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Abstract
A deep neural network (DNN) classifier based only on 40
mel-frequency cepstral coefficients (MFCCs) achieved
29.99% frame error rate (FER) and 16.86% segment error
rate (SER) in recognizing five tonal categories in Man-
darin Chinese broadcast news. With the addition of sub-
band autocorrelation change detection (SACD) pitch-class
features [1], the classifier scored 27.58% FER and 15.56%
SER. These results are substantially better than the best
previously reported results on broadcast news tone clas-
sification [2] and are also better than a human listener
achieved in categorizing test stimuli created by amplitude-
and frequency-modulating complex tones to match the
extracted F0 and amplitude parameters [3]. The same
DNN architecture scored substantially worse when trained
and tested with SACD pitch-class parameters alone:
39.22% FER and 24.89% SER. RAPT F0 estimates are
worse yet: 44.37% FER and 27.28% SER. The 40 MFCC
parameters do not encode F0 in any obvious way and at-
tempts to predict SACD or other pitch features from them
work badly. These surprising results raise difficult ques-
tions for theories of Chinese tone.
Index Terms: speech recognition, Mandarin, tone mod-
eling, deep neural networks

1. Introduction
Typically, Chinese speech-recognition systems have in-
cluded tonal features in order to improve performance in
the integrated task of recognizing tonally-specified seg-
ments [4, 5, 6, 7]. More recently, there has been in-
creased interest in the more specific problem of auto-
mated recognition of tonal categories alone in continuous
speech [8, 2, 9, 10]. For instance, Pui-Fung [8] uses de-
cision trees and a segmental representation based on the
fitting of polynomials to the F0 contour to achieve 27.8%
segment error rate (SER). Lei [2] achieves 23.8% SER
using MLPs and contextual information. Most recently,
Kalinli [10] achieved 21% SER, albeit for command-and-

control utterances, with the incorporation of biologically
inspired auditory features.

Of the above papers, all save Kalinli perform explicit
pitch tracking (though even Kalinli includes parameters
that are probably an excellent proxy for F0 slope). How-
ever, pitch is notoriously hard to accurately estimate even
in cases where it is not inherently ambiguous [11]. More-
over, for the task of interest, tone classification, absolute
pitch is not itself even particularly relevant but, rather,
changes in pitch over an interval of time. Such being the
case, it has been suggested that it is more appropriate to
estimate pitch changes directly [1]. Using subband au-
tocorrelation change detection (SACD) features, Slaney
achieves superior performance for 4-way tone classifi-
cation on a corpus of Mandarin phone speech with the
SACD features providing relative reductions in error rang-
ing from 10% for clean materials to 17% for speech cor-
rupted by white noise.

Yet more recent work demonstrated successful Man-
darin tone classification for broadcast news materials in
the absence of any explicit pitch-related information what-
soever [3]. Using a deep neural network (DNN) based
classifier and an input representation consisting of 21 con-
secutive frames of 40 mel frequency cepstral coefficients,
our previous work achieves an SER of 16.62%, a 7.04%
absolute reduction relative to a baseline system incorpo-
rating explicit, but perhaps errorful, F0 information.

Jointly the findings of Slaney and Ryant suggest that
at least for some tone languages, highly accurate tone
classification is possible in the absence of explicit pitch
tracking; indeed, that tone is not “just” about F0. In this
paper we extend this work and directly compare the ef-
ficacy of these features for Mandarin tone classification
using the same training/test sets and machine learning in-
frastructure. We also consider possible explanations for
why the MFCC frontend is so successful.



2. Data and evaluation
Testing and training sets were constructed using the 1997
Mandarin Broadcast News Speech corpus [12]1. We ex-
tracted all “utterances” (the between-pause units that are
time-stamped in the transcripts) from the corpus and man-
ually excluded those containing background noise or mu-
sic. Utterances from speakers whose names were not
tagged in the corpus or from speakers with accented speech
were also excluded. In total 7,849 utterances from 20
speakers were selected. From these we randomly selected
50 utterances from each of six speakers to compose a
test set, with the remaining 7,549 utterances reserved for
training. The 300 test utterances were manually labeled
and segmented into initials and finals by a native Man-
darin speaker. Tones were marked on the finals, includ-
ing Tone1 through Tone4, and Tone0 for the neutral tone.
The total number of utterances, segments, and hours of
speech are detailed in Table 1.

Hours Utterances Segments TBUs
Train 6.05 7,549 196,330 96,697
Test 0.22 300 7,189 3,464

Table 1: Train/test set composition. TBU = tone-bearing
unit, defined as the syllable final.

System performance is measured in two ways. As
an initial evaluation of the quality of the representation
learned by the network, we consider its frame error rate
(FER), defined as the percentage of frames incorrectly
classified by the DNN. Our primary metric, however, is
segment error rate (SER), defined as the percentage of
TBUs incorrectly classified.

3. System description
We propose attacking the problem of explicit tone classi-
fication as follows:

1) Train a DNN to classify each frame of speech into
one of six tone classes: Tone0, Tone1, Tone2, Tone3,
Tone4, No-tone.

2) Compute “tonal features” for each segment, defined
as the mean of the outputs of the DNN over all
frames contained within that segment. These are
similar to Chao’s articulatory features [9].

3) Use these “tonal features”, along with segment du-
ration and contextual features, to classify the tone-
bearing units (TBUs).

3.1. Features

We train four separate tone-classification systems using
different feature frontends:

1The specific dataset used in these experiments will be published by
the LDC and meanwhile is available from the authors by request.

1. RAPT F0 estimate
Our first feature consists of F0 as estimated by peaks
in the normalized cross-correlation function using
RAPT [13] as implemented in ESPS’s get f0 with
the following parameters: wind dur=0.01, min f0=60,
max f0=650.

2. SAaC F0 estimate
A second F0 estimate is computed using the SAaC
system [14]. A correlogram is constructed by run-
ning the signal through an auditory filterbank and
calculating the autocorrelation for each channel. The
size of this representation is reduced using PCA
and the retained principal components serve as in-
put to an MLP that classifies frames into one of
70 pitch classes (67 classes spanning 60-400 Hz
on a logarithmic axis plus additional classes corre-
sponding to unvoiced, out of range low, and out of
range high). Viterbi decoding of the MLP outputs
produces a smoothed pitch track.

3. SACD
We also consider SACD features [1]. As with SAaC,
an MLP is trained to classify frames into one of
70 pitch classes on the basis of the principal com-
ponents of a correlogram. The MLP-derived pitch
class probabilities are smoothed across frames us-
ing a 5-frame moving average window and cross-
correlation between adjacent frames calculated for
a range of lags. The final SACD features consist of
the cross-correlation values corresponding to lags
from -2 to 2.

4. MFCC
Forty mel frequency cepstral coefficients (MFCCs)
were extracted using the following analysis param-
eters: i) 0.97 pre-emphasis factor; ii) 25 ms Ham-
ming window; iii) 1024-point DFT; iv) 40 filter
mel-scale filterbank2.

In addition to systems trained using the RAPT, SAaC,
SACD, and MFCC features individually, we also con-
sider each combination of the MFCC features and the
pitch-related featuress. All features, including the F0 es-
timates, were computed every 10 ms and normalized to
have 0 mean and unit variance on a per-utterance basis3.

3.2. Network training

For each feature combination a DNN was trained [16]
to classify frames of the signal as one of the six targets.

2Our MFCCs may be reproduced using melfcc [15] with the fol-
lowing parameter values: wintime=0.025, hoptime=0.010, nbands=40,
numcep=40, lifterexp=-22, sumpower=0, minfreq=0, maxfreq=8000,
dcttype=3.

3We examined other normalization schemes, including one in which
F0 normalization was restricted to voiced segments, but this choice had
negligible impact on the final accuracy.



Input to the DNN consisted of a high-dimensional fea-
ture vector derived by concatenating the extracted fea-
tures for all frames in a 21-frame context window (10-1-
10). Training targets were derived by forced alignment
of the HUB-4 training utterances using an HMM-based
forced aligner built on the training utterances with the
CALLHOME Mandarin Chinese Lexicon [17] and HTK.
The aligner employed explicit phone boundary models
[18] and achieved 93.1% agreement within 20 ms com-
pared to manual segmentation on the test set. Addition-
ally, we checked 100 training utterances on the tone la-
bels automatically generated by the aligner. Among the
1,252 syllables in the 100 utterances, 15 syllables had a
wrong tone, an error rate of 1.2%4.

The full network topology consisted of: i) the input
layer; ii) 4 hidden layers, each consisting of 2000 recti-
fied linear units (ReLUs) [19]; iii) an output layer con-
sisting of 6 softmax units. The network was trained for
60 epochs (each epoch consisting of 250,000 examples)
using stochastic gradient descent with a minibatch size of
128, 20% dropout [20] in the input layer, 30% dropout in
the hidden layers, and a cross-entropy objective. Learn-
ing rate was kept constant within epochs and followed the
schedule η(n) = η(0) 500

n+500 , where η(0) = 0.5, while
momentum was kept constant at 0.5 throughout training.
No L2 weight decay was used, but the incoming weight
vector at each hidden unit was constrained to have a max-
imum L2-norm of 3.

3.3. Segment-level classification

Segment-level classification decisions were made using a
single-layer neural network trained to assign tone classes
to the TBUs. Input features consisted of the tonal fea-
tures of the segment, duration (in seconds) of the seg-
ment (as determined by the forced alignment boundaries),
and tonal features and durations of the two immediately
preceding and two immediately following segments. The
neural network contained a single hidden layer of 128 Re-
LUs and was trained for 1,000 epochs (epoch=100,000
instances) using stochastic gradient descent with mini-
batch size of 512, 30% hidden layer dropout, a decaying
learning rate beginning at 1, and a constant momentum of
0.9. The incoming weight vector at each hidden unit was
constrained to have a maximum L2-norm of 1.

4. Results
FERs and SERs for the trained systems are shown in Ta-
ble 2. Because silences and other unvoiced regions are
relatively easy to recognize in material of this kind and,
therefore, a FER that includes such regions will depend
on the amount of silence that is included in the test set,
we depict not only overall FER, but also FER exclud-

4These errors are primarily due to application of third tone sandhi
across word boundaries.

ing frames that do not correspond to a tone bearing unit
in the gold standard segmentation. Three results are im-
mediately apparent. One, in accord with earlier findings
[1], the SACD features are more informative than either
RAPT or SAaC-derived F0 estimates. Indeed, FER on
TBUs for the the system trained on SACD features is
39.22% and SER 24.89%, which represents relative er-
ror reductions of 11.61% and 8.76% respectively from
the figures achieved by the system using RAPT F0 esti-
mates. Two, replicating our earlier findings [3], the sys-
tem trained only using the MFCC frontend trounces the
systems trained using only pitch related features, reduc-
ing TBU FER by 23.53% and SER by 32.36% relative
to the system trained using SACD. Three, while inclu-
sion of F0 alongside MFCCs fails to improve (hurts ac-
tually) performance, adding SACD features does appear
to help, resulting in relative reductions of 8.04% for FER
on TBUs and 8.35% for SER. This result suggests that,
whatever information is contained in the MFCCs, it is
complementary to that contained in the SACD features.

Frame Error Rate (FER)
Overall TBUs Tones 1−4 SER

RAPT 29.09 44.37 42.05 27.28
SAaC 32.39 49.64 47.55 28.67
SACD 25.25 39.22 37.05 24.89
MFCC 18.88 29.99 29.35 16.86
MFCC+RAPT 18.70 29.98 29.43 17.47
MFCC+SAaC 18.79 29.38 28.75 17.52
MFCC+SACD 17.57 27.58 27.00 15.56

Table 2: Frame error rates and segment error rates (%) on
test set for DNNs trained using various combinations of
the feature frontends.

5. General discussion
The success of MFCCs with a context window of many
frames of MFCCs is, at first glance, perplexing: how does
a representation in which information about pitch should
be eradicated, or at least substantially blurred, do so well
at predicting tones on segments, a task that is supposedly
entirely about pitch? One possible explanation for our
performance is that the DNN system is actually some-
how implicitly learning to do overall phone recognition
with the tone recognition merely a byproduct. While per-
fect (toneless) phone recognition is implausible5, we do
put the idea to the test by comparing FER and SER of the
MFCC-trained system with the FER and SER of an oracle

5When we trained a DNN with the same topology and hyperparame-
ters used for the tone classification experiments to predict the (toneless)
phone categories using the MFCC features as input, final frame error
rate on the test set came to 21.2%, suggesting that, in the absence of
a language-model or other higher-level information, we would be un-
likely to do better than 80% accuracy at predicting phones, much less
100%.



with perfect knowledge of the pinyin of each initial/final,
but no other information about tone at all (Table 3). An
oracle making maximum-likelihood guesses given per-
fect phone knowledge produces 51.96% SER compared
to 16.86% for the MFCC only system.

Perhaps more context helps? Just in case, we also
consider the performance of a second oracle, which pre-
dicts the tone class of each segment using perfect (tone-
less) knowledge of the phone class of the preceding, cur-
rent, and following segments and a neural network with a
single hidden layer of 128 rectified linear units (depicted
as Oracle (tri) in the table). Inclusion of this additional
context does improve performance markedly, bringing TBU
FER down to 21.27% and SER to 20.76%, suggesting
that in the unlikely event of perfect recognition of a span
of three pinyin initials or finals, reasonably good tone
recognition is possible, even in the absence of a language
model. However, these error rates remain substantially
higher than what the DNN is achieving, suggesting some
other mechanism is at work.

Frame Error Rate (FER)
Overall TBUs Tones 1−4 SER

Oracle (mono) 28.28 52.14 53.79 51.96
Oracle (tri) 11.54 21.27 21.84 20.76

Table 3: Frame error rates and segment error rates (%) on
test set for two oracle systems.

Alternately, it may be the case that the DNN is mak-
ing use of a multitude of other, non-pitch, phonetic di-
mensions, which jointly are predictive of tone class. Acous-
tic analysis of Mandarin syllables suggests that duration
[21, 22], temporal envelope [22], and formant structure
[23] differ for different lexical tones of the same syllable.
Moreover, it is well established that, though impaired rel-
ative to clean speech, native speakers are able to identify
tone in both real [24, 25] and synthetic [26, 22] whispered
speech at well above chance levels. In light of these find-
ings the thesis tying the DNN’s performance to efficient
use of non-pitch information represented in the MFCCs
is plausible.

Finally, it should be considered that the DNN may
be recovering F0 information from the MFCC parame-
ters, either in terms of the actual pitch track or some
other form. Conventional wisdom suggests that MFCC
and its ilk are good for speech recognition because they
represent the rough shape of the spectrum, but without
the pitch information6. Nevertheless, as a test of the hy-
pothesis that F0 is being extracted, we trained a DNN to
predict the SAaC/SACD pitch classes using the MFCC
features as input. While this network was able to achieve
a frame error rate of 29.48% on the test set for pitch-class

6Though see also [27, 28], who report success in predicting F0 in
English read speech using a standard 23 channel, 13 cepstral coefficient
MFCC representation.

prediction, error analysis reveals that this is principally
because the network is very good at making voicing dis-
tinctions as opposed to actually successfully determining
pitch in voiced segments (unvoiced frame error: 1.83%;
voiced frame error: 45.3%).

However, this does not rule out the other possibility:
that the network is pulling out some other, pitch-related
information from the MFCC representation that has pre-
dictive power. To explore this idea, we performed a sim-
ple comparison experiment by synthesizing a large num-
ber of static vowels with random pitches centered at 120
Hz (male) and 200 Hz (female) using Praat [29]. Figure 1
shows the relative contrast between three different vowels
(/a/, /I/, /u/), and the same vowel at two pitches separated
by 2 semitones. As we vary the number of cepstral coef-
ficients between 1 and 40, the MFCC representation does
a better job of capturing their differences, as reflected in
the Euclidean distance. For these highly stylized vowels
(fixed pitch, no noise, no coarticulation) the female pitch
change leads to longer distances, suggesting that the pitch
change is reflected in the MFCC coefficients at least for
widely spaced harmonics. Interestingly, this difference
only shows up when the number of cepstral coefficients
is more than 20. This difference might allow a classifier
to more easily notice the two classes. Yet, we were not
able to see any significant difference in the performance
of the DNN network when we looked at male vs. female
speakers.

Figure 1: The average distance between two vowels, as
a function of the size of the cepstral vector. The top two
curves are for two different vowels at the same pitch. The
bottom two curves are for the same vowel at two pitches
that differ by 2 semitones. The synthetic vowels have an
average pitch of 120 Hz for the male examples, and 200
Hz for the female examples, in line with the Mandarin
database used in this paper.

Most probably, all three hypotheses are true to an ex-
tent and the DNN is using all three sources of information
jointly to make its final predictions.
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