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Abstract

This paper describes several experiments aimed at the long term
goal of enabling a spoken conversational system to automatically
improve its pronunciation lexicon over time through direct interac-
tions with end users and from available Web sources. We selected
a set of 200 rare words from the OGI corpus of spoken names,
and performed several experiments combining spelling and pronun-
ciation information to hypothesize phonemic baseforms for these
words. We evaluated the quality of the resulting baseforms through
a series of recognition experiments, using the 200 words in an iso-
lated word recognition task. We also report here on a modification
to our letter-to-sound system, utilizing a letter-phoneme n-gram
language model, either alone or in combination with our original
“column-bigram” model, for additional linguistic constraint and ro-
bustness. Our experiments confirm our expectation that acoustic
information drawn from spoken examples of the words can greatly
improve the quality of the baseforms, as measured by the recogni-
tion error rate. Our ultimate goal is to allow a spoken dialogue sys-
tem to automatically expand and improve its baseforms over time
as users introduce new words or supply spoken pronunciations of
existing words.

1. Introduction

Over the years, our work has addressed the dynamic addition of new
words into a spoken dialogue system via verbal entry. The over-
all objective is to develop systems that can intelligently handle the
incidence of new words through accurate detection and deduction
of their spellings and pronunciations, as well as their dynamic and
seamless incorporation into the system lexicon. This is particularly
pertinent to narrow domain systems that provide on-line informa-
tion, where the database contains a large set of proper names that
are likely to change frequently.

In the past [1], we reported on a system that can recognize
spellings and pronunciations of open vocabularies of proper names
using a unified framework that combines sublexical modeling with
bi-directional letter-to-sound conversion. Previous work has mainly
addressed spelling extraction, as opposed to phonemic extraction,
in recognizing unknown words.

1The research at CNRI is sponsored in part by SPAWAR SSC-SD. The
content of this paper does not necessarily reflect the position or policy of the
Government, and no official endorsement should be inferred. The research
at MIT is supported in part by an industrial consortium supporting the MIT
Oxygen Alliance.

In this paper, we further our research by examining the qual-
ity of phonemic baseforms derived using our letter-to-sound capa-
bilities, and comparing performance for alternate ways of extract-
ing pronunciations for unknown words, given the user waveforms.
While many researchers are addressing the letter-to-sound prob-
lem [2, 3, 4, 5, 6], and some have reported on baseform generation
from acoustic data alone [7, 8], this paper distinguishes itself from
other work in that our letter-to-sound models are applied directly
during recognition to generate baseforms for the acoustic data.

We envision a future system that is able to acquire new words
automatically through interaction with the user and Web sources.
For instance, if the user asks about book stores in Saint Louis, the
system could immediately download a candidate list from the Web,
and update the recognizer’s dynamic vocabulary to reflect the im-
mediacy of those words. Any words which are as yet unavailable in
its large off-line lexicon could be entered with a pronunciation ob-
tained via a letter-to-sound system. Further interaction with the user
might involve a request for one of the originally missing words. A
follow-up subdialogue might solicit a spoken spelling of the word,
which would become a further resource to the system. Subsequent
confirmation by the user would assure the validity of the user’s spo-
ken rendering. The system could then update its lexical entry for
this rare word, based on the user’s pronounced example. Over time,
many words in the lexicon would become refined in this manner,
and the quality of the pronunciation lexicon would steadily improve.

This scenario poses several research questions that we attempt
to answer formally here. Our experiments focus on a set of around
200 words from the OGI names corpus [9], selected specifically
because they do not appear in our pre-existing 100,000 word lexi-
con of people’s first and last names. We ask several questions: (1)
how well can the letter-to-sound system do by itself in proposing
pronunciations for these words, (2a) how much can these pronun-
ciations be improved by taking advantage of a previously spoken
instance of this word, but by another speaker, (2b) how much dif-
ference does it make if the previous pronunciation is by the same
speaker,' and (3) what happens if the spelling is not exact, but is in-
stead available only via recognition from a spoken spelling? In all
of our experiments, we evaluate by performing a recognition task
using the SUMMIT speech recognizer [10], with a lexicon consisting
of the 200 OGI words. This is an approximation to the situation that
would exist with the dynamic vocabulary recognizer. Furthermore,

"Here we use the exact same word as a stand-in for a previous instance
of the word, recognizing that this gives an upper-bound performance result
on this scenario.



since we do not have available in our corpus the spoken spellings
of the words, we synthesize the spellings using the Festival speech
synthesizer.

Another aspect of this paper is the introduction of a modi-
fication to our statistical letter-to-sound model to use grapheme-
phoneme trigrams in addition to the original “column-bigrams,” [1]
and a demonstration that this improves overall letter-to-sound re-
sults in our experiments.

Over the next sections, the two letter-to-sound models, the
column-bigram and a joint grapheme-phoneme n-gram model, are
briefly described. Following this, a series of experiments for deriv-
ing pronunciations using letter-to-sound alone and in combination
with user waveforms are presented.

2. Approach
2.1. ANGIE Column-Bigram Method

In previous work [11, 12], a hierarchical framework known as
ANGIE, capturing subword structure, has been used to predict
phoneme-grapheme mappings. This framework combines corpus-
based statistical methods with explicit linguistic information to gen-
eralize from the observation space to unseen words. In the previ-
ously developed paradigm, the hierarchical models are converted to
a finite-state transducer (FST) representation, providing sound-to-
letter mappings. The FST configuration captures bigram statistics
on units identified as vertical columns of a parse table, which we
refer to as a “column-bigram.” The grapheme and phoneme units
are enriched with morph-syllabic properties and lexical stress.

In this work, the probability model is trained on a lexicon of
proper nouns, containing both first and last names. About 100,000
proper nouns are used via a semi-automatic procedure, described in
[12]. In total, there are 214 unique graphemes (some of which are
doubletons such as “th”) and 116 unique phoneme units.

2.2. Letter-Phoneme N-gram Models

Recently, many researchers have employed the joint modeling
of phonemic and graphemic units to address the letter-to-sound
problem [4, 3, 2]; each method employs various means for finding
alternate alignments of phonemes with graphemes. In this work, we
can take advantage of ANGIE parse trees to align graphemes with
phonemes. The n-gram model can then be trained on alignments
derived automatically by parsing a large training corpus. The
pre-terminal and terminal units of each column of the parse chart
are concatenated together to form each grapheme-phoneme unit,
thus creating a grapheme-phoneme baseform for each training
datum. Hence, the joint probability distribution for letters ()
and phoneme units (p), p(l,p) is modeled using standard n-gram
models:

p(LP:--LPy) = [[p(LP|LP; i1+ LP;i 1) (1)
i=1

where LP stands for “letter-phoneme” and represents a grapheme-
phoneme unit?, and m is the number of letter-phonemes in a word.
This unit is determined strictly from the vertical columns of the
ANGIE parse table. Table 1 illustrates some example names and
their baseforms in our training. There are in total 592 letter-
phonemes. Both the underlying phoneme and letter sequences are
easily extracted from the baseform.

2For clarity, we will henceforth refer to these units as “letter-phoneme”
(LP) units, recognizing however that such a unit may contain more than one
letter in some circumstances.

latoria

[l a_ah t_t! o_aor+ r_null i_iy a_ah
middleton

m-m! i_th+ d_d d2_d! le_el t_t! o_en n_null
streetman

st_st! r_r ee2_iy+ t_t m_m! a_ae n_n

Table 1: Example baseforms for some names in the training set.
Letter-phoneme units each comprise a grapheme component and a
phoneme component. The phoneme component may be “null” or
one of a set of special units marked for stress and syllable onset.

The LP n-gram model is trained on the same 100,000 word
training set as the column-bigram method. Given the spelling of
a word, the highest scoring letter-phoneme sequence, according to
the n-gram model, is computed, and the subsequent phonemic se-
quence is extracted. These computations are achieved via FST op-
erations.

2.3. Extraction of pronunciation from waveforms

As both of the above letter-to-sound systems are encapsulated
within an FST framework, as is our speech recognizer, SUM-
MIT [10], when the spelling of a word is given, it is possible to
create an FST supporting the various phonemic sequences as speci-
fied by the model for the corresponding input letter sequence. This
is achieved via FST composition of a spelling FST to constrain the
letter-to-sound FST to the input spelling. The resulting FST is also
accompanied by scores from the probability model. This will be
used as the path constraint in a forced alignment of the waveform.
When using the SUMMIT recognizer, phonemic labels are
expanded by phonological rules, and then mapped to context-
dependent labels. These phonemic labels are also projected to the
FST output to be extracted at the output of the alignment search.

3. Experiments

The experiments are formulated such that the quality of extracted
baseforms is evaluated by the recognition performance for a set of
names that are not present in training. Two waveform data sets with
the same 198 words are drawn from the OGI Names Corpus [9].
One will be used for testing recognition accuracy, while the other
will be used for deriving pronunciation baseforms.

Note that the test data were not artificially excluded from the
training corpus. Rather, the test set was defined by selecting words
in the OGI corpus that had not shown up in our previous collections
of proper nouns from on-line sources. Hence we expect that many
of the names are quite rare and dissimilar to the ANGIE training
data. When, in a real dialogue application, a name is introduced,
we assume that the system consults a dictionary first to search for a
possible pronunciation prior to invoking a letter-to-sound module.

It can be argued that measuring recognition performance on a
test set can be a better performance indicator than comparison with
a human transcribed reference because name pronunciations are
sometimes difficult to determine and are particular to the individ-
ual owner. Hence the task will consist of recognizing 198 isolated
name waveforms, given the derived pronunciations. The speech rec-
ognizer [10] has no additional language models.

The first two of the following experiments will address the sce-
nario where the spelling of a word is known. Hence the framework
will use the letter-to-sound capability to extract phonemic base-
forms from the correct spelling. The third experiment addresses the
situation where the word in question is unknown — it is assumed that
the user has also provided a spelled waveform. Therefore, spelling



[ Algorithm | WER (%) |

1.CB+LP 33.8
2. LP Only 30.8

Table 2: Recognition error rate on a 198 isolated word task: each
word was out-of-vocabulary, with baseforms derived from (1) a
column-bigram model (CB) with a letter-phoneme trigram (LP) as
back-off, and (2) a letter-phoneme trigram alone. Two alternate
pronunciations are used for each word in the baseform. Note that
ANGIE parsing was used to align the letters with the phonemes in
the training set used by both systems.

hypotheses from a letter recognizer are combined with the letter-to-
sound capability to propose the pronunciation baseforms.

3.1. Letter-to-Sound Evaluation

In the first experiment, the pronunciations for each word are derived
solely from the letter-to-sound mappings on the FSTs. That is, no
information from additional waveforms is used.

While ANGIE’s probability model can generalize its observation
space for some unseen words, the column-bigram FST, as a more
compact representation, does not capture all of ANGIE’s generaliza-
tion capability. Rare sequences that have not been seen in training
may occasionally result in hard failures. For our test set, there are 14
hard failures using the column-bigram. Hence, for a fair comparison
on the recognition task, we examine the baseforms from (1) where
the column-bigram FST (CB) performs letter-to-sound conversion,
with failed utterances resorting to the letter-phoneme n-gram (LP)
for back-off, and (2) where letter-to-sound conversion is performed
entirely by the LP n-gram FST.

Results, tabulated in Table 2, show that the LP model alone in
fact performs better than the hybrid CB-LP model. Note that the
letter-phoneme alignments were derived from the ANGIE parse tree,
and a trigram LP model with deleted interpolation for smoothing
was used in the experiments. Further investigations with higher or-
der n-grams did not yield any gains.

In the first system, the 198 word test set causes 14 hard fail-
ures in ANGIE, whose baseforms are subsequently obtained from
the letter-phoneme model.

We also consider varying the number of alternate pronuncia-
tions. However, for all the experiments, using two variants appear
to be ideal. Increasing the number of alternates rapidly deteriorates
word accuracy. Under further examination, the correct pronuncia-
tion variant may often occur at the second hypothesis. Using the
letter-phoneme model, with only one baseform per word, the word
error rate (WER) is 35.9%. As using two variants generally af-
ford superior performance, this parameter is held constant for the
remainder of the experiments.

As an independent benchmark, we compare the letter-to-sound
performance with a decision-tree-based framework as described
in [6]. The decision tree is trained on our letter-phoneme lexicon’,
and achieve 35.4% word error rate when the derived baseforms are
used in the recognition experiment.

3.2. Pronunciation Extraction from Waveforms

In the second experiment, we examine the extraction of phone-
mic baseforms from user waveforms by incorporating the letter-to-
sound FSTs during forced alignment, as described in Section 2.3.
Two conditions are examined: (1) using an alternate waveform to
extract baseforms, then testing on our test corpus, and (2) using the

3The tools were downloaded from http://www-2.cs.cmu.edu/ lenzo/t2p/.

[ Algorithm | WER (%) |
| Using A 2nd Waveform to Derive Pronunciation ]
3. LP FST with CB L2S 18.7
4. LP FST with LP L2S 18.7
5. CB + LP FST with CB L2S 17.2
6. CB + LP FST with LP L2S 16.7

| Using the Test Waveform to Derive Pronunciation |

7. LP FST with CB L2S 15.2
8. LP FST with LP L2S 14.1
9. CB + LP FST with CB L2S 11.6
10. CB + LP FST with LP L2S 10.6

Table 3: Recognition error rates for various configurations us-
ing pronunciations derived from waveform data, assuming exact
spellings of the words are available. See text for details.

same waveforms for baseform extraction and testing. The speakers
for the two test sets did overlap some. However, about 87% of the
speakers for these names differed for the two waveform sets.

Table 3 shows both sets of results. Systems 3-6 refer to ex-
traction from a second waveform. Systems 7-10 refer to base-
form extraction from the same waveform. It can be seen that all
results deriving phoneme sequences from the waveform yield im-
proved recognition compared to the letter-to-sound algorithms by
wide margins. That is, acoustic data contributes greatly to the gen-
eration of phonemic pronunciations, as might be anticipated.

In considering the extraction of pronunciation from waveforms,
several ways of combining the two methods are explored. This is
important because forced alignments on the waveforms sometimes
failed, as a result of all paths being pruned away, having fallen be-
low the score thresholds during alignment. This was applicable to
both the column-bigram and letter-phoneme methods. In the case
of failed forced alignment, the phoneme baseform has to be de-
rived from direct letter-to-sound conversion (without any contribu-
tion from the acoustic waveform), using either the column-bigram
FST (CB L2S in Systems 3, 5, 7 and 9), or the letter-phoneme FST
(LP L2S in Systems 4, 6, 8 and 10). Systems 3 and 4 use only the
letter-phoneme FST for the forced alignment phase. Three utter-
ances failed the forced alignment procedure here. Systems 5 and 6
use the column-bigram FST, where possible; for the 14 utterances
that fail the column-bigram letter-to-sound, the phonemic baseform
could not be derived using the column-bigram FST, and so, when
performing the forced alignment, the letter-phoneme FST is used.
This is denoted by CB + LP FST in Table 3.

Although for the letter-to-sound-only experiments, the letter-
phoneme trigram outperformed the column-bigram method, it was
found that, when dealing with waveform data, the hybrid ap-
proach combining the column-bigram and the letter-phoneme tri-
gram, which acts as a smoothing mechanism for the column-bigram
FST, yields better results. The optimal result here is 16.7% WER -
we resort to the letter-phonemes trigram to perform letter-to-sound
conversion when forced alignment fails for both the column-bigram
and the letter-phoneme FSTs.

In the above two waveform sets, since the speakers vary, the
pronunciations of names also differ. When pronunciation is ex-
tracted from the test waveform itself, results improve markedly.
This is expected because the pronunciation extraction is self-
referential.  Again, the optimal condition occurs for a hybrid
method combining the column-bigram and the letter-phoneme tri-
gram, yielding 10.6% WER. Upon examination, it is found that
the pronunciations of the proper nouns for the two waveform sets
are quite variable, because even though the names were spelled the



[ Algorithm | WER (%) |
| Using A 2nd Waveform to Derive Pronunciation ]
11. CB 24.7
12. CB concatenated 22.2

Using the Test Waveform to Derive Pronunciation |

13. CB 14.1
14. CB concatenated 13.1

Table 4: Recognition error rate on an isolated word task, using base-
forms derived from spoken and synthesized spelling waveforms.

same, they often belonged to different people who pronounced them
differently. Therefore, baseforms derived from one waveform were
naturally not well matched to the test waveform pronunciation.

3.3. Incorporating Spoken Spellings

In the third experiment, we consider a situation whereby a speech
interface is required to elicit not only the pronunciation of an un-
known word but also its spelling. This would be applicable to a
verbally entered unknown word. The test corpus used here did not
contain spelled versions of these words, and therefore we simulated
the conditions by using a speech synthesizer [13] to generate spelled
version of the names. It turned out that the recognizer performance
of the spelled synthetic data produced a letter error rate of 17.7%.
In previous work, letter error rates, using the same speech recog-
nizer, were much lower, when using real user spelled data. Our
conjecture is that the intelligibility and naturalness of the synthe-
sized waveforms are quite poor, thus causing poorer performance.

Instead of a single spelling, a spelling graph of the recogni-
tion hypotheses was used as input to the FST operations. The first
method will use the ANGIE column-bigram FST only to create the
phoneme baseforms. In an additional experiment, a method similar
to one described earlier in [12] is used. The spoken waveform and
the synthesized spelling waveform are concatenated, and a simul-
taneous search constrained that, for each hypothesis, the spellings
of the spelled and spoken parts are identical. As explained above,
the output of the alignment phase is a set of phonemic baseforms,
which will be used for the name recognizer for evaluation.

Results are tabulated in Table 4. Systems 11 and 12 used
one waveform set to extract pronunciations and the standard test
set to compute recognition accuracy. Systems 13 and 14 used the
same waveforms for deriving pronunciations and testing recogni-
tion. Systems 11 and 13 composed the letter graph from the let-
ter spelling recognizer with the column-bigram FST to conduct the
forced alignments. Systems 12 and 14 were augmented with the
concatenation and simultaneous constraint that the spellings of the
spelled and spoken parts would be identical.

In general, it can be seen that, even though letter recognition ac-
curacies are quite poor, phoneme extraction can still be performed.
And the quality of the phonemes is still much better than what is
obtained when using a single letter-to-sound converter, that is, the
true spelling is known but no waveforms are available. WER ranged
from 13.1% to 24.7% compared to the best WER of 30.8% in letter-
to-sound derivation only in Table 2. Again using the same wave-
form for pronunciation extraction and testing gives better recogni-
tion accuracy.

Concatenating the spoken waveform with the spelled one pro-
duces further improvement, as is consistent with previous results
on letter recognition (from 24.7% to 22.2% for different waveforms
and from 14.1% to 13.1% for the same waveform).

4. Conclusions and Future work

This paper has examined the performance of a combined
knowledge-based and data-driven letter-to-sound framework, ap-
plied to automatically generate pronunciation baseforms from
acoustic information and full or partial spelling knowledge.

One extension is to explore the migration to other domains con-
cerning proper nouns for applications such as restaurants, hotels,
shopping, city guides and so forth. Currently, we are investigat-
ing semi-automatic methods such as co-training using the ANGIE
framework with the joint letter-phoneme modeling, in an effort to
reduce the time to port to new domains, and to pool new data sets
for training.

In the future, the optimized letter-to-sound capabilities will be
integrated with a spoken dialogue system that can splice out spoken
unknown words embedded within sentences, and elicit spellings of
new words from users. These features will also be integrated with
the ability to dynamically update the recognizer lexicon, during an
ongoing conversation [14].
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