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Abstract
In this paperwe presenttechniquesfor building multi-domain
and multi-lingual recognizerswithin a finite-statetransducer
(FST) framework. The flexibility of the FST approachis also
demonstratedon the taskof incorporatingnetworks modeling
differenttypesof non-speecheventsinto an existing word lat-
tice network. Theability to createrobustmulti-domainand/or
multi-lingual recognizersfor spontaneousspeechwill enablea
conversationalsystemto switch seamlesslyandautomatically
amongdifferentdomainsand/orlanguages.Preliminaryresults
usingabi-domainrecognizerexhibit only smallrecognitionac-
curacy degradationin comparisonto domain-dependentrecog-
nition. Similarly promisingresultswereobserved usinga bi-
lingualrecognizerwhichperformssimultaneouslanguageiden-
tification andrecognition. Whenusingthe FST techniquesto
addnon-speechmodelsto the recognizer, experimentsshow a
10%reductionin worderrorrateacrossall utterancesanda30%
reductiononutterancescontainingnon-speechevents.

1. Introduction
The primary focusof the Spoken LanguageSystemsGroupis
the developmentof conversationalsystemswhich can recog-
nize, understand,and respondto spoken requests. Typically
thesespeechsystemshave beenconstrainedto operatewithin
in a single domainand a single language. Theseconstraints
have largelybeenimposedby thecomputationalrestrictionsre-
quiredfor real-timeprocessingandby thedesireto obtainhigh
accuracy androbustnessfrom thespeechrecognizer.

Thedevelopmentof the GALAXY Communicatorarchitec-
ture hasprovided systemdevelopersthe capability to rapidly
develop conversationalsystemsfor new domainsand/or lan-
guages[1]. In our group,we have utilized GALAXY to develop
multi-domainsystemswhich incorporatea variety of domains
within one large system. Early versionsof our multi-domain
systemsutilized a singlemulti-domainrecognizerandwereca-
pableof performingimplicit domainswitches[2]. At thetime,
themulti-domainrecognizerwasnot robustenoughfor general
public use. Recently, our multi-domainsystemshave utilized
independentrecognizersfor eachnew domainand forced the
userto explicitly requesta particulardomainbeforeaskinga
querywithin thatdomain. In this paper, we presenttechniques
to performrobustandaccuratemulti-domain(or multi-lingual)
speechrecognitionwhichwill enableourconversationalsystem
to implicitly switchbetweendifferentdomains(or languages).

1This researchwassupportedby DARPA underContractN66001-
99-1-8904monitoredthroughtheNaval Command,Control,andOcean
SurveillanceCenter, andby acontractfrom NTT.

Our recognizer, called SUMMIT, utilizes finite-statetrans-
ducer(FST)structuresto representall of theindividualcompo-
nentsutilized within thelexical search.BecausetheFSTrepre-
sentationis basedonasolidmathematicalfoundation,it is easy
to createandmanipulatetherecognizer’s searchnetwork using
basicmathematicalfunctions[3]. Throughtheuseof a few ba-
sic FSToperationssuchascomposition,concatenation,union,
andclosure,awidevarietyof network topologiescanbecreated
in a few simplesteps.Thedevelopmentof theFSTframework
and tools hasallowed us to rapidly develop and explore new
recognitionmodelingtechniquesthatwould have beentedious
or impossiblein our olderrecognitionsystem.

Thispaperinvestigatesthreeapplicationsin whichdifferent
independentlycreatednetworks arecombinedwithin a single
network andsearchedin parallel. In the first application,we
createnew networks for modelinga variety of differentnoise
andnon-speechartifactsinto our word lattice network. In the
secondapplication,wecombinefull recognitionnetworksfrom
different domainsto createa single multi-domainrecognizer.
In thefinal application,we combinerecognitionnetworksfrom
differentlanguagesto createa singlemulti-lingual recognizer.

2. Modeling Non-Speech Artifacts

2.1. Building Noise and Non-Speech Artifact Models

In thepast,wehavenotspentmucheffort worryingaboutback-
groundnoisesor non-speechartifactssuchascoughsor laughs.
Wehave typically reliedonasingletrash modelwithin our rec-
ognizerto try to handleall non-speechevents.Unfortunately, a
singlemodelis notpowerful enoughto cover thewide rangeof
non-speecheventsthatcanoccurandwordswereofteninserted
by therecognizerin placeof thetrashmodelwhentheseevents
occurred. As hasbeendonepreviously in many otherspeech
recognitionsystems,we have addeda collectionof non-speech
modelsto therecognizerto addressthis problem[4].

To add non-speechmodelsto our system,we utilize an
FST approachfirst developedfor modelingout-of-vocabulary
words[5]. We definea setof acousticmodelsanda network
topologyfor eachnon-speechtype. Eachnetwork usesa fully
connectedtopologyallowing thenoiseto berepresentedby any
sequenceof theacousticmodelsusedfor thatnoise. It is pos-
sible to constrainthe sequenceof acousticmodelsusedwith
a transitionbigram,althoughin the experimentsin this paper
all transitionsareconsideredequallylikely. Figure1 shows an
exampletopologyfor onetypeof noisewhichcontainsfour dif-
ferentacousticmodels.Thenetwork for thisnoiseis thenadded
in parallelto theword network.
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Figure1: Topologyof afinite-statewordnetwork with onenon-
speech(or noise)network addedin parallel.

TestCase Recognizer # Utts WER SER
All data Baseline 2388 18.9% 37.8%

+ new models 2388 17.1% 32.7%
Dataw/ Baseline 484 64.0% 69.8%
noise + new models 484 45.1% 43.6%

IV Data Baseline 1716 9.4% 21.9%
w/ no noise + new models 1716 9.6% 22.3%
IV Data Baseline 336 46.5% 66.7%
w/ noise + new models 336 28.2% 34.8%

Table1: Word error rate(WER) andsentenceerror rate(SER)
of the JUPITER recognizeron varioustestsetswhenusingthe
baselinerecognizervs. therecognizercontainingnew models.

2.2. Experimental Results

We evaluatethe use of the non-speechmodelson a test set
of 2388 utterancesfrom randomlyselectedcalls madeto the
JUPITER weatherinformationsystem[6]. This recognizerhas
a vocabulary of just over 2000wordsandis designedto handle
fairly unconstrainedqueriesin the weatherdomain. The full
detailsof theJUPITER recognizercanbefoundin [7].

To help improve recognition robustness,we have cre-
atedfive new non-speechmodelnetworks to representcoughs,
laughs,hang-ups,foregroundnoises,and backgroundnoises.
Theseeventsareannotatedin the training dataandaretreated
aswordsby thesearchandlanguagemodelingcomponents.An
additionalweightisappliedwhenenteringeachnon-speechnet-
work to regulateits insertion/deletionbehavior. This weight is
optimizedempiricallyondevelopmentdata.Theacousticmod-
els for eachnetwork areseededfrom existing modelsandthen
retrainediteratively in an unsupervisedfashion. The number
of differentacousticmodelsusedfor eachnon-speechnetwork
wasdeterminedmanuallyandvariedbetweenthreeandsix.

Table1 shows recognitionresultsunderseveral testcases
whenusingandnot usingthenew models.In thefirst testcase
using all 2388 test utterances,the recognizerusing the non-
speechmodelsexhibited a 10% relative reductionin word er-
ror rate from the baselinerecognizer. When testingon only
the484utteranceswhich actuallycontainnon-speechevents,a
30%reductionin worderrorrateis observed.To remove issues
causedby thepresenceof out-of-vocabulary words,therecog-
nizer wasalso testedon the in-vocabulary portion of the data
set.On the336in-vocabulary (IV) utterancescontainingnoise,
thenew modelsreducedtheWER by 39%while degradingthe
WER on the1716IV utteranceswith nonoiseby only 2%.

3. Multi-Domain Recognition
3.1. Building Multi-Domain Recognizers

To move from a collection of domain-dependentrecogniz-
ers towards a single recognizerwhich can recognizespeech
from multiple domains,we must addressany problemsthat
might ariseif the variousdomain-dependentrecognizerswere
constructedusing inherently different modeling approaches.
Within our systems,all domain-dependentrecognizersutilize
the samesetof acousticmodelstrainedfrom pooleddatacol-
lectedfrom all domains.However, eachdomain-dependentrec-
ognizercould have a different modelingapproachin the cre-
ationof its lexicon andlanguagemodel. Thoughwe useclass
trigramlanguagemodelsfor all of ourdomains,thelexical units
andtrigrammodelwordclassesareoftenchosenindependently
for eachdomain-dependentrecognizer.

In thispaperweconsidertwo methodsfor creatingamulti-
domainrecognizervia the combinationof domain-dependent
recognizers.Thefirst methodis to constructarecognizerwhich
allows the networks of eachdomain-dependentrecognizerto
besearchedin parallelwithin a singlesearchmechanism.This
network of parallelrecognizersis easilycreatedwithin anFST
framework by employing theFSTunionoperation.Thesecond
approachis to combineand regularizethe lexicons, language
model classes,and training data from the different domain-
dependentrecognizersandbuild a single joint network which
canhandleall domains.

The parallelnetwork approachhasseveral distinct advan-
tages. First, this approachis extremely easyto implementif
thedomain-dependentrecognizersalreadyexist. After theFST
unionoperationon thesetof domain-dependentrecognizersis
completed,no further work is requiredanda standardsearch
canbeperformedontheresultingnetwork. A secondadvantage
is thateachdomain-dependentrecognitionnetwork canbecon-
structedandoptimizedindependentlyof theothers.Thisallows
the developerof eachdomain-dependentrecognizerto choose
the lexical units and languagemodel classeswhich are most
appropriatefor that specific domain independentlyfrom the
choicesmadefor otherdomains.A third advantageis that the
domainconstraintenforcedby eachdomain-dependentnetwork
remainsintactbecausemovementfrom onedomain-dependent
network to anotherwithin a single word string hypothesisis
prohibited during the search. Becauseof this constraint, it
is also possibleto pruneaway all hypothesizedpathswithin
onedomain-dependentnetwork if they fail to remaincompet-
itive with the top scoringbestpath from someotherdomain-
dependentnetwork.

Theparallelnetwork approachhastwo potentialdisadvan-
tages.First, theexactsameinput/outputpathcouldbesearched
independentlywithin eachof the different parallel networks,
which could leadto increasedcomputationaldemands.A sec-
ond disadvantageis that it may not be possibleto compare
languagemodel scoresfrom different domain-dependentnet-
works if their inventory of lexical units and languagemodel
word classesare drasticallydifferent. The incompatibility of
scoresfrom different languagemodelingapproachescould re-
sult in biasesagainstsomedomainswhichmightdegraderecog-
nition accuracy.

If weutilize thesinglejoint network approachinstead,there
aretwo primaryadvantages;first, thesearchshouldbemoreef-
ficientand,second,theissueof languagemodelincompatibility
doesnotexist. However, therearealsoseveraldisadvantagesto
this approach.First, therequirementthat the lexiconsandlan-
guagemodelclassesberegularizedto onespecificform canbe
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Figure2: Recognitionresultsona two domainrecognitiontask
usingparallelor joint network configurationsin comparisonto
anoraclerecognizerwhich knows thedomaina priori.

problematicbecausecompromisesbetweendifferent language
modelingapproachesin differentdomainsmustbe made,po-
tentiallyattheexpenseof recognitionaccuracy. Thisregulariza-
tion processcanalsobetediousif distinctly differentmodeling
approacheswereusedfor the differentdomains.Additionally,
this recognitionapproachlosesthedomainconstraintimposed
by usingthedomain-dependentnetworksin parallel.

3.2. Experimental Results

To investigatethecapabilitiesof amulti-domainrecognizer, we
combinethe recognizersfrom two domainsthat we have pur-
suedin our group: weatherandair travel. For theweatherdo-
main we usethe recognizerfrom the JUPITER weatherinfor-
mationsystem. For air travel we usethe recognizerfrom the
MERCURY air travel system[8]. This systemis not asmature
asourweathersystemandwehavecollectedfar lessdatain the
air travel domainthanin theweatherdomain.

For evaluation,a collectionof calls to theweatherandair
travel systemswere randomly used. To separatethe issues
of recognitionin the presenceof noiseandout-of-vocabulary
words from the issuesof multi-domain recognition,we only
evaluateon theclean,in-vocabulary portion of the testdatain
this experiment.In total, thetestsetincludes1716weatherdo-
mainutterancesand1087air travel utterances.TheWERonthe
weatherutterancesusingtheJUPITER recognizeris 9.1%under
the conditionof real-timecomputation.2 The WER for the air
travel queriesusingtheMERCURY recognizeris 13.8%.

Figure2 shows thecombinedrecognitionperformanceover
all 2803 test utterancesunderthreeconditions. The baseline
condition is domain-dependentrecognitionusingan oracleto
predeterminethe domainof the utterance.The secondcondi-
tion is theparallelnetwork recognizer, wherethe two domain-
dependentrecognitionnetworks can be searchedin parallel.
The third conditionis thesinglejoint network approachwhere
onerecognitionnetwork is trainedto cover bothdomains.

Two key pointscanbedrawn from anexaminationof there-
sultsin thefigure. First, theparallelnetwork approachslightly
out performsthe joint network indicatingthat thedomaincon-
straintimposedby theparallelnetwork approachis ableto over-
comethepotentialinefficienciesof its searchrequirements.A

2Computedusinga PCwith a1.5GHzPentium4 processor.

secondkey point is thattheparallelnetwork approachhasarel-
ative WER degradationfrom the oraclebaselineof only 6.5%
(from 10.7%to 11.4%)whenrunningat real time. If the real-
time recognitionconstraintis loosened,a degradationof only
4.7%(from 10.6%to 11.1%)canberealizedat 1.3 timesreal-
time. Thesmalldegradationin this two domainsystemimplies
it may be possibleto reliably recognizeutterancesfrom more
thantwo domainsusingonly a singlerecognizer. It is alsopos-
siblethatcontextual information,suchasthecurrentdomainin
focus, could be usedto improve the recognitionperformance
in anactualconversationalsystemby biasingtherecognizerto-
wardsthesub-network of thecurrentdomain.

4. Multi-Lingual Recognition
4.1. Building Multi-Lingual Recognizers

Onegoal in our multi-lingual researchefforts is to build sys-
temswhich performsimultaneouslanguageidentificationand
speechrecognition.This approachwill allow usersto speakto
amulti-lingualsystemwithouthaving to explicitly specifywhat
languagethey wish to speakaheadof time.

Most pastresearchon languageidentificationhasfocused
on the difficult problemof identifying the languageof uncon-
strainedspontaneousspeechfrom a moderatenumberof lan-
guages(typically aroundten) using only limited amountsof
partially-transcribedtraining datafrom eachlanguage.These
approachestypically relied on the phonologicalconstraintsof
the learnedlanguagesto identify the languageof test utter-
ances[9, 10, 11].

In our case,we have the advantageof attackingthe lan-
guageidentificationproblemundermucheasierconditions.For
each languagein our systemwe have enoughorthographi-
cally transcribeddata from eachlanguageto build an accu-
rate,medium-vocabulary, domain-dependentrecognizer. Under
theseconstrainedconditions,themostobviousapproachto lan-
guageidentificationis to simply run multiple recognizers(one
for eachlanguage)in parallelandchoosethe languageof the
recognizeryielding thehighestdecodingscore.

As discussedin the previous section,the FST framework
allows multiple recognizersto becombinedeasilywithin a sin-
gle searchnetwork. The only significantdifferencebetween
themulti-domainrecognizerfrom theprevious sectionandthe
multi-lingual recognizerwe wish to constructis that the rec-
ognizersfor eachlanguageusetheir own setof acousticmod-
els. Under this condition, caremust be taken to ensurethat
the acousticscoresfrom differentacousticmodelsarecompa-
rable.Without someform of acousticscorenormalization,lan-
guageidentificationcouldbeunfairly biasedtowardsalanguage
whoseacousticmodelsproducehigher averageraw acoustic
scoresin general.

In our system,the acousticmodel scoresare normalized
usingthefollowing expression:

������	� 
��

�������� (1)

In thisexpression�� is anacousticobservation, 
 representsan
acousticmodellabel,and


�	������ is thenormalizationmodel[12].
In our case,


�	������ is anapproximationof �������� andis estimated
from the full set of all acousticmodelsacrossall languages
(with eachlanguagereceiving equalweighting). This normal-
izationschemeconvertstheacousticscoresfrom absoluteden-
sity scoresto relative densityscores,hopefully removing any
unwantedbiases.
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4.2. Experiments

To evaluatethe multi-lingual recognitionapproachproposed
above, we constructa bilingual recognizercapableof handling
weatherdomainqueriesin eitherEnglishor Japanese.For En-
glish we usethe recognizerfrom the JUPITER weatherinfor-
mation system. For Japanese,we usethe recognizerfor the
Japaneseversionof JUPITER calledMOKUSEI [13].

Thesame1716in-vocabulary weatherutterancesusedear-
lier are usedfor our English test utterances. For Japanese,
we utilize 1737in-vocabulary utterancescollectedfrom native
speakersof Japaneseby the MOKUSEI system.As before,we
useonly in-vocabulary utterancesto allow us to focus on the
issuesof multi-lingual recognitionseparatefrom the issuesof
handlingout-of-vocabulary wordsandseverenoises.As men-
tionedearlier, theEnglishweatherdomainrecognizerachieves
anerrorrateof 9.1%with real-timecomputation.TheJapanese
recognizerachievesan error rateof 9.4%with real-timecom-
putation.

Figure 3 shows a comparisonof recognitionresultsbe-
tweentwo differentoperatingconditions.Thefirst conditionis
language-dependentrecognitionusingan oraclewhich prede-
terminesthelanguageof therecognizerto beused.Thesecond
condition is the bilingual recognizerconstructedwith the ap-
proachdiscussedabove. At an averagereal-timecomputation
level of 0.9, the bilingual recognizersuffers a relative recog-
nition accuracy degradationof only 4% (from 9.3%to 9.7%).
CloserexaminationshowsthatEnglishutterancesareprocessed
slower (1.06 times real-time) than Japaneseutterances(0.77
time real-time).Thedifferencein processingtime is dueto the
factthattheJapaneserecognizerhas75%fewer context depen-
dent acousticmodelsthan the English recognizer. The accu-
racy degradationis causedby thelanguageidentificationerrors
madeby thebilingual system.In this experimentthe language
identificationerrorratewas1.25%.A majority of thelanguage
identificationerrorsoccurredonutterancescontainingonly one
or two words.

5. Discussion & Future Work

In thispaperwehave demonstratedhow differentnetworkscan
beeasilycombinedin parallelandsearchedin unisonusingba-
sicfinite-statetransduceroperations.Wehaveappliedthistech-
niqueto threeproblems:(1) addingnoisemodelsto a word lat-
tice, (2) combiningdomain-dependentrecognitionnetworks to
createa multi-domainrecognizer, and(3) combininglanguage-
dependentrecognizersto createa multi-lingual recognizer. In
all threecasestheexperimentstherecognizerswerecreatedeas-
ily andefficiently becauseof thepower of generalityprovided
by theFSTframework.

Of particularnote,our experimentswith bi-domainandbi-
lingualrecognitionshowedusthatit is waspossibleto runmore
thanonerecognizerin parallelwithin a singlesearchefficiently
andwith little recognitionaccuracy degradation.In futurework
wewill extendthisapproachto morethantwo parallelrecogniz-
ers. While is is clearthateachnew addeddomainor language
will stressthe capabilitiesof this approach,we believe there
is still roomfor additionalparallelnetworks in both themulti-
domainandmulti-lingual systemsbeforeseveredegradationin
recognitionperformancebecomesa problem. This will allow
us to constructmulti-domain(or multi-lingual) conversational
systemswheretheuseris not requiredto specifya domain(or
language)beforeaskingaquery.
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Figure3: Bilingual (English/Japanese)recognitionresultsus-
ing aparallelnetwork configurationsin comparisonto anoracle
recognizerwhichknows thelanguagea priori.
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