产物碳数分布宽,主要是饱和烃 乙烷、丙烷、丁烷和戊烷,其中,乙烷的含量接近 50%,丙烷和丁烷的含量大体上依次减半。

表 1 CH_4 放电能量效率及产物分布

Table 1	Energy	efficiency	and	product	distribution	of	CH_4	discharge
---------	--------	------------	-----	---------	--------------	----	--------	-----------

Discharge	CH_4			I	Product sele	ctivity s/%	2		
Discharge	$CEE/(mmol \cdot kWh^{-1})$	C_2H_6	C_2H_4	C_2H_2	C_3H_8	C_3H_6	C_4H_{10}	C_4H_8	C_5H_{12}
CH_4 DBD	95.0	47.53	2.20	2.34	23.86	0.85	12.19	2.32	8.71
CH ₄ spark	905.3	0.36	3.60	95.80	-	0.24	-	-	-
CH ₄ /He spark	936.9	1.22	4.88	93.37	0.07	0.46	-	-	-
CH ₄ /Ar spark	1 101.3	0.45	4.79	94.51	-	0.25	-	-	_
CH ₄ /N ₂ spark	580.8	0.12	3.36	96.52	_	-	_	_	-
CH_4/H_2 spark	1 034.1	0.94	5.28	93.17	0.10	0.51	_	_	-

CH₄ feed: 10 mL/min; He/Ar/N₂/H₂ feed: 10 mL/min; discharge frequency: 9.0 kHz; sampling time: 5 min

第43卷

在用火花放电转化 CH₄ 制乙炔时, 添加 He、Ar、 N,和H,气体都不会明显改变产物分布,但是添加 Ar 和 H, 气体能明显提高 CH₄ 转化的能量效率。发 射光谱诊断表明, 添加 H, 和 Ar 时, 光谱中的 C, swan 谱带和 H, 分子 Fulcher α 谱带都显著增强。与 H, 相比, 添加 Ar 时 C, swan 谱带和 H, 分子 Fulcher α 谱带的强度增强更显著。这说明添加 H₂, 尤其是 Ar 可促进 CH₄ 的脱氢活化。H₂ 的作用可归因于它 能有效地利用等离子体中低能电子的能量进行累积 激发^[28],并将累积能量传递给 CH₄ 分子。Ar 的作 用则应归因于以下几个方面^[29,30]:首先是第三体作 用,它包括基态 Ar 通过与高能态的产物分子发生碰 撞来促进产物生成,以及亚稳态 Ar* 通过与 CH₄ 碰 撞,发生潘宁电离(Penning ionization)作用来促进 CH₄的活化。亚稳态 Ar*具有较高的激发能和较长 的寿命,有利于其发挥第三体作用;其次,Ar的加入 能够增加体系的电子密度,并使体系中的电子能量 分布向高能态位移,从而增加 CH4 的活化。但与 Ar 和 H, 不同的是, 添加 N, 反而显著降低了 CH4 火花 放电的转化能效。这是因为,在放电过程中 N,能与 CH,发生竞争活化,消耗部分放电能量所致。

根据反应的产物分布、前述 CH₄ 的活化结果以 及文献报道的模型计算结果^[26,27] 推断, CH₄ 火花放 电生成 C₂H₂ 的路径可能是:

$C_2 + H \rightarrow C_2 H$	(16)
$C_2H + H \rightarrow C_2H_2$	(17)

$2CH \rightarrow$	C_2H_2	(18)

相比之下,甲烷介质阻挡放电生成 C₂H₆等烃 产物的路径可能是:

$2CH_3 \rightarrow C_2H_6$	(19)
$CH_3 + CH_2 \rightarrow C_2H_5$	(20)
$C_2H_5 + CH_3 \rightarrow C_3H_8$	(21)
化学式(20)	

$$C_2H_5 + C_2H_5 \rightarrow C_4H_{10} \tag{22}$$

虽然火花放电的 CH_4 转化效率较高、其 C_2H_2 的选择性和附加值也较高,但 CH_4 火花放电的稳定 性很差,持续时间一般只能达到 $3 \sim 9 h_o$ 导致 CH_4 火花放电不稳定的主要原因是甲烷活化产生的大量 C 原子和 C_2 自由基等极易聚合生成碳须,使电极短路。这个问题尚需进一步研究解决。

2.3 CH_4 火花放电制合成气

鉴于用 CH_4 和 CO_2 制合成气对减少 CO_2 温室 气体排放和 CH_4 间接转化有深远意义,以及 $CH_4/$ CO_2 火花放电同样存在结炭问题^[21],因此,实验在 CH₄火花放电制合成气的研究中采用了 CH₄-CO₂-O₂ 三组分气体。采用 O₂ 添加气的目的是克服已有研究中的放电结炭问题。

图 3 为放电模式对 CO₂ 等离子体发射光谱的 影响。由图 3 可知,火花放电和介质阻挡放电都可 以活化 CO₂。但是从激发态 O 原子谱线^[31]的强度 来判断,火花放电对 CO₂的活化能力很强,而介质 阻挡放电对 CO₂的活化能力则很弱。另外,火花放 电可以把 CO₂ 彻底解离,生成 C 原子和 O 原子, 导致 C₂ swan 谱带;而介质阻挡放电只能把 CO₂ 部 分解离,生成 CO 分子和 O 原子。图 4 为放电模式 对 CH₄-O₂-CO₂ 等离子体发射光谱的影响。由图 4 可知,火花放电的 H 原子发射谱线(H_α、H_β)强度明 显强于介质阻挡放电,这可以说明火花放电对氢气 产物的选择性显著高于介质阻挡放电。

b: dielectric barrier discharge, exposure time: 1 000 ms

图 4 放电模式对 CH₄-O₂-CO₂ 等离子体发射光谱的影响 Figure 4 Effect of discharge mode on the optical emission spectra of CH₄-O₂-CO₂ plasma a: spark discharge, exposure time: 5 ms; b: dielectric barrier discharge, exposure time: 1 000 ms

需要说明的是,不论 CO₂ 单独放电还是 CH₄-CO₂-O₂ 三组分气体共放电,两种放电模式都应该 生成 CO,但介质阻挡放电的发射光谱中有激发态 CO 分子信号^[32],而火花放电的发射光谱中却没 有。这可能是因为,火花放电的平均电子能量明显 高于激发 CO 分子所需能量,由于能量不匹配,无 法产生共振激发,所以火花放电中激发态 CO 产率 低,不能产生明显的光谱信号。

表 2 为 CH_4 - CO_2 - O_2 火花放电与介质阻挡放电制合成气对比。由表 2 可知,在 CH_4 - CO_2 - O_2 三组分气体的放电功率相同时,介质阻挡放电和火花放

电对 CO 的选择性相当。但介质阻挡放电对 CH₄ 的转化率仅相当于火花放电的一半左右,对 CO₂ 则 基本上无转化能力。另外,从合成气的 H₂/CO 比 值来看,介质阻挡放电的 H₂/CO 比值可达 1.0。上述结果表明,介质阻挡放电不仅对原料的转化效率低,而且对氢 气的选择性低。介质阻挡放电的氢气选择性之所以 低,主要是因为它更有利于发生生成 H₂O 的副反 应所致。由此可见,在用 CH₄ 和 CO₂ 制合成气方 面,火花放电也显著优于介质阻挡放电。

Table 2 Comparison of CH₄-CO₂-O₂ spark discharge with dielectric barrier discharge(DBD) for syngas preparation

					-		
Disaharaa mada	CH_4	CO ₂		Product sele	ctivity s/%		Ч /СО
Discharge mode	conversion $x/\%$	conversion $x/\%$	CO	C_2H_6	C_2H_4	C_2H_2	H_2/CO
DBD	30.3	0.2	86.0	13.5	0.3	0.2	0.3
Spark	61.7	32.4	86.3	1.3	2.1	10.3	1.0

CH₄: 20 mL/min, CO₂: 12.38 mL/min, O₂: 10 mL/min; discharge frequency: 9.0 kHz; input power: 28 W

根据以上发射光谱和放电反应结果推测, CH₄-CO₂-O₂ 三组分气体在火花放电模式下制合成气的 主要反应路径可能是:

反应物活化: 方程式(8)~(11) $O_2 + e^* \rightarrow 2O + e$ (23) $CO_2 + e^* \rightarrow CO + O + e$ (24) $CO_2 + e^* \rightarrow C + 2O + e$ (25) $CO 和 H_2 产物生成:$ $C + O_2 \rightarrow CO + O$ (26) $C + O \rightarrow CO$ (27) $H + H \rightarrow H_2$ (28)

相比之下, CH_4 - CO_2 - O_2 三组分气体在介质阻 挡放电模式下制合成气的主要反应路径可能是:

反应物活化:

方程式(12)~(15)	
$O_2 + e^* \rightarrow 2O + e$	(29)

$$\mathrm{CO}_2 + \mathrm{e}^* \to \mathrm{CO} + \mathrm{O} + \mathrm{e}^* \tag{30}$$

其中,在 CH_4 和 O_2 的存在下 CO_2 的活化很弱,对反应贡献很小。

CO 和 H_2 产物生成:

$CH_3 + O \rightarrow CH_2O + H$	(31)
$CH_2O+O \rightarrow CHO+OH$	(32)

$$CHO+O \to CO+OH$$
(33)

 $CHO+OH \rightarrow CO+H_2O \tag{34}$

 $H + H \rightarrow H_2 \tag{35}$

其次,在固定 CH₄ (20 mL/min)和 O₂ (10 mL/min)进料量和火花放电频率和功率的情况 下,考察了 CO₂ 不同进料量对合成气 H₂/CO 比值 的影响。图 5 为 CO₂ 流量对火花放电条件下 CH₄ 和 CO₂ 转化率及产物选择性的影响。由图 5 可知, CO₂ 进料量在 0 ~ 20 mL/min 变化时,CH₄ 转化率 始终保持在 62% 左右,CO₂ 转化率始终保持在 28% 左右,但 H₂/CO 比值随 CO₂ 进料量的增加而 显著降低。当 CO₂ 进料量为 0 时 H₂/CO 比值最 高,可达 2.1;当 CO₂ 进料量达到 20 mL/min 时, H₂/CO 比值降至 0.8。即在用 CH₄-CO₂-O₂ 三组分 气体的火花放电制合成气时,可以通过 CO₂ 的添加 量来调节合成气产物的 H₂/CO 比。

在此基础上,考察了 CH₄-CO₂-O₂ 三组分气体 中 O₂ 添加气对改善火花放电稳定性的作用。首 先,分别在 CO₂ 进料量为 12.38 和0.77 mL/min两 种情况下考察了 CH₄-CO₂-O₂ 三组分气体的火花放 电稳定性。这两种 CO₂ 进料量分别对应于 H₂/CO 比值为 1 和 H₂/CO 比值为 2 的合成气产物(图 6、 7)。其中,H₂/CO 比值为 1 的合成气可用于制备 二甲醚,而 H₂/CO 比值为 2 的合成气可用于制备 二甲醚,而 H₂/CO 比值为 2 的合成气可用于制备 下考察了 CH₄-CO₂ 两组分气体的火花放电稳定性。 实验结果表明,在有 O₂ 添加气时,CH₄-CO₂-O₂ 三 组分气体的火花放电在连续100 h的运转考察期内 未见反应器结炭现象,放电平稳,原料转化率和产 物 H_2 /CO 比值均保持不变。相比之下,在没有 O_2 添加气的情况下, CH_4 -CO₂ 两组分气体在火花放电 连续进行 5 h 后被迫中止,原因是反应器结炭使电

极短路。由此可见,在用火花放电转化 CH_4 和 CO_2 制合成气时,添加 O_2 可以消除 C 和 C_2 等中间物种的结炭问题。

图 5 CO₂ 流量对火花放电条件下 CH₄和 CO₂ 转化率及产物选择性的影响 Figure 5 Influence of CO₂ feed velocity on the conversion of CH₄ and CO₂, as well as the selectivity of products under the conditions of spark discharge CH₄: 20 mL/min, O₂: 10 mL/min; discharge frequency: 9.0 kHz; input power: 28 W

图 6 CH₄-CO₂-O₂ 混合气火花 放电制备 H₂/CO 比值为 1.0 合成气反应的稳定性 Figure 6 Spark discharge and reaction stability of CH₄-CO₂-O₂ mixture for the preparation of syngas with a H₂/CO ratio of 1.0 CH₄: 20 mL/min, O₂: 10 mL/min; CO₂: 12.38 mL/min; discharge frequency: 9.0 kHz; input power: 28 W

鉴于 Ar 添加气在 CH₄ 火花放电制乙炔时明显 提高了 CH₄ 转化的能量效率,因此,实验进一步考 察了 Ar 添加气对提高 CH₄-CO₂-O₂ 三组分气体火 花放电能量效率的作用。同时,还用固定在火花放 电反应器接地极上的温度探头(热电偶)测定了 CH₄-CO₂-O₂ 三组分气体火花放电反应的实际温 度。图 8 为 Ar 添加气对 CH₄-CO₂-O₂ 混合气火花 放电制合成气(H₂/CO 比值为 1.0)能量效率的改 善作用。由图 8 可知,添加 Ar 对于改善 CH₄-CO₂-O₂三组分气体火花放电的能量效率有作用。添加 Ar 主要是能够明显提高甲烷转化的能量效率,适 宜的添加比例大约在 70% (mol)以内。综合 Ar 添 加气在 CH₄ 制乙炔和 CH₄-CO₂-O₂ 三组分气体制合 成气中的作用来看, Ar 似乎对促进 CH₄ 的碳氢键 解离具有明显选择性。另外,在上述实验中,热电 偶测温结果显示火花放电反应器的实际反应温度始 终稳定在 225℃左右。这与常规多相催化法转化 CH₄ 制合成气需要 700~800 ℃的高温条件形成了 鲜明对比。

Figure 8 Effect of Ar addition on the energy efficiency enhancing during syngas production $(H_2/CO=1)$ with the spark discharge of CH₄-O₂-CO, mixture

CH₄: 20 mL/min, O₂: 10 mL/min; CO₂: 12.38 mL/min; discharge frequency: 9.0 kHz; input power: 28 W

参考文献

[1] 余长林, 胡久彪, 杨凯, 周晓春. 制备方法对 Ni/CeO₂-Al₂O₃催化剂甲烷部分氧化催化性能的影响[J]. 燃料化学学报, 2013, 41(6): 722-728.

(YU Chang-lin, HU Jiu-biao, YANG Kai, ZHOU Xiao-chun. Effects of preparationmethods on the catalytic performance of Ni/CeO₂-Al₂O₃ catalyst in methane partial oxidation [J]. J Fuel Chem Technol, 2013, 41(6): 722-728.)

- [2] HORN R, WILLIAMS K A, DEGENSTEIN N J, SCHMIDT L D. Syngas by catalytic partial oxidation of methane on rhodium: Mechanistic conclusions from spatially resolved measurements and numerical simulations [J]. J Catal, 2006, 242(1): 92-102.
- [3] 郭章龙,黄丽琼,储伟,罗仕忠.助剂对 NiMgAl 催化剂的结构和甲烷二氧化碳重整反应性能的影响[J].物理化学学报,2014,30(4): 723-728.

(GUO Zhang-long, HUANG Li-qiong, CHU Wei, LUO Shi-Zhong, Effects of promoter on NiMgAl catalyst structure and performance for carbon dioxide reforming of methane [J]. Acta Phy-Chim Sin, 2014, 30(4): 723-728.)

- [4] CHOUDHARY V R, MONDAL K C, MULLA S A R. Conversion of methane and methanol into gasoline over bifunctional Ga-, Zn-, In-, and/or Mo-modified ZSM-5 zeolites[J]. Angew Chem Int Ed, 2005, 44(28): 4381-4385.
- [5] 吕静,李振花,王保伟,许根慧.反应器型式对甲烷低温等离子体转化制 C₂ 烃的影响[J]. 燃料化学学报, 2005, 33(6): 755-759.
 (LÜ Jing, LI Zhen-hua, WANG Bao-wei, XU Gen-hui. Effect of reactor type on methane conversion to C₂ hydrocarbons by low temperature plasma[J]. J Fuel Chem Technol, 2005, 33(6): 755-759.)
- [6] WANG K J, LI X S, ZHU A M. A green process for high-concentration ethylene and hydrogen production from methane in a plasma-followedby-catalyst reactor[J]. Plasma Sci Technol, 2011, 13(1): 77-81.
- [7] SENTEK J, KRAWCZYK K, MLOTEK M, KALCZEWSKA M, KROKER T, KOLB T, SCHENK A, GERICKE K H, SCHMIDT S K. Plasma-catalytic methane conversion with carbon dioxide in dielectric barrier discharges [J]. Appl Catal B: Environ, 2010, **94**(1/2): 19-26.
- [8] 周军成,尹燕华,郑邯勇,周旭,徐月,龚俊松,张龙龙,宋光涛.甲烷氧等离子体直接合成过氧化氢[J].高等学校化学学报,2011, 32(10):2240-2242.
 (ZHOU Jun-cheng, YIN Yan-hua, ZHENG Han-yong, ZHOU Xu, XU Yue, GONG Jun-song, ZHANG Long-long, SONG Guang-tao.

Direct synthesis of H_2O_2 using methane-oxygen plasma[J]. Chem J Chin Univ, 2011, 32(10): 2240-2242.)

- [9] 董洁,王丽,赵越,张家良,郭洪臣. 添加气对非平衡等离子体转化低碳烷烃的影响[J]. 高等学校化学学报, 2013, 34(1): 192-197.
 (DONG Jie, WANG Li, ZHAO Yue, ZHANG Jia-liang, GUO Hong-chen. Effect of additive gases on light alkanes converting under dielectric barrier discharge[J]. Chem J Chin Univ, 2013, 34(1): 192-197.)
- [10] LIU C J, MALLINSON R, LOBBAN L. Comparative investigations on plasma catalytic methane conversion to higher hydrocarbons over zeolites[J]. Appl Catal A: Gen, 1999, 178(1): 17-27.
- [11] INDARTO A, CHOI J W, LEE H, SONG H K. Effect of additive gases on methane conversion using gliding arc discharge [J]. Energy, 2006, 31(14): 2986-2995.
- SHEN C S, SUN D K, YANG H S. Methane coupling in microwave plasma under atmospheric pressure [J]. J Nat Gas Chem, 2011, 20(4): 449-456.
- [13] MOSHREFI M M, RASHIDI F. Hydrogen production from methane by DC spark discharge: Effect of current and voltage[J]. J Nat Gas Sci Eng, 2014, 16: 85-89.
- [14] ALEKNAVICIUTE I, KARAYIANNIS T G, COLLINS M W, XANTHOS C. Methane decomposition under a corona discharge to generate CO_x-free hydrogen[J]. Energy, 2013, **59**(15): 432-439.
- [15] XU C, TU X. Plasma-assisted methane conversion in an atmospheric pressure dielectric barrier discharge reactor[J]. J Energy Chem, 2013,

3 结 论

大气压下的火花放电可以将 CH_4 活化成 C 原 子、H 原子和 C_2 等活泼物种。当 CH_4 单独进料时, 可以得到以 C_2H_2 为主、并含有少量乙烯的烃产物。 当 CH_4 与 CO_2 和 O_2 共进料时,可以得到合成气主 产物和 C_2H_2 副产物。

与介质阻挡放电相比,火花放电的突出优点是 能量效率高、对 CH₄和 CO₂的转化能力强。在火花 放电过程中,添加 Ar 可以进一步提高 CH₄直接转 化制乙炔和间接转化制合成气的能量效率。

添加 O_2 能够避免 CH_4 - CO_2 火花放电制合成气时的反应器结炭问题。 CH_4 - CO_2 - O_2 三组分气体火花放电制合成气方法不但反应温度低,而且能灵活调节 H_2 /CO 比值。

22(3): 420-425.

- [16] LI X S, SHI C, WANG K J, ZHANG X L, XU Y, ZHU A M. High yield of aromatics from CH₄ in a plasma-followed-by-catalyst (PFC) reactor[J]. AIChE J, 2006, 52(9): 3321-3324.
- [17] MUHAMMAD A M, DAVID H, AREEJ M, SHU X, KARL H. Schoenbach. Study of the production of hydrogen and light hydrocarbons by spark discharges in diesel, kerosene, gasoline, and methane[J]. Plasma Chem Plasma P, 2013, 33(1): 271-279.
- [18] WANG Q, SHI H L, YAN B H, JIN Y, CENG Y. Steam enhanced carbon dioxide reforming of methane in DBD plasma reactor[J]. Int J Hydrogen Energy, 2011, 36(14): 8301-8306.
- [19] ZHANG X M, CHA M S. Electron-induced dry reforming of methane in a temperature-controlled dielectric barrier discharge reactor [J]. J Phys D; Appl Phys, 2013, 46(41); 415205.
- [20] TAE K K, WON G L. Reaction between methane and carbon dioxide to produce syngas in dielectric barrier discharge system [J]. J Ind Eng Chem, 2012, 18(5): 1710-1714.
- [21] MOSHREFI M M, RASHIDI F, BOZROGZADEH H R, HAGHIGHI M E. Dry reforming of methane by DC spark discharge with a rotating electrode[J]. Plasma Chem Plasma P, 2013, **33**(2): 453-466.
- [22] HEINTZE M, MAGUREANU M, KETTLITZ M. Mechanism of C₂ hydrocarbon formation from methane in a pulsed microwave plasma[J].
 J Appl Phys, 2002, 92(12): 7022-7031.
- [23] PEARSE R W B, GAYCON A G. Identification of molecular spectra[M]. Chapman and Hall: London, 1965: 82-83.
- [24] HARILAL S S, ISSAC R C, BINDHU C V, NAMPOORI V P N, VALLABHAN C P G. Optical emission studies of species in laserproduced plasma from carbon[J]. J Phys D: Appl Phys, 1997, 30(12): 1703-1709.
- [25] KADO S, URASAKI K, SEKINE Y, FUJIMOTO K, NOZAKI T, OKAZAKI K. Reaction mechanism of methane activation using nonequilibrium pulsed discharge at room temperature [J]. Fuel, 2003, 82 (18): 2291-2297.
- [26] CHRISTOPHE D B, BERT V, TOM M, JAN V D, SABINE P, ANNEMIE B. Fluid modeling of the conversion of methane into higher hydrocarbons in an atmospheric pressure dielectric barrier discharge[J]. Plasma Process Polym, 2011, 8(11): 1033-1058.
- [27] JANEV R K, REITER D. Collision processes of CH_y and CH_y^+ hydrocarbons with plasma electrons and protons [J]. Phys Plasmas, 2002, 9: 4071-4081.
- [28] HORACEK J, CIZEK M, HOUFEK K, KOLORENC P, DOMCKE W. Dissociative electron attachment and vibrational excitation of H₂ by low-energy electrons: Calculations based on an improved nonlocal resonance model. II. Vibrational excitation [J]. Phys Rev A, 2006, 73 (2): 022701.
- [29] NAITO S, IKEDA M, ITO N, HATTORI T, GOTO T. Effect of rare gas dilution on CH₃ radical density in RF-discharge CH₄ plasma[J]. Jpn J Appl Phys, 1993, **32**(12A): 5721-5725.
- [30] ICHIKAWA Y, TEII S. Molecular ion and metastable atom formations and their effects on the electron temperature in medium-pressure raregas positive-column plasmas[J]. J Phys D: Appl Phys, 1980, 13(11): 2031-2043.
- [31] MCCONKEY J W, MALONE C P, JOHNSON P V, WINSTEAD C, MCKOY V, KANIK I. Electron impact dissociation of oxygencontaining molecules-A critical review [J]. Phys Rep, 2008, 466(1/3): 1-103.
- [32] STEEN M L, BUTOI C I, FISHER E R. Identification of gas-phase reactive species and chemical mechanisms occurring at plasma-polymer surface interfaces[J]. Langmuir, 2001, 17(26): 8156-8166.