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Abstract

In this paperwe presentechniquedor building multi-domain
and multi-lingual recognizerswithin a finite-statetransducer
(FST) framework. The flexibility of the FST approachs also
demonstratean the task of incorporatingnetworks modeling
differenttypesof non-speechkeventsinto an existing word lat-
tice network. The ability to createrobust multi-domainand/or
multi-lingual recognizerdor spontaneouspeectwill enablea
corversationalsystemto switch seamlesslyand automatically
amongdifferentdomainsand/orlanguagesPreliminaryresults
usingabi-domainrecognizeexhibit only smallrecognitionac-
curay degradationin comparisorto domain-dependemecog-
nition. Similarly promisingresultswere obsered using a bi-
lingualrecognizewhich performssimultaneousanguageden-
tification and recognition. Whenusingthe FST techniquego
addnon-speechmodelsto the recognizerexperimentsshav a
10%reductionin worderrorrateacrossll utterancesinda30%
reductionon utterancegontainingnon-speeclevents.

1. Introduction

The primary focus of the Spolen LanguageSystemsGroupis
the developmentof corversationalsystemswhich canrecog-
nize, understandand respondto spolen requests. Typically
thesespeechsystemshave beenconstrainedo operatewithin
in a single domainand a single language. Theseconstraints
have largely beenimposedby the computationatestrictionsre-
quiredfor real-timeprocessingndby the desireto obtainhigh
accurayg androbustnesgrom the speechrecognizer

The developmentof the GALAXY Communicatoarchitec-
ture has provided systemdevelopersthe capability to rapidly
develop corversationalsystemsfor nev domainsand/or lan-
guageq1]. In ourgroup,we have utilized GALAXY to develop
multi-domainsystemswhich incorporatea variety of domains
within one large system. Early versionsof our multi-domain
systemaitilized a singlemulti-domainrecognizerandwereca-
pableof performingimplicit domainswitcheg[2]. At thetime,
themulti-domainrecognizemwasnot robustenoughfor general
public use. Recently our multi-domainsystemshave utilized
independentecognizerdor eachnev domainand forcedthe
userto explicitly requesta particulardomainbeforeaskinga
querywithin thatdomain. In this paper we presentechniques
to performrobustandaccuratenulti-domain(or multi-lingual)
speectrecognitionwhichwill enableourconversationabystem
to implicitly switchbetweendifferentdomaing(or languages).

1This researctwas supportecby DARPA underContractN66001-
99-1-8904monitoredthroughthe Naval CommandControl,andOcean
SurwillanceCenterandby a contractfrom NTT.

Our recognizer called sumMIT, utilizes finite-statetrans-
ducer(FST)structurego represenall of theindividual compo-
nentsutilized within thelexical searchBecausehe FSTrepre-
sentatioris basedn a solid mathematicaloundationjt is easy
to createandmanipulatethe recognizers searchnetwork using
basicmathematicafunctions[3]. Throughthe useof a few ba-
sic FST operationssuchascomposition,concatenationynion,
andclosure awide variety of network topologiescanbecreated
in afew simplesteps.The developmentof the FST frameawvork
andtools hasallowed us to rapidly develop and explore nen
recognitionmodelingtechniqueghatwould have beentedious
or impossiblein our olderrecognitionsystem.

This papelinvestigateshreeapplicationsn whichdifferent
independentlycreatednetworks are combinedwithin a single
network and searchedn parallel. In the first application,we
createnew networks for modelinga variety of differentnoise
andnon-speeclartifactsinto our word lattice network. In the
secondapplicationwe combinefull recognitionnetworksfrom
differentdomainsto createa single multi-domainrecognizer
In thefinal application we combinerecognitionnetworksfrom
differentlanguageso createa singlemulti-lingual recognizer

2. Modeling Non-Speech Artifacts
2.1. Building Noise and Non-Speech Artifact Models

In thepast,we have notspentmucheffort worrying aboutback-
groundnoisesor non-speechartifactssuchascoughsor laughs.
We have typically relied on a singletrash modelwithin ourrec-
ognizerto try to handleall non-speeclevents.Unfortunately a
singlemodelis not powerful enoughto cover thewide rangeof
non-speecleventsthatcanoccurandwordswereofteninserted
by therecognizetin placeof thetrashmodelwhentheseevents
occurred. As hasbeendonepreviously in mary otherspeech
recognitionsystemswe have addeda collectionof non-speech
modelsto therecognizetto addresshis problem([4].

To add non-speechmodelsto our system,we utilize an
FST approacHirst developedfor modelingout-of-vocalulary
words[5]. We definea setof acousticmodelsanda network
topologyfor eachnon-speecltype. Eachnetwork usesa fully
connectedopologyallowing the noiseto berepresentetly ary
sequenc®f the acousticmodelsusedfor thatnoise. It is pos-
sible to constrainthe sequencef acousticmodelsusedwith
a transitionbigram, althoughin the experimentsin this paper
all transitionsareconsiderecequallylikely. Figurel shavs an
exampletopologyfor onetype of noisewhich containgour dif-
ferentacoustianodels.Thenetwork for this noiseis thenadded
in parallelto theword network.
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Figurel: Topologyof afinite-stateword network with onenon-
speech(or noise)network addedn parallel.

TestCase Recognizer #Utts | WER SER
All data Baseline 2388 | 18.9% | 37.8%

+nev models| 2388 | 17.1% | 32.7%
Dataw/ Baseline 484 | 64.0% | 69.8%
noise + new models 484 | 45.1% | 43.6%
IV Data Baseline 1716 | 9.4% | 21.9%
w/ nonoise | +nev models| 1716 | 9.6% | 22.3%
IV Data Baseline 336 | 46.5% | 66.7%
w/ noise + new models 336 | 28.2% | 34.8%

Table1: Word errorrate (WER) andsentencerror rate (SER)
of the JUPITER recognizeron varioustestsetswhenusingthe
baselinerecognizewrs. therecognizercontainingnev models.

2.2. Experimental Results

We evaluatethe use of the non-speechmodelson a test set
of 2388 utterancedrom randomly selectedcalls madeto the
JUPITER weatherinformationsystem[6]. This recognizethas
avocahulary of just over 2000wordsandis designedo handle
fairly unconstrainedjueriesin the weatherdomain. The full
detailsof the JUPITER recognizecanbefoundin [7].

To help improve recognition robustness,we have cre-
atedfive new non-speectnodelnetworksto representoughs,
laughs,hang-upsforeground noises,and backgroundnoises.
Theseeventsareannotatedn the training dataandaretreated
aswordsby thesearchandlanguagenodelingcomponentsAn
additionalweightis appliedwhenenteringeachnon-speechet-
work to regulateits insertion/deletiorbehaior. This weightis
optimizedempiricallyon developmentdata. Theacoustionod-
elsfor eachnetwork areseededrom existing modelsandthen
retrainediteratively in an unsupervisedashion. The number
of differentacousticmodelsusedfor eachnon-speecimetwork
wasdeterminednanuallyandvariedbetweerthreeandsix.

Table 1 shavs recognitionresultsunderseveral testcases
whenusingandnot usingthe new models.In thefirst testcase
using all 2388 test utterancesthe recognizerusing the non-
speechmodelsexhibited a 10% relative reductionin word er
ror rate from the baselinerecognizer When testingon only
the 484 utterancesvhich actuallycontainnon-speeclevents,a
30%reductionin word errorrateis obsened. To remove issues
causedyy the presencef out-of-vocalulary words, the recog-
nizer was alsotestedon the in-vocalulary portion of the data
set.Onthe 336in-vocahulary (V) utterancegontainingnoise,
the new modelsreducedhe WER by 39% while degradingthe
WER onthe 17161V utterancesvith no noiseby only 2%.

3. Multi-Domain Recognition
3.1. Building Multi-Domain Recognizers

To move from a collection of domain-dependentecogniz-
ers towards a single recognizerwhich can recognizespeech
from multiple domains,we must addressary problemsthat
might ariseif the variousdomain-dependentcognizersvere
constructedusing inherently different modeling approaches.
Within our systems,all domain-dependerecognizerautilize
the samesetof acousticmodelstrainedfrom pooleddatacol-
lectedfrom all domains.However, eachdomain-dependemec-
ognizercould have a differentmodelingapproachin the cre-
ation of its lexicon andlanguagemodel. Thoughwe useclass
trigramlanguagemodelsfor all of ourdomainsthelexical units
andtrigrammodelword classesreoftenchoserindependently
for eachdomain-dependemecognizer

In this paperwe considertwo methodgfor creatinga multi-
domainrecognizervia the combinationof domain-dependent
recognizersThefirst methodis to constructarecognizemwhich
allows the networks of eachdomain-dependentcognizerto
be searchedn parallelwithin a singlesearchmechanismThis
network of parallelrecognizerss easilycreatedwithin anFST
framewvork by emplg/ing the FSTunionoperation.Thesecond
approachis to combineand regularizethe lexicons, language
model classes,and training data from the different domain-
dependentecognizersaand build a single joint network which
canhandleall domains.

The parallelnetwork approachhasseveral distinct advan-
tages. First, this approachis extremely easyto implementif
thedomain-dependemecognizerslreadyexist. After the FST
union operationon the setof domain-dependemecognizerss
completed,no further work is requiredand a standardsearch
canbeperformecdontheresultingnetwork. A seconcadwantage
is thateachdomain-dependemecognitionnetwork canbe con-
structedandoptimizedindependentlyf theothers.This allows
the developerof eachdomain-dependentcognizerto choose
the lexical units and languagemodel classeswhich are most
appropriatefor that specific domain independentlyfrom the
choicesmadefor otherdomains.A third adwantageis thatthe
domainconstrainenforcecby eachdomain-dependemetwork
remainsintactbecausenovementfrom onedomain-dependent
network to anotherwithin a single word string hypothesisis
prohibited during the search. Becauseof this constraint, it
is also possibleto pruneaway all hypothesizedathswithin
one domain-dependentetwork if they fail to remaincompet-
itive with the top scoringbestpath from someotherdomain-
dependenhetwork.

The parallelnetwork approacthastwo potentialdisadwan-
tages First, the exactsamenput/outputpathcould besearched
independentlywithin eachof the different parallel networks,
which couldleadto increaseccomputationademands A sec-
ond disadwantageis that it may not be possibleto compare
languagemodel scoresfrom different domain-dependeniet-
works if their inventory of lexical units and languagemodel
word classesare drastically different. The incompatibility of
scoresfrom differentlanguagemodelingapproachesould re-
sultin biasesagainssomedomainsvhich mightdegraderecog-
nition accurag.

If we utilize thesinglejoint network approachnsteadthere
aretwo primaryadwantagesfirst, the searctshouldbe moreef-
ficientand,secondtheissueof languagenodelincompatibility
doesnot exist. However, therearealsoseveraldisadwantagedo
this approach First, the requirementhatthe lexiconsandlan-
guagemodelclassederegularizedto onespecificform canbe
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Figure2: Recognitiorresultson atwo domainrecognitiontask
usingparallelor joint network configurationdn comparisorto
anoraclerecognizemhich knows the domaina priori.

problematicbecauseeompromisedetweendifferentlanguage
modelingapproacheé differentdomainsmust be made,po-
tentially attheexpenseof recognitionaccurag. Thisregulariza-
tion procescanalsobetediousif distinctly differentmodeling
approachesvere usedfor the differentdomains. Additionally,
this recognitionapproacHosesthe domainconstrainimposed
by usingthedomain-dependemetworksin parallel.

3.2. Experimental Results

To investigatehe capabilitiesof a multi-domainrecognizerwe
combinethe recognizerdrom two domainsthat we have pur

suedin our group: weatherandair travel. For the weatherdo-

main we usethe recognizerfrom the JuPITER weatherinfor-

mation system. For air travel we usethe recognizerfrom the
MERCURY air travel system[8]. This systemis not asmature
asourweathersystemandwe have collectedfar lessdatain the
air travel domainthanin theweatherdomain.

For evaluation,a collection of calls to the weatherandair
travel systemswere randomly used. To separatethe issues
of recognitionin the presenceof noiseand out-of-vocatulary
words from the issuesof multi-domainrecognition, we only
evaluateon the clean,in-vocahulary portion of the testdatain
this experiment.In total, thetestsetincludesl716weatherdo-
mainutterancesnd1087air travel utterancesThe WER onthe
weathelutterancesisingthe JUPITER recognizeiis 9.1%under
the conditionof real-timecomputatiorf. The WER for the air
travel queriesusingthe MERCURY recognizelis 13.8%.

Figure2 shavs thecombinedecognitionperformancever
all 2803 test utterancesunderthree conditions. The baseline
conditionis domain-dependernecognitionusing an oracleto
predeterminghe domainof the utterance.The secondcondi-
tion is the parallelnetwork recognizerwherethe two domain-
dependentecognition networks can be searchedn parallel.
Thethird conditionis the singlejoint network approachwhere
onerecognitionnetwork is trainedto cover bothdomains.

Two key pointscanbedravn from anexaminationof there-
sultsin thefigure. First, the parallelnetwork approactslightly
out performsthe joint network indicatingthatthe domaincon-
straintimposedy theparallelnetwork approachis ableto over
comethe potentialinefficienciesof its searchrequirements A

2Computedusinga PCwith a 1.5 GHz Pentiumd processor

secondkey pointis thatthe parallelnetwork approacthasarel-
ative WER degradationfrom the oraclebaselineof only 6.5%
(from 10.7%to 11.4%)whenrunningat realtime. If thereal-
time recognitionconstraintis looseneda degradationof only
4.7% (from 10.6%to 11.1%)canberealizedat 1.3 timesreal-
time. The smalldegradationin this two domainsystemimplies
it may be possibleto reliably recognizeutterancegrom more
thantwo domainsusingonly asinglerecognizerlt is alsopos-
siblethatcontectual information,suchasthe currentdomainin
focus, could be usedto improve the recognitionperformance
in anactualconversationakystemby biasingtherecognizeto-
wardsthe sub-netwerk of the currentdomain.

4. Multi-Lingual Recognition
4.1. Building Multi-Lingual Recognizers

Onegoalin our multi-lingual researctefforts is to build sys-
temswhich perform simultaneoudanguagedentificationand
speectrecognition. This approachwill allow usersto speakto
amulti-lingual systemwithouthaving to explicitly specifywhat
languagehey wishto speakaheadbf time.

Most pastresearcton languagedentificationhasfocused
on the difficult problemof identifying the languageof uncon-
strainedspontaneouspeechfrom a moderatenumberof lan-
guages(typically aroundten) using only limited amountsof
partially-transcribedraining datafrom eachlanguage. These
approachesypically relied on the phonologicalconstraintsof
the learnedlanguagesto identify the languageof test utter
anceqd9, 10, 11].

In our case,we have the adwantageof attackingthe lan-
guagddentificationproblemundermucheasierconditions.For
eachlanguagein our systemwe have enoughorthographi-
cally transcribeddata from eachlanguageto build an accu-
rate,medium-wcalulary, domain-dependeméecognizerUnder
theseconstrainedonditions the mostohviousapproacho lan-
guageidentificationis to simply run multiple recognizergone
for eachlanguage)n paralleland choosethe languageof the
recognizerielding the highestdecodingscore.

As discussedn the previous section,the FST frameawvork
allows multiple recognizergo be combinedeasilywithin a sin-
gle searchnetwork. The only significantdifferencebetween
the multi-domainrecognizeffrom the previous sectionandthe
multi-lingual recognizerwe wish to constructis that the rec-
ognizersfor eachlanguageusetheir own setof acousticmod-
els. Under this condition, care must be taken to ensurethat
the acousticscoresfrom differentacousticmodelsare compa-
rable. Without someform of acousticscorenormalizationJan-
guagddentificationcouldbeunfairly biasedowardsalanguage
whoseacousticmodelsproducehigher averageraw acoustic
scoredn general.

In our system,the acousticmodel scoresare normalized
usingthefollowing expression:

B(Z)

In this expressionz is anacousticobsenration, m representan
acoustianodellabel,andp(Z) is thenormalizatiormodel[12].
In our case (%) is anapproximatiorof p(Z) andis estimated
from the full setof all acousticmodelsacrossall languages
(with eachlanguagereceving equalweighting). This normal-
ization schemeconvertsthe acousticscoresfrom absoluteden-
sity scoresto relative density scores,hopefully remaoving ary
unwantedbiases.

p(@m) 0



4.2. Experiments

To evaluatethe multi-lingual recognitionapproachproposed
above, we constructa bilingual recognizercapableof handling
weatherdomainqueriesin eitherEnglishor Japanesefor En-

glish we usethe recognizerfrom the JurPITER weatherinfor-

mation system. For Japanesewe usethe recognizerfor the
Japaneseersionof JUPITER calledMOKUSEI [13].

Thesamel716in-vocaklulary weathertterancesisedear
lier are usedfor our English test utterances. For Japanese,
we utilize 1737in-vocahulary utterancesollectedfrom native
speakrs of Japanesby the MOKUSEI system. As before,we
useonly in-vocahulary utterancego allow usto focuson the
issuesof multi-lingual recognitionseparatdrom the issuesof
handlingout-of-vocalulary wordsand severe noises.As men-
tionedearlier the Englishweatherdomainrecognizeachieves
anerrorrateof 9.1%with real-timecomputation.The Japanese
recognizerachieves an error rate of 9.4% with real-timecom-
putation.

Figure 3 shavs a comparisonof recognitionresultsbe-
tweentwo differentoperatingconditions.Thefirst conditionis
language-dependengcognitionusing an oraclewhich prede-
terminesthe languageof therecognizeito be used.Thesecond
conditionis the bilingual recognizerconstructedwith the ap-
proachdiscussedbore. At an averagereal-timecomputation
level of 0.9, the bilingual recognizersufers a relative recog-
nition accurag degradationof only 4% (from 9.3%to 9.7%).
Closerexaminationshavs thatEnglishutterancesreprocessed
slower (1.06 times real-time) than Japaneseitteranceq0.77
time real-time). Thedifferencein processindime is dueto the
factthatthe Japanesescognizehas75%fewer context depen-
dentacousticmodelsthanthe English recognizer The accu-
ragy degradationis causedy thelanguagedentificationerrors
madeby the bilingual system.In this experimentthe language
identificationerrorratewas1.25%. A majority of thelanguage
identificationerrorsoccurredon utterancegontainingonly one
or two words.

5. Discussion & Future Work

In this papernwe have demonstratetion differentnetworkscan
be easilycombinedn parallelandsearchedh unisonusingba-
sicfinite-stateransduceoperationsWe have appliedthistech-
niqueto threeproblems:(1) addingnoisemodelsto a word lat-
tice, (2) combiningdomain-dependemecognitionnetworks to
createa multi-domainrecognizerand(3) combininglanguage-
dependentecognizerdo createa multi-lingual recognizer In
all threecasegheexperimentgherecognizersverecreateckas-
ily andefficiently becausef the power of generalityprovided
by the FST framework.

Of particularnote,our experimentswith bi-domainandbi-
lingualrecognitionshavedusthatit is waspossibleto runmore
thanonerecognizeiin parallelwithin a singlesearchefficiently
andwith little recognitionaccurag degradation.In futurework
wewill extendthisapproacho morethantwo parallelrecogniz-
ers. While is is clearthateachnen addeddomainor language
will stressthe capabilitiesof this approachwe believe there
is still roomfor additionalparallelnetworksin boththe multi-
domainandmulti-lingual systemsheforeseveredegradationin
recognitionperformancebecomesa problem. This will allow
usto constructmulti-domain(or multi-lingual) conversational
systemswherethe useris not requiredto specifya domain(or
languagepeforeaskingaquery
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Figure 3: Bilingual (English/Japanesegcognitionresultsus-
ing aparallelnetwork configurationsn comparisorio anoracle
recognizewhich knows thelanguagea priori.
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