

THE REMOTE-SENSING IMAGE FUSION BASED ON GPU

Jun Lu*, Baoming Zhang, Zhihui Gong, Ersen Li, Hangye Liu

Zhengzhou Institute of Surveying and Mapping, 450052 Zhengzhou, China – lj2000hb45@126.com

Commission VII, WG VII/6

KEY WORDS: GPU, FBO, Rendertotexture, Fragment program, IHS transform, DWT

ABSTRACT:

Along with computing capability of the Graphic Processing Unit (GPU) getting more powerful, GPU is widely applied to the general
purpose computing not just restrict to graph manipulation. Remote sensing image data can be parallel processed in many of the
image fusion arithmetic. The fusion arithmetic in spatial domain is mapped to the SIMD computing way on GPU. This paper realized
the product fusion, ratio fusion, high-pass filtering fusion and weighted fusion using GLSL in spatial domain, and accelerated the
speed of fusion computing using RTT (Render to Texture) technology. This paper focused on the arithmetic in transformed domain,
realized IHS transform fusion and DWT (Discrete Wavelet Transform) fusion. The IHS forward transform and inverse transform are
mapped to two fragment shading processes, parallel computing and outputting of the 3 component in both transform processes is
realized using MRT (Multiple Render Targets) technology. 2D DWT is divided into two steps of 1D DWT. An indirect address
texture is created for every transform step and the transform of each level is based on the result stored on the texture of the last level.
A FBO is set for every image to be fused to restore intermediate data and to do data exchange. The result shows that for the same
fusion algorithm, the fusion images are identical using the two different methods, but the processing velocity in GPU implementation
is obviously faster than the CPU implementation, and with the fusion algorithm getting more complicated, the fusion images getting
bigger, the advantage of the velocity is more obvious in GPU implementation.

* Corresponding author.

1. INTRODUCTION

The fast development of remote sensing technology makes the
rapid increase of image data we get. The image fusion
technology provides an approach to get the needed information
from image data. Many algorithms of remote sensing image
fusion process pixels of the image in the same way, but the
programming model based on CPU is generally serial and can
process only one datum at one time, which doesn’t make use of
data parallel. The modern graphics processing unit has powerful
parallel computing capability, and provides common
functionality for both vertex and pixel shaders. In GPU, remote
sensing image can be processed parallel and the time spent on
image fusion will be shortened.

2. GRAPHICS PROCESSING UNIT

2.1 The GPU Rendering Pipeline

The current GPU is called the “stream processor” because it has
powerful parallel computing capability and extensive memory
band width, all data in stream program model is called stream.
Stream is an ordered set which has the same data type. Kernel
operates all of the steams, takes one or more streams as the
input data and generates one or more streams as the output data.
There are two kinds of programmable processors in GPU:
vertex processor and fragment processor. Vertex processor deals
with the vertex streams which constitute the geometry models.
The computer graph indicates a 3D object by triangulation
network. As an illustration to the mechanism in GPU, we
describe the rendering of a texture-mapped polygon. The user
first define the 3D position of each vertex through the API in
graphics library (OpenGL or DirectX).The texture coordinate
associating with each vertex is also defined at the same time.

These vertices are then passed to the vertex engine for
transformation. For each of them, a vertex shader (user-defined
program) is executed. The shader program must be SIMD in
nature, i.e. the same set of operations has to be executed on
different vertices. Next, the polygon is projected onto 2D and
rasterized (discretized) to framebuffer. At this stage, the
fragment engine takes place. For each rasterized pixel, a user-
defined fragment shader is executed to process data associated
with that pixel (fragment). Again, the fragment shader must also
be SIMD in nature. In the fragment shader, the associated
texture can be fetched for processing. To utilize the GPU for 2D
array (image), we can simply store the 2D data on a texture map.
Note that each data can be 32-bit floating-point. We then define
a rectangle with this texture map mounted on it, and render this
texture-mapped polygon to the framebuffer.

2.2 Render To Texture

In traditional GPU rendering pipeline, the destination of the
rendering computing is frame buffer which is a part of the video
card memory, the image data stored in frame buffer will display
on the screen in real time. The window size of the frame buffer
should be the same as the texture size is we use the traditional
GPU rendering pipeline to do the image processing, and the
image size can be operated in one time is restricted to a certain
range (the packed texture size should be smaller than the screen
size), otherwise it may cause distortion because of the
resampling on the image. We use the FBO to realize render to
texture. The maximal size of the texture supported by consume
level GPU is 4096×4096 (the size is bigger in new GPU) which
has far exceeded the screen window size, and the off-screen
rendering mode is accelerated by the hardware[1].

1233

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B7. Beijing 2008

3. PARALLEL DATA INPUTING OF IMAGE

The different arrangement of remote sensing image data in
system memory affects the interior texture format and texture
size, thereby affects the computing speed in GPU of the fusion
programs. The remote sensing images to be fused are usually
low spatial resolution multispectral images and hyperspectral
images (or the high spatial resolution panchromatic image). One
memory block usually stores one spectral band data (sometimes
stores three spectral band data which calls false color composite
image), or one hyperspectral image, or one high spatial
resolution panchromatic image. This paper designed two
packing ways of remote sensing image data to utilize the
parallel processing characteristic in data-level of remote sensing
image fusion arithmetic on GPU.

The first way is to rearrange the three multispectral images and
the hyperspectral image (or the high spatial resolution
panchromatic image) in memory. In packed image every four
pixels form a cell to storage corresponding pixels in the four
images to be fused. The height of the packed image is the same
as the original, but the width of the packed image is 4 times as
the original. Then load the packed image data to the texture
memory and set the internal format of the texture to
GL_FLOAT_RGBA32_NV, set the texture type to
GL_TEXTURE_RECTANGLE_ARB, so each of the 4
components of every pixel occupies a 32 bit float space. In
texture memory, the 4 channels of RGBA stores the 4 images to
be fused respectively, figure 1 shows the packing process:

Figure 1. Load 4 images to 1 texture (4 channels of RGBA)

The second way is to load the each of the multispectral images
and the hyperspectral image (or the high spatial resolution
panchromatic image) to a texture separately; the internal format
of the texture is set to GL_FLOAT_RGBA32_NV. There are
four pixels in one texel, it means the image data is compressed
in texture memory. By this way we can make full use of the
four channels of every texel and the parallel computing
capability of the fragment processor, greatly reduce the number
of elements to be processed, and the remote image data needn’t
to be packed in system memory, figure 2 shows the packing
process:

Figure 2. Load 1 image to 1 texture (4 channels of RGBA)

But if we adopt this 2D compressed storage mode, there may
appear some blankness. So we have to try to reduce to
blankness to assure the best texture size and reduce the texel
number. We use the expressions as follows to get to texture size:
Height = floor(sqrt(N/4));

Width = ceil((double)(N/4)/(double)Height);

The first packing way reduce the times of texture fetching in
fragment shaders, so the shading process is faster than that in
the second way, but we should rearrange the image data in
system memory, and will waste some CPU computing time. In
the second packing way, we needn’t to rearrange the image data
in system memory but the texture fetching times in fragment
shader is 4 times as in the first packing way. The data packing
way should be chosen flexible in remote sensing image fusion
and the effect of the design of the fragment programs by the
data packing way. For those fusion arithmetic in spatial domain
which is simple, the process of data rearrange in system should
be avoid because the time cost in this step occupies a large
proportion of the fusion time.

4. THE SPATIAL DOMAIN FUSION ON GPU

There are many arithmetic of multi-sensors remote sensing
image fusion, which can be classified to spatial domain fusion
and transformed domain fusion[2]. In spatial domain fusion we
adopt some arithmetic to process the registered high resolution
image and low resolution image in spatial domain to get the
fusion image, there are mainly four kinds of fusion arithmetic in
spatial domain: weighted fusion, product fusion, ratio fusion
and high-pass filtering fusion.

The arithmetic of spatial domain fusion is relatively simple, the
process of which in GPU is basically identical, the difference is
just the fragment shader program. The process of spatial domain
fusion based on GPU is as follows:
1) Pack the remote sensing image data. Generally the

packing method is based on the image data format and we
should try to reduce the work of the data rearrange.

2) Load the packed image data to texture and release the data
in system memory.

3) Set FBO. Confirm the number and format of the texture
bind to FBO according to the number and the format of
the image we want to get through the fusion arithmetic.

1234

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B7. Beijing 2008

4) Rendering by the fragment shader. When ππ
3
4

3
2

<≤ H :
5) Download the texture which stores the rendering result to

the system memory.

GRIB
SIR

H
HS

IG

−−=
−=

−
−⋅

+=

3
)1(

)
)cos(

)3/2cos(
1(

π
π

 (3)
5. THE TRANSFORMED DOMAIN FUSION ON GPU

This paper mainly analyses IHS transform fusion and DWT
fusion.

5.1 The IHS transform fusion on GPU

When ππ 2
3
4

<≤ H : There are two kinds of color coordinate systems (or called color
space) widely used in image processing: Color space ①
comprised by Red, Green and Blue, which is called RGB space;

 ② IHS model, which is comprised by Intensity, Hue and
Saturation. The transformation between RGB space and IHS
space is called IHS transform[3]. The 3 components of IHS
space which have their independency can be controlled
separately and describe the color feature exactly. The process of
IHS is as follow:

GBIR
SIG

H
HS

IB

−−=
−=

−
−⋅

+=

3
)1(

)
)3/5cos(

)3/4cos(
1(

π
π

 (4)

Normalize the original pixel value R0、G0、B0:
 Firstly, according to packing method 2, RGB 3-bands multi-

spectral image with low resolution is loaded into three textures,
and then FBO is created and bound with 6 frame buffers, whose
binding points are L_COLOR_ATTACHMENT0_EXT 、
GL_COLOR_ATTACHMENT1_EXT ……
GL_COLOR_ATTACHMENT5_EXT. Each frame buffer is
corresponding with an output texture.

R=R0/L, G=G0/L, B=B0/L;

Where, L is the gray level of image.

In forward transformation, the values of I、H、S are calculated.
When R=G=B: S=H=0, I=R; Secondly, forward transformation is executed by a shader in one

circulation. In this paper, shaders are implemented by OpenGL
Shading Language (GLSL), and RGB 3-bands multi-spectral
image with low resolution is regarded as input texture. Set the
number of color buffer area to be 3 by Draw Buffers Extension
and the buffers are GL_COLOR_ATTACHMENT0_EXT,
GL_COLOR_ATTACHMENT1_EXT,
GL_COLOR_ATTACHMENT2_EXT, which are used to store
I, H, S. In this paper, according to IHS transformation fusion
model, two shaders are designed to execute the forward and
inverse transformation.

Otherwise:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−−++

−−
=

−=

++=

RBGBRGBGR

BGRh

IBGRS

GBRI

222

2/2/arccos

/),,min(1

)(
3
1

 (1)

In the first rendering, forward transformation shader is used and
destination buffer will obtain values of 3 components I, H, S. It
is not suitable for the algorithms which need to store the data
when exporting statistics or measurements to be executed in
GPU, so histogram matching is handled by CPU. Download the
buffer data which store I compenent to system memory and
execute histogram matching with high resolution panchromatic
image. The data in I are normalized, firstly, we transform the
data in I to original grayscale. After matching, the stretched
high resolution image is normalized and regarded as new I
component to load into texture. At the same time, the buffers
that store H, S components are treated as source buffer (put the
texture data and new I component data together to be input
stream in the second rendering) and
GL_COLOR_ATTACHMENT3_EXT 、

GL_COLOR_ATTACHMENT4_EXT 、
GL_COLOR_ATTACHMENT5_EXT are treated as destination
buffers. In the second rendering, inverse transformation shader
is used, and the data in destination buffer are downloaded into
system to finish IHS fusion. The process of calculation is
described by figure 3.

When G>=B: H=h and when G<B: hH −= π2 .
Histogram matching, the grayscale of high resolution
panchromatic image is stretched to make the average of its
grayscale and summation of variance identical with the I
component of IHS space.

In inverse transformation, the stretched high resolution image is
regarded as new I component into calculation. The RGB values
of original space are computed and the inverse transformation is
as follow:

When π
3
20 <≤ H :

BRIG
SIB

H
HSIR

−−=
−=

−
⋅

+=

3
)1(

)
)3/cos(

)cos(1(
π

 (2)

1235

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B7. Beijing 2008

R
G

B

B
Forward IHSG

B

R
B

H
S

I

Replace I

Inverse IHS

R
G

B

G
B

R

panchromatic
image

multispectral
image

I
histogram

matched image

Histogram
matching

Load Download Load Download

GPU

CPU

FBO

Figure 3. The process of IHS transform fusion

5.2 The DWT fusion on GPU

Wavelet transform has been applied in remote sensing image
fusion for a long time, but the traditional way is slow because
the arithmetic is very complex. Tien-Tsin Wong[4] proposed a
method to realize the DWT on GPU for one image, this paper
focused on the two images fusion.

The DWT of the digital images can be looked as a 2D DWT.
The 2D DWT can be divided into two steps of 1D DWT first
horizontally and then vertically. Take the horizontal 1D DWT
as example. Let)(njλ { })(njλ be the input signal at level

j, { })(1 nj−λ and { })n(1j−γ are the high-frequency (detail)

coefficients and low-frequency (coarse) coefficients after
filtering and downsampling:

∑ −=−
k

jj knkhn)2()()(1 λλ (5)

∑ −+=−
k

jj knkgn)12()()(1 λγ (6)

where the parameter is the low-pass filter and is
high-pass filter. For efficient SIMF implementation on GPU we
rewrite (5) and (6):

)(kh)(kg

∑ −− =
k

jjdj knfknfnz),(),()(,1,1 λ
 (7)

where is a position-dependent filter that selects

the proper coefficient from and at decomposition

level j-1, is a function that returns the

corresponding data in the level j. These can be implemented by
the indirect addressing technique.

),(1, knf jd −

,(, nf jλ

)(kh)(kg
)k

Express the 1D DWT to the form of signal input and output:

Figure 4. Mapping to the base position in 1D DWT

Assume that the length of input data sequence is P (P=9 in
figure 4.), we should first make sure that the signal at

])1,0[(−∈ Pnn after 1D DWT is a low-pass signal or a high-
pass signal, we define a filter selector variable a:

⎩
⎨
⎧

≤
>

=
2/)(0
2/)(1

Pnpasslow
Pnpasshigh

a
，

， (8)

With a, we can get the position-dependent filter .

Then we should determine the filtering center of the input signal
corresponding to the output position n, we define the filtering
center b which can be computed by the following equation.

),(1, knf jd −

5.0)
2

(2 ++⎥⎥
⎤

⎢⎢
⎡−= αα Pnb (9)

0.5 is added to address the pixel center in texture fetching. We
can get all the elements in input data for filtering if b is
determined.
If the fetching of neighbours goes beyond the image boundary
of the current level, we need to extend the boundary extension.
Common extension schemes include periodic padding,
symmetric padding, and zero padding, etc. Figure shows the
horizontal boundary extension (symmetric padding and the
width of the filter kennel is 5):

Figure 5. Boundary extension

1236

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B7. Beijing 2008

The output values are computed by performing the inner
products of the accessed pixel and the filter kernel coefficients
(h and g). An indirect address table is designed to store the
address of the input signals at different level. The width of table
for a data sequence is w=l+K0-1, where l is the maximum length
of the data sequence, K0 is the width of the filter kernel. Figure
6 shows the indirect address table (l=16，K0=5).

Figure 6. The indirect address table

The texture is organized with each row holding boundary
extension, a and b values for one particular level of DWT.
Inside each texel, channel R stores the indirect address of pixel
with boundary extended. Channels G and B store a and b
respectively.
The 2D inverse DWT can be achieved by applying 1D inverse
DWT horizontally and then vertically. Let { })(1 nj−′λ and

{ })(1 nj−′γ be the low-pass and high-pass signal at level j-1. The

reconstruction of { })(njλ is given by

∑ ∑ −′′+−′′= −−
k k

jjj knkgknkhn)()()()()(11 γλλ (10)

where and are low-pass and high-pass
reconstruction filters respectively. Similar to the forward DWT,
(10) can be rewritten as

)(kh′)(kg ′

∑ −−=
k

jzjrj knfknfn),(),()(1,1,λ (11)

where returns the corresponding data in the up-

sampled boundary-extended signal at level j-1. Express the 1D
inverse DWT to the form of signal input and output:

),(1, knf jz −

Figure 7. Mapping to the base position in 1D invert DWT

1) Halve the input signal as in figure 8.

Figure 8. Grouping

2) Upsampling and boundary extension as in figure 9.

Figure 9. Upsampling and boundary extension

3) Interleaving two groups of signal as in figure 10.

Figure 10. Interleaving

Once the indirect address table is ready, values in the next level
can be reconstructed by convolution. Note that low-frequency
elements must be multiplied to the low-pass reconstruction filter,
while high-frequency elements must be multiplied to high-pass
reconstruction.

Now we get the method to realize the DWT on one image, but
remote sensing image fusion has to deal with two images (the
case that the number of images is more than two is based on the
case of two images, so this paper analyses two images fusion),
the storage and management of the intermediate data is the key
point.

This paper set a FBO for each of the image to be fused. Two
texture objects are bind to the FBO of the first image:
m_fbort1[0] and m_fbort1[1], the binding points are set to
GL_COLOR_ATTACHMENT0_EXT and
GL_COLOR_ATTACHMENT1_EXT. When DWT applied to
the first image at level 1, the destination buffer is first set to
GL_COLOR_ATTACHMENT1_EXT, and load the image data
to texture m_fbort1[1] which is bind to
GL_COLOR_ATTACHMENT1_EXT; then set the destination
buffer to GL_COLOR_ATTACHMENT0_EXT, perform the
horizontal 1D DWT fragment shader and store the result to
texture m_fbort1[0]. Then set the destination buffer to
GL_COLOR_ATTACHMENT1_EXT, perform the vertical 1D
DWT fragment shader and store the result to texture
m_fbort1[1]. At level 2, the source data is the data in texture
m_fbort1[1], the destination buffer of horizontal 1D DWT is set
to GL_COLOR_ATTACHMENT0_EXT and then the vertical
is set to GL_COLOR_ATTACHMENT1_EXT. So the result of
the 2D DWT is stored in m_fbort1[1] too. Because the 2D
DWT is achieved by exchanging the buffers twice at each level,

1237

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B7. Beijing 2008

the result will store in the texture m_fbort1[1] no matter at
which level.

Be the same, the FBO of the second image binds two textures
too: m_fbort2[0] and m_fbort2[1]. The result of the 2D DWT
will be stored in the texture m_fbort2[1].

The next step is to fuse the data in texture m_fbort1[1] and
m_fbort2[1]. The texture m_fbort1[1] and m_fbort2[1] are bind
and passed to weighted fusion fragment program by two
uniform variables the type of which is samplerRECT, and the
destination buffer is set GL_COLOR_ATTACHMENT0_EXT.
Then pass the data in this buffer to
GL_COLOR_ATTACHMENT1_EXT. The invert DWT is a
reconstruction process from the highest level. The result data of
the reconstruction at level j is the source data of level j-1. As the
case of forward 2D DWT, the result of 2D inverse DWT is
stored in buffer GL_COLOR_ATTACHMENT1_EXT. At last
download the data in texture m_fbort1[1] bind to
GL_COLOR_ATTACHMENT1_EXT to system memory to get
the fusion result.

6. EXPERIMENT RESULT

Experiment condition: DELL PC, 3GHz Pentium(R) 4,
NVIDIA GeForce 8800 GTS with 320M video memory;
Experiment data: Landsat TM images. We choose 4 groups of
registered images and the size (pixel) of each group is:
256×256，512×512，1024×1024，2048×2048.
Table 1 shows the time cost of the fusion arithmetic both on
CPU and GPU.

Image size 256×256 512×512 1024×1024 2048×2048
GPU 8.0 16.8 51.0 184.4 product

fusion CPU 16.5 65.4 263.9 1098.3
GPU 8.1 17.0 50.9 184.1 ratio

fusion CPU 8.1 33.1 136.9 533.5
GPU 10.3 17.1 45.0 150.0 high-pass

filtering CPU 3.6 14.5 59.4 297.9
GPU 7.6 16.4 50.4 181.8 weighted

fusion CPU 6.6 26.8 106.9 454.4
GPU 60.3 89.4 195.5 636.8 IHS

fusion CPU 42.8 172.1 650.2 2621.4
GPU 647.5 770.7 1043.1 2135.5 DWT

fusion CPU 419.3 1627.8 5808.1 23910.5

Table 1. Time cost comparision of GPU and CPU

From the result we can see that the image fusion based on GPU
do not has the advantage as based on CPU while the data size is
small, but with the image size getting bigger, the image fusion
speed based on GPU is much quicker than that based on CPU,
and the computing time on GPU does not increase
proportionally with the data size, and the advantage increases
with the complexity of the fusion arithmetic.

REFERENCES
[1] Randi J.Rost,2006. OpenGL Shading Language. Posts &
Telecom Press, Beijing, pp.83-96

[2] Jia Yonghong,2005. Multi-sensors Remote Sensing Image
Data Fusion. Surveying and Mapping Press, Beijing, pp.31-38.

[3] TANG Guo-liang, PU Jie-xln , HUANG Xin-han,2006.

Color Image Fusion Algorithm Based on IHS and Wavelet
Transformation, APPLICATION RESEARCH OF
COMPUTERS, 23(10), PP. 174-176.

[4] Tien-Tsin Wong., Chi-Sing Leung, Pheng-Ann Heng,
Jianqing Wang,2004. Discrete Wavelet Transform on
Consumer-Level Graphics Hardware. ACM Workshop on
General-Purpose Computing on Graphics Processors (GP2).

1238

	1. INTRODUCTION
	2. GRAPHICS PROCESSING UNIT
	2.1 The GPU Rendering Pipeline
	2.2 Render To Texture

	3. PARALLEL DATA INPUTING OF IMAGE
	4. THE SPATIAL DOMAIN FUSION ON GPU
	5. THE TRANSFORMED DOMAIN FUSION ON GPU
	5.1 The IHS transform fusion on GPU
	5.2 The DWT fusion on GPU

	6. EXPERIMENT RESULT

