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Abstract This paper presents new speed records for 128-bit secure elliptic-curve Di�e-Hellman key-exchange

software on three di�erent popular microcontroller architectures. We consider a 255-bit curve proposed by Bern-

stein known as Curve25519, which has also been adopted by the IETF. We optimize the X25519 key-exchange

protocol proposed by Bernstein in 2006 for AVR ATmega 8-bit microcontrollers, MSP430X 16-bit microcon-

trollers, and for ARM Cortex-M0 32-bit microcontrollers. Our software for the AVR takes only 13 900 397 cycles

for the computation of a Di�e-Hellman shared secret, and is the �rst to perform this computation in less than

a second if clocked at 16 MHz for a security level of 128 bits. Our MSP430X software computes a shared secret

in 5 301 792 cycles on MSP430X microcontrollers that have a 32-bit hardware multiplier and in 7 933 296 cycles

on MSP430X microcontrollers that have a 16-bit multiplier. It thus outperforms previous constant-time ECDH

software at the 128-bit security level on the MSP430X by more than a factor of 1.2 and 1.15, respectively. Our
implementation on the Cortex-M0 runs in only 3 589 850 cycles and outperforms previous 128-bit secure ECDH
software by a factor of 3.
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1 Introduction

A large and growing share of the world's CPU market is formed by embedded microcontrollers. A surprisingly large

number of embedded systems require security, e.g., electronic passports, smartphones, car-to-car communication

and industrial control units. The continuously growing Internet of Things will only add to this development.

It is of great interest to provide e�cient cryptographic primitives for embedded CPUs, since virtually every

security solution is based on crypto algorithms. Whereas symmetric algorithms are comparably e�cient and some

embedded microcontrollers even o�er hardware support for them [12], asymmetric cryptography is notoriously

computational intensive.

Since the invention of elliptic-curve cryptography (ECC) in 1985, independently by Koblitz [27] and Miller [31],

it has become the method of choice for many applications, especially in the embedded domain. Compared to

schemes that are based on the hardness of integer factoring, most prominently RSA, and schemes based on the

hardness of the discrete logarithm in the multiplicative group Z∗
n, like the classical Di�e-Hellman key exchange

or DSA, ECC o�ers signi�cantly shorter public keys, faster computation times for most operations, and an

impressive security record. For suitably chosen elliptic curves, the best attacks known today still have the same

complexity as the best attacks known in 1985. Over the last one and half decade or so, various elliptic curves have

been standardized for use in cryptographic protocols such as TLS. The most widely used standard for ECC are

the NIST curves proposed by NSA's Jerry Solinas and standardized in [35, Appendix D]. Various other curves

have been proposed and standardized, for example the FRP256v1 curve by the French ANSSI [33], the Brainpool

curves by the German BSI [30], or the SM2 curves proposed by the Chinese government [45].

It is known for quite a while that all of these standardized curves are not optimal from a performance

perspective and that special cases in the group law complicate implementations that are at the same time

correct, secure, and e�cient. These disadvantages together with some concerns about how these curves were

constructed�see, for example, [38,5]�recently lead to increased interest in reconsidering the choice of elliptic

curves for cryptography. As a consequence, in 2015 the IETF adopted two next-generation curves as draft internet

standard for usage with TLS [36]. One of the promising next-generation elliptic curves now also adopted by the

IETF is Curve25519. Curve25519 is already in use in various applications today and was originally proposed

by Bernstein in 2006 [3]. Bernstein uses the Montgomery form of this curve for e�cient, secure, and easy-to-

implement elliptic-curve Di�e-Hellman key exchange. Originally, the name �Curve25519� referred to this key-

exchange protocol, but Bernstein recently suggested to rename the scheme to X25519 and to use the name

Curve25519 for the underlying elliptic curve [4]. We will adopt this new notation in this paper.

Several works describe the excellent performance of this key-agreement scheme on large desktop and server

processors, for example, the Intel PentiumM [3], the Cell Broadband Engine [13], ARM Cortex-A8 with NEON [9],

or Intel Nehalem/Westmere [7,8].

Contributions of this paper. This paper presents implementation techniques of X25519 for three di�erent,

widely used embedded microcontrollers. All implementations are optimized for high speed, while executing in

constant time, and they set new speed records for constant-time variable-base-point scalar multiplication at the

128-bit security level on the respective architectures.

To some extent, the results presented here are based on earlier results by some of the authors. However, this

paper does not merely collect those previous results, but signi�cantly improves performance. Speci�cally, the

software for the AVR ATmega family of microcontrollers presented in this paper takes only 13 900 397 cycles and

is thus more than a factor of 1.6 faster than the X25519 software described by Hutter and Schwabe in [21]. The

X25519 implementation for MSP430Xs with 32-bit multiplier presented in this paper takes only 5 301 792 cycles

and is thus more than a factor of 1.2 faster, whereas the implementation for MSP430Xs with 16-bit multiplier
presented in this paper takes 7 933 296 cycles and is more than a factor of 1.15 faster than the software presented

by Hinterwälder, Moradi, Hutter, Schwabe, and Paar in [20].
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Furthermore, this paper is the �rst to present a X25519 implementation optimized for the very widely used

ARM Cortex-M0 architecture. The implementation requires only 3 589 850 cycles, which is a factor of 3 faster

than the scalar multiplication on the NIST P-256 curve described by Wenger, Unterluggauer, and Werner in [42].

A note on side-channel protection. All the software presented in this paper avoids secret-data-dependent

branches and secretly indexed memory access and is thus inherently protected against timing attacks. Protection

against power-analysis (and EM-analysis) attacks is more complex. For example, the implementation of the

elliptic-curve scalar multiplication by Wenger, Unterluggauer, and Werner [42] includes an initial randomization

of the projective representation (and basic protection against fault-injection attacks). The authors claim that

their software is �secure against (most) side-channel attacks�. Under the assumption that good randomness is

readily available (which is not always the case in embedded systems), projective randomization indeed protects

against �rst-order DPA attacks and the recently proposed online-template attacks [2]. However, it does not

protect against horizontal attacks [10] or higher-order DPA attacks. DPA attacks are mainly an issue if X25519

is used for static Di�e-Hellman key exchange with long-term keys; they are not an issue at all for ephemeral

Di�e-Hellman without key re-use.

Adding projective randomization would be easy (assuming a reliable source of randomness) and the cost would

be negligible, but we believe that serious protection against side-channel attacks requires more investigation, which

is beyond the scope of this paper.

Availability of software.We placed all the software described in this paper into the public domain. The software

for AVR ATmega is available at http://munacl.cryptojedi.org/curve25519-atmega.shtml; the software for TI

MSP430 is available at http://munacl.cryptojedi.org/curve25519-msp430.shtml; and the software for ARM

Cortex M0 is available at http://munacl.cryptojedi.org/curve25519-cortexm0.shtml.

Organization of this paper. Section 2 reviews the X25519 elliptic-curve Di�e-Hellman key exchange protocol.

Section 3 describes our implementation for AVR ATmega, Section 4 describes our implementation for MSP430X,

and Section 5 describes our implementation for Cortex-M0. Each of these three sections �rst brie�y introduces the

architecture, then gives details of the implementation of the two most expensive operations, namely �eld multipli-

cation and squaring, and then concludes with remarks on other operations and the full X25519 implementation.

Finally, Section 6 presents our results and compares them to previous results.

2 Review of X25519

X25519 elliptic-curve Di�e-Hellman key-exchange was introduced in 2006 by Bernstein [3]. It is based on arith-

metic on the Montgomery curve Curve25519 with equation

E : y2 = x3 + 486662x2 + x

de�ned over the �eld F2255−19. Computation of a shared secret, given a 32-byte public key and a 32-byte secret
key, proceeds as follows: The 32-byte public key is the little-endian encoding of the x-coordinate of a point P
on the curve; the 32-byte secret key is the little-endian encoding of a 256-bit scalar s. The most signi�cant bit

of this scalar is set to 0, the second-most signi�cant bit of the scalar is set to 1, and the 3 least signi�cant bits

of the scalar are set to 0. The 32-byte shared secret is the little-endian encoding of the x-coordinate of [s]P .

Computation of a Di�e-Hellman key pair uses the same computation, except that the public key is replaced by

the �xed value 9, which is the x-coordinate of the chosen base point of the elliptic curve group.

In all previous implementations of X25519, and also in our implementations, the x-coordinate of [s]P is

computed by using the e�cient x-coordinate-only formulas for di�erential addition and doubling introduced by

Montgomery in [32]. More speci�cally, the computation uses a sequence of 255 so-called �ladder steps�; each ladder
step performs one di�erential addition and one doubling. Each ladder step is followed by a conditional swap of two

pairs of coordinates. The whole computation is typically called Montgomery ladder ; a pseudo-code description

http://munacl.cryptojedi.org/curve25519-atmega.shtml
http://munacl.cryptojedi.org/curve25519-msp430.shtml
http://munacl.cryptojedi.org/curve25519-cortexm0.shtml
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of the Montgomery ladder is given in Algorithm 1. The cswap function in that algorithms swaps its �rst two

arguments X1 and X2 if its third argument c = 1. This could easily be achieved through an if-statement, but all

of our implementations instead use bit-logical operations for the conditional swap to eliminate a possible timing

side-channel. In all our implementations we achieve this by computing a temporary value t = (X1⊕X2)× c and
further executing an XOR of this result with the original values X1 and X2, i.e. X1 = X1⊕ t and X2 = X2⊕ t.

Algorithm 1 The Montgomery ladder for x-coordinate-based scalar multiplication onE : y2 = x3+486662x2+x
Input: A 255-bit scalar s and the x-coordinate xP of some point P
Output: (X[s]P , Z[s]P ) ful�lling x[s]P = X[s]P /Z[s]P

X1 ← 1; Z1 ← 0; X2 ← xP ; Z2 ← 1
p← 0
for i← 254 downto 0 do

b← bit i of s
c← b⊕ p
p← b
(X1, X2)← cswap(X1, X2, c)
(Z1, Z2)← cswap(Z1, Z2, c)
(X1, Z1, X2, Z2)← ladderstep(xP , X1, Z1, X2, Z2)

end for

return (X1, Z1)

For the ladder-step computation we use formulas that minimize the number of temporary (stack) variables

without sacri�cing performance. Our implementations need stack space for only two temporary �eld elements.

Algorithm 2 presents a pseudo-code description of the ladder step with these formulas, where a24 denotes the

constant (486662 + 2)/4 = 121666.

Algorithm 2 Single Montgomery ladder step on Curve25519

function ladderstep(xD, X1, Z1, X2, Z2)

T1 ← X2 + Z2

X2 ← X2 − Z2

Z2 ← X1 + Z1

X1 ← X1 − Z1

T1 ← T1 ·X1

X2 ← X2 · Z2

Z2 ← Z2 · Z2

X1 ← X1 ·X1

T2 ← Z2 −X1

Z1 ← T2 · a24

Z1 ← Z1 +X1

Z1 ← T2 · Z1

X1 ← Z2 ·X1

Z2 ← T1 −X2

Z2 ← Z2 · Z2

Z2 ← Z2 · xD

X2 ← T1 +X2

X2 ← X2 ·X2

return (X1, Z1, X2, Z2)

end function

Note that each ladder step takes 5multiplications, 4 squarings, 1multiplication by 121666, and a few additions

and subtractions in the �nite �eld F2255−19. At the end of the Montgomery ladder, the result x is obtained in

projective representation, i.e., as a fraction x = X/Z. X25519 uses one inversion and one multiplication to obtain

the a�ne representation. In most (probably all) previous implementations, and also in our implementations, the

inversion uses a sequence of 254 squarings and 11 multiplications to raise Z to the power of 2255− 21. The total
computational cost of X25519 scalar multiplication in terms of multiplications (M) and squarings (S) is thus
255 · (5M+ 4S) + 254S+ 12M = 1287M+ 1274S.
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3 Implementation on AVR ATmega

3.1 The AVR ATmega family of microcontrollers

The AVR ATmega is a family of 8-bit microcontrollers. The architecture features a register �le with 32 8-bit
registers named R0,. . . , R31. Some of these registers are special: The register pair (R26,R27) is aliased as X, the

register pair (R28,R29) is aliased as Y, and the register pair (R30,R31) is aliased as Z. These register pairs are the

only ones that can be used as address registers for load and store instructions. The register pair (R0,R1) is special

because it always holds the 16-bit result of an 8×8-bit multiplication.
The instruction set is a typical 8-bit RISC instruction set. The most important arithmetic instructions for

big-integer arithmetic�and thus also large-characteristic �nite-�eld arithmetic and elliptic-curve arithmetic�are

1-cycle addition (ADD) and addition-with-carry (ADC) instructions, 1-cycle subtraction (SUB) and subtraction-with-
borrow (SBC) instructions, and the 2-cycle unsigned-multiply (MUL) instruction. Furthermore, our squaring routine

(see below) makes use of 1-cycle left-shift (LSL) and left-rotate (ROL) instructions. Both instructions shift their

argument to the left by one bit and both instructions set the carry �ag if the most-signi�cant bit was set before

the shift. The di�erence is that LSL sets the least-signi�cant bit of the result to zero, whereas ROL sets it to the

value of the carry �ag.

The AVR instruction set o�ers multiple instructions for memory access. All these instructions take 2 cycles.

The LD instruction loads a value from memory to an internal general-purpose register. The ST instruction stores

a value from register to memory. An important feature of the AVR is the support of pre-decrement and post-

increment addressing modes that are available for the X, Y, and Z registers. For the registers Y and Z there also

exist a displacement addressing mode where data in memory can be indirectly addressed by a �xed o�set. This has

the advantage that only a 16-bit base address needs to be stored in registers while the addressing of operands is

done by indirect displacement and without changing the base-address value. We applied addressing with indirect

displacement as much as possible in our code to increase e�ciency.

AVR ATmega microcontrollers come in various di�erent memory con�gurations. For example, our benchmark-

ing platform features an ATmega2560 with 256KB of ROM and 8KB of RAM. Other common con�gurations

are the ATmega128 with 128KB of ROM and 4KB of RAM and the ATmega328 with 32KB of ROM and 2KB
of RAM.

All cycle counts for arithmetic operations reported in this section have been obtained from a cycle-accurate

simulation (using the simulator of the Atmel AVR Studio).

3.2 Multiplication

In our AVR implementation we use an unsigned radix-28 representation for �eld elements. An element f in

F2255−19 is thus represented as f =
∑31

i=0 fi2
8i =̂ (f0, f1, . . . f31) with fi ∈ {0, . . . , 255}.

For fast 256-bit-integer multiplication on the AVR we use the recently proposed highly optimized 3-level
Karatsuba multiplication routine by Hutter and Schwabe [22]. More speci�cally, we use the branch-free variant of

their software, which is slightly slower than the �branched� variant but allows easier veri�cation of constant-time

behavior. This branch-free subtractive Karatsuba routine takes 4961 cycles without function-call overhead and

thus outperforms previous results presented by Hutter and Wenger in [23], and by Seo and Kim in [39] and [40]

by more than 18%.

Not only is the Karatsuba multiplier from [22] faster than all previous work, it is also smaller than previous

fully unrolled speed-optimized multiplication routines. For some applications, the size of 7616 bytes might still

be considered excessive so we investigated what the time-area tradeo� is for not fully unrolling and inlining

Karatsuba. A multiplier that uses 3 function calls to a 128×128-bit multiplication routine instead of fully inlining

those half-size multiplication takes 5064 cycles and has a size of only 3366 bytes. Note that a single 2-level

128×128-bit Karatsuba multiplication takes 1369 cycles, therefore 957 cycles are due to the higher-level Karatsuba
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overhead. Because of the better speed/size trade-o�, we therefore decided to integrate the latter multiplication

method needing 103 cycles in addition but saves almost 56% of code size. Section 6 reports results for X25519

for both an implementation with the faster multiplier from [22] and the smaller and slightly slower multiplier.

The details of the size-reduced Karatsuba multiplication are as follows. Basically, we split the 256× 256-bit
multiplication into three 128 × 128-bit multiplications. We follow the notation of [22] and denote the results of

these three smaller multiplications with L for the low part, H for the high part, and M for the middle part.

Each of these multiplications is implemented as a 2-level re�ned Karatsuba multiplication and is computed via

a function call named MUL128. This function expects the operands in the registers X and Y and the address of

the result in Z. After the low-word multiplication L, we increment the operand and result-address pointers and

perform the high-word multiplication H by a second call to MUL128. Note that here we do not merge the re�ned

Karatsuba addition of the upper half of L into the computation of H as described in [22] because we would

need additional conditions in MUL128 which we avoid in general. Instead, we accumulate the higher words of L
right after the computation of H. This requires the additional loading of all operands and the storing of the

accumulated result back to memory�but this can be done in the higher-level Karatsuba implementation which

makes our code more �exible and smaller in size. Finally, we prepare the input operands for the middle-part

multiplication M by a constant-time calculation of the absolute di�erences and a conditional negation.

3.3 Squaring

We implemented a dedicated squaring function to improve speed of X25519. For squaring, we also made use of

Karatsuba's technique but only use 2 levels and make use of some simpli�cations that are applicable in general.

For example, in squaring many cross-product terms are equal so that the computation of those terms needs to be

performed only once. These terms can then be simply shifted to the left in order to get doubled. Furthermore, it

becomes obvious that by calculating the absolute di�erence of the input for the middle-part Karatsuba squaring

M is always positive. Thus also no conditional negation is required. For squaring, we hence do not need to

distinguish between a �branched� and a �branch-free� variant as opposed to the multiplication proposed in [22].

Similar to multiplication, we implemented a squaring function named SQR128, which is then called in a higher-

level 256-bit squaring implementation. The 128-bit squaring operation needs 872 cycles. Again we use two versions

of squaring, one with function calls and one fully inlined version. The fully inlined version needs a total of 3324

cycles.

3.4 Putting it together

Besides 256-bit multiplication and squaring, we implemented a separate modular reduction function as well as

256-bit modular addition and subtraction. All those implementations are implemented in assembly to obtain best

performance.

During scalar multiplication in X25519, we decided to reduce all elements modulo 2256 − 38 and perform

a �freezing� operation at the end of X25519 to �nally reduce modulo 2255 − 19. This has the advantage that

modular reduction is simpli�ed throughout the entire computation because the intermediate results need not be

fully reduced but can be almost reduced which saves additional costly reduction loops. In total, modular addition

and subtraction need 592 cycles. Modular reduction needs 780 cycles.

The Montgomery arithmetic on Curve25519 requires a multiplication with the curve parameter a24 = 121666
(see Algorithm2 for the usage in the Montgomery-ladder step). We specialized this multiplication in a dedicated

function called fe25519_mul121666. It makes use of the fact that the constant has 17 bits; multiplying by this

constant needs only 2 multiplication instructions and several additions per input byte. The multiplication of a

256-bit integer by 121666 needs 695 cycles. All these cycle counts are for the fully speed optimized version of
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our software, which unrolls all loops. Our smaller software for X25519 uses (partially) rolled loops which take a

few extra cycles.

4 Implementation on MSP430X

This section describes our implementation of X25519 on MSP430X microcontrollers, which is based on and

improves the software presented in [20]. We implemented X25519 for MSP430X devices that feature a 16-bit
hardware multiplier as well as for those that feature a 32-bit hardware multiplier. We present execution results

measured on an MSP430FR5969 [25], which has an MSP430X CPU, 64KB of non-volatile memory (FRAM),

2 kB SRAM and a 32-bit memory-mapped hardware multiplier. The result of a 16 × 16-bit multiplication is

available in 3 cycles on both types of MSP430X devices, those that have a 32-bit hardware multiplier as well as
those that have a 16-bit hardware multiplier (cf. [25] and [24]). Thus, our measurement results can be generalized

to other microcontrollers from the MSP430X family.

All cycle counts presented in this section were obtained when executing the code on a MSP-EXP430FR5969

Launchpad development board and measuring the execution time using the debugging functionality of the IAR

Embedded Workbench IDE.

4.1 The MSP430X

The MSP430X has a 16-bit RISC CPU with 27 core instructions and 24 emulated instructions. The CPU has

16 16-bit registers. Of those, only R4 to R15 are freely usable working registers, and R0 to R3 are special-purpose

registers (program counter, stack pointer, status register, and constant generator). All instructions execute in

one cycle, if they operate on contents that are stored in CPU registers. However, the overall execution time for

an instruction depends on the instruction format and addressing mode. The CPU features 7 addressing modes.

While indirect auto-increment mode leads to a shorter instruction execution time compared to indexed mode,

only indexed mode can be used to store results in RAM.

We consider MSP430X microcontrollers, which feature a memory-mapped hardware multiplier that works

in parallel to the CPU. Four types of multiplications, namely signed and unsigned multiply as well as signed

and unsigned multiply-and-accumulate are supported. The multiplier registers have to be loaded with CPU

instructions. The hardware multiplier stores the result in two (in case of 16-bit multipliers) or four (in case of 32-
bit multipliers) 16-bit registers. Further a SUMEXT register indicates for the multiply-and-accumulate instruction,

whether accumulation has produced a carry bit. However, it is not possible to accumulate carries in SUMEXT. The

time required for the execution of a multiplication is determined by the time that it takes to load operands to

and store results from the peripheral multiplier registers.

The MSP430FR5969 (the target under consideration) belongs to a new MSP430X series featuring FRAM

technology for non-volatile memory. This technology has two bene�ts compared to �ash memory. It leads to a

reduced power consumption during memory writes and further increases the number of possible write operations.

However, as a drawback, while the maximum operating frequency of the MSP430FR5969 is 16 MHz, the FRAM

can only be accessed at 8 MHz. Hence, wait cycles have to be introduced when operating the MSP430FR5969

at 16 MHz. For all cycle counts that we present in this section we assume a core clock frequency of 8 MHz.

Increasing this frequency on the MSP430FR5969 would incur a penalty resulting from those introduced wait

cycles. Note, that this is not the case for MSP430X devices that use �ash technology for non-volatile memory.

4.2 Multiplication

In our MSP430X implementation we use an unsigned radix-216 representation for �eld elements. An element

f in F2255−19 is thus represented as f =
∑15

i=0 fi2
16i =̂ (f0, f1, . . . f15) with fi ∈ {0, . . . , 216 − 1}. In order
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to be conform with other implementations of X25519, we consider inputs and outputs to and from the scalar

multiplication on Curve25519 to be 32-byte arrays. Thus conversions to and from the used representation have

to be executed at the beginning and the end of the scalar multiplication. As reduction modulo 2255− 19 requires

bit shifts in the chosen representation of �eld elements, we reduce intermediate results modulo 2256 − 38 during

the entire execution of the scalar multiplication and only reduce the �nal result modulo 2255 − 19.
Hinterwälder, Moradi, Hutter, Schwabe, and Paar presented and compared implementations of various multi-

plication techniques on the MSP430X architecture in [20]. They considered the carry-save, operand-caching and

constant-time Karatsuba multiplication, for which they used the operand-caching technique for the computation

of intermediate results. Among those implementations, the Karatsuba implementation performed best. To the best

of the authors knowledge, the fastest previously reported result for 256-bit multiplication on MSP430X devices

was presented by Gouvêa, Oliveira and López in [17]. In their work the authors have used the product-scanning

technique for the multi-precision multiplication. We implemented and compared the product-scanning multipli-

cation and the constant-time Karatsuba multiplication, and this time used the product-scanning technique for

the computation of intermediate results of the Karatsuba implementation. It turns out that on devices that have

a 16-bit hardware multiplier, the constant-time Karatsuba multiplication performs best. On devices that have a

32-bit hardware multiplier the product-scanning technique performs better than constant-time Karatsuba, as it

makes best use of the 32-bit multiply-and-accumulate unit of the memory-mapped hardware multiplier. We thus

use constant-time Karatsuba in our implementation of X25519 on MSP430X microcontrollers that have a 16-bit
hardware multiplier and the product-scanning technique for our X25519 implementation on MSP430Xs that have

a 32-bit hardware multiplier.
In our product-scanning multiplication implementation, where h = f × g mod 2256 − 38 is computed, we

�rst compute the coe�cients of the double-sized array, which results from multiplying f with g and then reduce

this result modulo 2256 − 38. We only have 7 general-purpose registers available to store input operands during

the multiplication operation. Hence, we cannot store all input operands in working registers, but we keep as

many operands in them as possible. For the computation of a coe�cient of the double-sized array, which results

from multiplying f by g, one has to access the contents of f in incrementing and g in decrementing order, e.g.

the coe�cient h2 is computed as h2 = f0g2 + f1g1 + f2g0. As there is no indirect auto-decrement addressing

mode available on the MSP430X microcontroller, we put the contents of g on the stack in reverse order at the

beginning of the multiplication, which allows us to access g using indirect auto-increment addressing mode for

the remaining part of the multiplication. Including function-call and reduction overhead, our 32-bit product-

scanning multiplication implementation executes in 2 079 cycles on the MSP430FR5969. Without function call

and modular reduction, it executes in 1 693 cycles.

For MSP430X microcontrollers that have a 16-bit hardware multiplier we implemented the constant-time

one-level Karatsuba multiplication (refer to Section 3). We use the product-scanning technique to compute the

three intermediate results L,H and M . For the computation of L,H and M we have seven working registers

available to store input operands. Hence, we can store almost the full input that is accessed in decrementing

order in working registers and access the eighth required operand of it using indirect addressing mode. Again

we �rst compute the double-sized array resulting from the multiplication of f and h and then reduce this result

modulo 2256−38. Our modular multiplication implementation dedicated for devices that have a 16-bit hardware
multiplier executes in 3 193 cycles including function call and modular reduction, and in 2 718 cycles excluding

those.

4.3 Squaring

In order to compute h = f2 mod 2256 − 38, we �rst compute a double-sized array resulting from squaring f
and then reduce this result modulo 2256− 38. Similar to our multiplication implementation, we use the product-

scanning technique for our implementation targeting devices that have a 32-bit hardware multiplier. We again

store the input f on the stack in reverse order, allowing us to use indirect auto-increment addressing mode to
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access elements of f in decrementing order. As mentioned in Section 3, many multiplications of cross-product

terms occur twice during the execution of the squaring operation. These do not have to be computed multiple

times, but can be accounted for by multiplying an intermediate result by two, i.e. shifting it to the left by one bit.

As shift operations on the result registers of the memory-mapped hardware multiplier are expensive, we move

results of a multiplication back to CPU registers before executing this shift operation. Including function call and

modular reduction overhead our squaring implementation executes in 1 563 cycles on MSP430X microcontrollers

that have a 32-bit hardware multiplier. Without reduction and function call this number decreases to 1 171 cycles.
Our squaring implementation for MSP430X microcontrollers that have a 16-bit hardware multiplier follows

the constant-time Karatsuba approach, where intermediate results are computed using the product-scanning

technique. This function executes in 2 426 cycles including function call and reduction overhead and in 1 935
cycles without.

4.4 Putting it together

We implemented all �nite-�eld arithmetic in assembly language and all curve arithmetic as well as the conversion

to and from the internal representation in C.

The x-coordinate-only doubling formula requires a multiplication with the constant 121666. One peculiarity
of the MSP430 hardware multiplier greatly improves the performance of the computation of h = f · 121666
mod 2256 − 38, which is that contents of the hardware multiplier's MAC registers do not have to be loaded again,

in case the processed operands do not change. In case of having a 32-bit hardware multiplier we proceed as

follows: The number 121666 can be written as 1 · 216 + 56130. We store the value 1 in MAC32H and 56130 in

MAC32L and then during each iteration load two consecutive coe�cients of the input array f , i.e. fi and fi+1

to OP2L and OP2H for the computation of two coe�cients of the resulting array namely hi and hi+1. The array

that results from computing f2 is only two elements longer than the input array, which we reduce as the next

step. Using this method, the multiplication with 121666 executes in 352 cycles on MSP430s that have a 32-bit
hardware multiplier, including function call and reduction.

For the 16-bit hardware multiplier version, we follow a slightly di�erent approach. As we cannot store the full

number 121666 in the input register of the hardware multiplier, we proceed as follows: To compute h = f ·121666
mod 2256 − 38 we store the value 56130 in the hardware-multiplier register MAC. We then compute each hi as

hi = fi · 56130 + fi−1 for i ∈ [1 . . . 15] such that we add the (i − 1)-th input coe�cient to the multiplier's

result registers RESLO and RESHI. This step takes care of the multiplication with 1 · 216 for the (i − 1)-th
input coe�cient. We further load the i-th input coe�cient to the register OP2, thus executing the multiply-

and-accumulate instruction to compute the i-th coe�cient of the result. Special care has to be taken with the

coe�cient h0, where h0 = f0 · 56130 + 38 · f15. The method executes in 512 cycles including function call and

reduction overhead.

The reduction of a double-sized array modulo 2256 − 38 is implemented in a similar fashion. We store the

value 38 in the MAC-register of the hardware multiplier. We then add the i-th coe�cient of the double-sized input

to the result registers of the hardware multiplier and load the (i + 16)-th coe�cient to the OP2-register. In the

32-bit version of this reduction implementation the only di�erence is that two consecutive coe�cients can be

processed in each iteration, i.e. the i-th and (i+ 1)-th coe�cients are added to the result registers and and the

(i+ 16)-th and (i+ 17)-th coe�cient are loaded to the OP2-registers.

The modular addition h = f + g mod 2256 − 38, which executes in 186 cycles on the MSP430, �rst adds

the two most signi�cant words of f and g. It then extracts the carry and the most signi�cant bit of this result

and multiplies those with 19. This is added to the least signi�cant word of f . All other coe�cients of f and g
are added with carry to each other. The carry resulting from the addition of the second most signi�cant words

of f and g is added to the sum that was computed �rst.

For the computation of h = f − g, we �rst subtract g with borrow from f . If the result of the subtraction
of the most signi�cant words produces a negative result, the carry �ag is cleared, while, if it produces a positive
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result the carry �ag is set. We add this carry �ag to a register tmp that was set to 0xffff before, resulting in

the contents of tmp to be 0xffff in case of a negative result and 0 in case of a positive result of the subtraction.

We AND tmp with 38, subtract this from the lowest resulting coe�cient and ripple the borrow through. Again a

possible resulting negative result of this procedure is reduced using the same method, minus the rippling of the

borrow. This modular subtraction executes in the same time as the modular addition, i.e. in 199 cycles including

function-call overhead.

5 Implementation on ARM Cortex-M0

5.1 The ARM Cortex M0

The ARM Cortex M0 and Cortex M0+ cores (M0) are the smallest members of ARM's recent Cortex-M series,

targeting low-cost and low-power embedded devices. The M0 implements a load-store architecture. The register

�le consists of 16 registers r0,. . . ,r15, including 3 special-purpose registers for the program counter (pc) in r15,

the return addresses (lr) in r14, and the stack pointer (sp) in r13.

Unlike its larger brothers from the ARM Cortex M series, the M0 encodes arithmetic and logic instructions

exclusively in 16 bits. This 16-bit instruction encoding results in constraints with respect to register addressing.

As a result, the eight lower registers r0,. . . ,r7 can be used much more �exibly than the upper registers r8,. . . ,r14.
More speci�cally, only the lower registers r0,. . . ,r7may be used for pointer-based memory accesses, as destination

of a load or source of a store, and for holding memory-address information. Also almost all arithmetic and logic

instructions like addition and subtraction only accept lower registers as operands and results. The upper registers

are mainly useful as fast temporary storage, i.e., in register-to-register-move instructions.

The M0 core supports a multiplication instruction which receives two 32-bit operands and produces a 32-bit
result. Note that this is substantially di�erent from the AVR ATmega and the MSP430X; on the M0 the upper

half of the 64-bit result is cut o�. For our purpose of fast multi-precision integer arithmetic, we consider the

multiplier as a 16-bit multiplier. The main di�erence to AVR and MSP430X is then, that the result is produced

in only one register. The M0 is available in two con�gurations, where multiplication either costs 1 cycle or 32
cycles. In this paper we focus on M0 systems featuring the single-cycle hardware multiplier, a design choice

present on most M0 implementations that we are aware of. All arithmetic and logic operations, including the

multiplication operate on 32-bit inputs and outputs. They all require a single clock cycle.

The M0 uses a von Neumann memory architecture with a single bus being used for both, code and data.

Consequently all load and store instructions require one additional cycle for the instruction fetch. This constitutes

one of the key bottlenecks to consider for the implementation of the arithmetic algorithms. Since a typical

load/store instruction requires 2 cycles, while an arithmetic or multiplication operation only takes a single cycle,

it is very important to make best usage of the limited memory bandwidth. Consequently it is part of our

strategy to make loads and stores always operate on full 32-bit operands and use the load and store multiple

(LDM/STM) instructions wherever possible. These LDM/STM instructions transfer n (up to eight) 32-bit words

in one instruction, with a cost of only n+ 1 cycles.

Like the other two platforms considered in this paper, the ARM Cortex-M0 also comes in very di�erent

memory con�gurations. The STM32F0-Value chips have between 16KB and 256KB of ROM and between 4KB
and 32KB of RAM. For our benchmarks and tests we used a development board with an STM32F051R8T6

microcontroller with 64KB of ROM and 8KB of RAM. All cycle counts for arithmetic operations reported in

this section have been obtained using the systick counter on this development board.

In comparison to the other architectures discussed in this paper, the M0 platform bene�ts from its single-

cycle 32× 32→ 32-bit multiplication instruction that directly operates on the general-purpose register �le. The

weakness of this architecture is its slow memory interface and the restrictions resulting from the 16-bit encoding
of instructions: the small register set of only 8 registers r0,. . . ,r7 that can be used in arithmetic instructions and

memory access.
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5.2 Multiplication

In our Cortex-M0 implementation we use an unsigned radix-232 representation for �eld elements. An element f
in F2255−19 is thus represented as f =

∑7
i=0 fi2

32i =̂ (f0, f1, . . . f7) with fi ∈ {0, . . . , 232 − 1}.
It turns out that the most e�cient strategy for multiplication of n = 256-bit operands is a three-level re�ned

Karatsuba method. To obtain a constant-time behavior and avoid the carry propagation, we use a variant of

subtractive Karatsuba. The n-bit input operands A = A`+2n/2Ah and B = B`+2n/2Bh are �rst decomposed

into a lower and a higher half. Then one computes the partial products L = Ah · Bh and and H = Ah · Bh.

The subtractive Karatsuba formulas involve a product term M = (A` − Ah) · (B` − Bh) which may be either

positive or negative. The full result may then be calculated by use of the subtractive Karatsuba formula A ·B =
L + 2n/2(L + H −M) + 2n · H. By use of the re�ned Karatsuba method, we reduce the storage needed to

calculate the middle part M and at the same time we save several additions on each Karatsuba level. Analysis

of the low-level constraints of the CPU architecture revealed that it is considerably more e�cient not to use a

signed multiplication yielding M directly but to �rst calculate the absolute value |M | = |A` − Ah| · |B` − Bh|
and separately keep track of the sign t of the result. This stems mainly from the observation that sign changes

(i.e. two's complements) of operands may be calculated in-place without requiring temporary spill registers.

Actually the variant in our M0 implementation swaps the di�erence of one factor of |M |, i.e., |M | = |A` −
Ah| · |Bh − B`| and compensates for this by toggling the sign bit t. This makes branch-free combination of

the partial results slightly more e�cient. The calculation, thus, involves calculating the absolute value of the

di�erences |A` − Ah| and |Bh − B`|, the sign t and a conditional negation of the positive result |M |. As in
the AVR implementation, we do not use any conditional branches, but instead use conditional computation of

the two's complements. Note that the conditional calculation of the two's complement involves �rst a bitwise

exclusive or operation with either 0 or −1, depending on the sign. Subsequently a subtraction operation of either

−1 or 0 follows, being equivalent to addition of 1 or 0.
For our implementation, we represent the �eld elements as arrays of eight 32-bit words. Since the architecture

only provides a precision of 16-bit on its multiplier, we obtain a 32-bit multiplication with 17 arithmetic instruc-

tions: 4 to convert the registers from 32 to 16 bits, 4 multiplications, 1 to save an extra input (multiplication

overwrites one of the inputs), and 8 instructions (4 additions and 4 shifts) to add the middle part into the �nal

result. Since the 32-bit multiplication requires at least 5 registers, register-to-register moves between the low and

high part of the register �le are required to perform more than one multiplication.

We obtain the 256-bit product using three 128-bit multiplications, each one with a cost of 332 cycles. The

128-bit multiplier uses three 64-bit multiplications which only take 81 cycles each. The full 256-bit multiplication
requires 1294 cycles, about 700 cycles faster than a fully unrolled product-scanning multiplication.

5.3 Squaring

For squaring we also use three levels of re�ned subtractive Karatsuba. We use the same two observations as for the

AVR to improve squaring performance compared to multiplication performance. First all of the partial results M ,

L andH entering the Karatsuba formula are solely determined by squaring operations, i.e. no full multiplication is

involved. Conventional squaring of an operand A = A`+2kAh would have required two squarings of the lower and

upper halves A2
` and A2

h and one multiplication for the mixed term A` ·Ah. Aside from arithmetic simpli�cation,

a big bene�t of avoiding this mixed-term multiplication is that one input operand fetch and register spills to

memory may be spared because for squarings we have only one input operand. This bene�t clearly outweighs the

extra complexity linked to the additional additions and subtractions within the Karatsuba formula. Second it is

easily observed that the sign of the operand M is known to be positive from the very beginning. The conditional

sign change of the intermediate operand M is thus not necessary.

The 64-bit squaring takes 53 cycles using only seven registers; our 128-bit squaring takes only 206 cycles,

with the advantage that we handle all temporary storage with the upper half of the register �le, i.e. no use of the



12 Düll, Haase, Hinterwälder, Hutter, Paar, Sánchez, and Schwabe

Table 1 Cycle count on ARM Cortex M0 with single-cycle multiplier for assembly optimized implementation and opti-
mization for speed. Modular addition and multiplication with 121666 include reduction modulo 2256 − 38 .

Operation Clock cycles

Modular Addition 109

Modular multiplication by 121666 184

Reduction modulo 2256 − 38 175

256× 256-bit multiplication 1 294

256-bit squaring 857

stack is required. Our 256-bit squaring algorithm requires 857 cycles for 256-bit operands, in comparison to 1110
cycles for an unrolled product-scanning squaring. As expected, the bene�t of using Karatsuba is much smaller

than for multiplication. Still the di�erence between squaring and multiplication is signi�cant, clearly justifying

to use a specialized squaring algorithm when optimizing for speed.

5.4 Putting it together

For multiplication and squaring we did not merge multiplication and reduction due to the high register pressure.

Merging the operations would have led to many register spills. For these operations, we �rst implement a standard

long-integer arithmetic and reduce the result in a second step. We use separate functions for multiplication and

reduction Throughout the X25519 calculation we reduce modulo 2256 − 38 and even allow temporary results to

reach up to 2256 − 1. Full reduction is used only for the �nal result.

For addition, subtraction and multiplication with the curve constant 121666, we use a di�erent strategy and

reduce the result on the �y in registers before writing results back to memory. For these simple operations, it is

possible to perform all of the arithmetic and reduction without requiring register spills to the stack. The cycle

counts for these operations are summarized in Table 1. Multiplication with the curve constant is implemented

by a combination of addition and multiplication. Since the constant has 17 signi�cant bits, multiplication is

implemented by a combination of a 16-bit multiplication and a 16-bit shift-and-add operation.

The strategy for reducing on the �y consists of two steps. First, the arithmetic operation (addition, subtraction,

multiplication by 121666) is implemented on the most signi�cant word. This generates carries in bits 255 and

higher that need to be reduced. We strip o� these carries resulting from the most signi�cant word (setting bits

255 and higher of the result to zero) and merge the arithmetic for the lower words with reduction. This may

result in an additional carry into the most signi�cant word. However, these carries may readily be stored in bit

255 of the most signi�cant word. This way a second carry chain is avoided.

6 Results and comparison

This section describes our implementation results for the X25519 Di�e-Hellman key-exchange on the aforemen-

tioned platforms. We present performance results in terms of the required clock cycles for one scalar multiplication.

We furthermore report the required storage and RAM space. A full Di�e-Hellman key exchange requires one

scalar multiplication of a �xed-basepoint and one variable-point scalar multiplication. Our software does not

specialize �xed-basepoint scalar multiplication; the cost for a complete key exchange can thus be obtained by

multiplying our cycle counts for one scalar multiplication by two. We compare our results to previous imple-

mentations of elliptic-curve scalar multiplication at the 128-bit security level (and selected high-performance

implementations at slightly lower security levels) on the considered platforms.
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Table 2 Cycle counts, sizes, and stack usage of elliptic-curve scalar-multiplication software for AVR ATmega microcon-
trollers.

Implementation Curve Clock cycles Size RAM usage

Aranha, Dahab, López, Oliveira [1] NIST K-233 ≈ 5 382 144 ≈ 38 600 Bytesb ≈ 3 700 Bytes

Aranha, Dahab, López, Oliveira [1] NIST B-233 ≈ 13 934 592 ≈ 34 600 Bytesb ≈ 2 200 Bytes

Gura, Patel, Wander, Eberle, Chang
Shantz [19]

NIST P-224 ≈ 17 520 000 4 812 Bytes 422 Bytes

Liu, Wenger, Groÿschädl [44] 256-bit Montgomery ≈ 21 078 200 14 700 Bytesb 556 Bytes

Wenger, Unterluggauer, Werner [42] NIST P-256 ≈ 34 930 000 16 112 Bytes 590 Bytes

Hutter, Schwabe [21] Curve25519 22 791 579 n/aa 677 Bytes

This paper Curve25519 14 146 844 9 912 Bytes 510 Bytes

This paper Curve25519 13 900 397 17 710 Bytes 494 Bytes
a Size is reported only for the complete NaCl library core, not for stand-alone Curve25519
b Implementation also includes faster �xed-basepoint scalar multiplication

6.1 Results and comparison on AVR ATmega

Our results for X25519 scalar multiplication on the AVR ATmega family of microcontrollers and a comparison

with previous work are summarized in Table 2. As described in Section 3, all low-level functions are written in

assembly. The high-level functionality is written in C; for compilation we used gcc-4.8.1 with compiler options

-mmcu=atmega2560 -O3 -mcall-prologues. Unlike the cycle counts for subroutines reported in Section 3, all cycle

counts reported for full elliptic-curve scalar multiplication reported here were measured using the built-in cycle

counters on an Arduino MEGA development board with an ATmega2560 microcontroller. To achieve su�cient

precision for the cycle counts, we combined an 8-bit and a 16-bit cycle counter to a 24-bit cycle counter.

Many implementations of elliptic-curve cryptography exist for the AVR ATmega; however, most of them aim

at lower security levels of 80 or 96 bits. For example the TinyECC library by Liu and Ning implements ECDSA,

ECDH, and ECIES on the 128-bit, 160-bit, and 192-bit SECG curves [28]. NanoECC by Szczechowiak, Oliveira,

Scott, Collier, and Dahab uses the NIST K-163 curve [41]. Also recent ECC software for the AVR ATmega uses

relatively low-security curves. For example, in [29] Liu, Seo, Groÿschädl, and Kim report new speed records for

elliptic-curve cryptography on the NIST P-192 curve. Also Dalin, Groÿschädl, Liu, Müller, and Zhang focus on

the 80-bit and 96-bit security levels for their optimized implementation of ECC with twisted Edwards curves

presented in [14].

Table 2 summarizes the results for elliptic-curve variable-basepoint scalar multiplication on curves that o�er

at least 112 bits of security. Not only are both of our implementations more than 1.5 times faster than all

previous implementations of ECC at the 128-bit security level, the small implementation is also considerably

smaller than all previous implementations. As also stated in the footnote, the size comparison with the MoTE-

ECC software presented by Liu, Wenger, and Groÿschädl in [44] is not fair, because their software optimizes also

�xed-basepoint scalar multiplication and claims a performance of 30 510 000 cycles for ephemeral Di�e-Hellman

(one �xed-point and one variable-point scalar multiplication). Even under the assumption that this is the right

measure for ECDH performance�which means that ephemeral keys are not re-used for several sessions, for a

discussion, see [6, Appendix D]�our small implementations o�ers better speed and size than the one presented

in [44]. The only implementation that is smaller than ours and o�ers reasonably close performance is the one

by Gura, Patel, Wander, Eberle, and Chang Shantz presented in [19]; however, that implementation is using a

curve that o�ers only 112 bits of security. The only implementation that is faster than ours is the DH software

on the NIST-K233 curve by Aranha, Dahab, López, and Oliveira presented in [1]; however, this software also

o�ers only 112 bits of security, has very large ROM and RAM consumptions, and uses a binary elliptic-curve

with e�ciently computable endomorphisms, which is commonly considered a less conservative choice. As pointed
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Table 3 Cycle counts, sizes, and stack usage of elliptic-curve scalar-multiplication software for MSP430X microcontrollers

Implementation CPU Curve
Clock cycles Clock cycles

Size Stack usage
@8 MHz @16 MHz

With 16-bit hardware multiplier

Wenger, Werner [43] MSP430 NIST P-256 23 937 000 n/a n/a n/a

Wenger, Unterlug-
gauer, Werner [42]

MSP430 NIST P-256 22 170 000 n/a 8 378 Bytes 418 Bytes

Gouvêa, Oliveira,
López [17,15]

MSP430X NIST P-256 7 284 377a n/a n/a n/a

Hinterwälder,
Moradi, Hutter,
Schwabe, Paar [20]

MSP430X Curve25519 9 139 739 10 404 042 11 778 Bytes 513 Bytes

This paper MSP430X Curve25519 7 933 296 9 119 840 13 112 Bytes 384 Bytes

With 32-bit hardware multiplier

Gouvêa, Oliviera,
López [17,15]

MSP430X NIST P-256 5 321 776a n/a n/a n/a

Hinterwälder,
Moradi, Hutter
Schwabe, Paar [20]

MSP430X Curve25519 6 513 011 7 391 506 8 956 Bytes 495 Bytes

This paper MSP430X Curve25519 5 301 792 5 941 784 10 088 Bytes 382 Bytes
a Note that the authors use the 4w-NAF method for the scalar multiplication, which does not execute in constant
time. In this paper we focus on a constant-time implementation to thwart timing attacks. Further the authors
obtained some of the cycle counts using the IAR Embedded Workbench simulator. It turns out that this simulator
does not report correct timings, if the memory-mapped hardware multiplier of the MSP430 is used.

out in the footnote, the size comparision to [1] is also not entirely fair because their software also contains a

specialized �xed-basedpoint scalar multiplication.

6.2 Results and comparison on MSP430X

Our results for Curve25519 on the MSP430X microcontroller and a comparison with related previous work are

summarized in Table 3. As for the AVR comparison, we only list results that target reasonably high security

levels. For our implementation we report cycle counts of the MSP430FR5969 for 8 MHz and 16 MHz. One might

think that the cycle counts are independent of the frequency; however, due to the limited access frequency of

the non-volatile (FRAM) memory of the MSP430FR5969 (see Section 4), core clock frequencies beyond 8 MHz

introduce wait cycles for memory access.

As mentioned in Section 4, all arithmetic operations in F2255−19 (aside from inversion) are implemented in

assembly. The high-level functionality is written in C; for compilation we used gcc-4.6.3 with compiler options

-mmcu=msp430fr5969 -O3. All cycle counts reported in this section were obtained by measuring the cycle count

when executing the code on an MSP-EXP430FR5969 Launchpad Development Kit [26], using the cycle counters

of the chip, unlike Section 4 where cycle counts on the board were obtained using the debugging functionality of

the IAR Embedded Workbench IDE. These cycle counters have a resolution of only 16-bits, which is not enough

to benchmark our software. We use a divisor of 8 (i.e., the counter is increased every 8 cycles) and increase a

global 64-bit variable every time an over�ow interrupt of the on-chip counter is triggered. This gives us a counter

with reasonable resolution and relatively low interrupt-handling overhead and makes it possible to independently

reproduce our results without the use of the proprietary IAR Workbench IDE.

Naturally the implementation that makes use of the 32-bit hardware multiplier executes in fewer cycles and

requires less program storage space than the implementation that only requires a 16-bit hardware multiplier.
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This is because fewer load and store instructions to the peripheral registers of the hardware multiplier have to

be executed.

A plethora of literature describes implementations of elliptic curve cryptography on the MSP430 microcon-

troller architecture, while only few of those works describe an implementation at the 256-bit security level. The

�rst implementation of ECC on an MSP430 microcontroller was presented in 2001 by Guajardo, Blümel, Krieger,

and Paar. Their implementation at the 64-bit security level executes in 3.4 million clock cycles [18]. In 2009,

Gouvêa and López reported speed records for 160-bit and 256-bit �nite-�eld multiplications on the MSP430

needing 1 586 and 3 597 cycles, respectively [16]. Their 256-bit Montgomery-ladder scalar multiplication requires

20.4 million clock cycles; their 4-NAF and 5-NAF versions require 13.4 and 13.2 million cycles, respectively. In

2011, Wenger and Werner compared ECC scalar multiplications on various 16-bit microcontrollers [43]. Their

Montgomery-ladder-based scalar multiplication on the NIST P-256 elliptic curve executes in 23.9 million cycles

on the MSP430. Pendl, Pelnar, and Hutter presented the �rst ECC implementation running on the WISP UHF

RFID tag the same year [37]. Their implementation of the NIST P-192 curve achieves an execution time of

around 10 million clock cycles. They also reported the �rst 192-bit multi-precision multiplication results need-

ing 2 581 cycles. Gouvêa, Oliveira, and López reported new speed records for di�erent MSP430X architectures

in 2012 [17], improving their results from [16]. For the MSP430X architecture (with a 16-bit multiplier) their
160-bit and 256-bit �nite-�eld multiplication implementations execute in 1 299 and 2 981 cycles, respectively.

In 2013, Wenger, Unterluggauer, and Werner [42] presented an MSP430 clone with instruction-set extension to

accelerate big-integer arithmetic. For a NIST P-256 elliptic curve, their Montgomery ladder implementation using

randomized projective coordinates and multiple point validation checks requires 9 million clock cycles. Without

instruction-set extensions their implementation needs 22.2 million cycles.

6.3 Results and comparison on ARM Cortex M0

Our results for Curve25519 on ARM Cortex-M0 and a comparison with related work are summarized in Table 4.

As described in Section 5, all low-level functions for arithmetic in F2255−19 (except for inversion, addition and

subtraction) are implemented in assembly. It turned out that the addition and subtraction code generated by

the compiler was almost as e�cient as hand-optimized assembly. Higher-level functions are implemented in C;

for compilation we used clang 3.5.0.

For C �les we use a 3-stage compilation process. First we translate with clang -fshort-enums -mcpu=cortex-m0

-mthumb -emit-llvm -c -nostdlib -ffreestanding -target arm-none-eabi -mfloat-abi=soft scalarmult.c

to obtain a .bc �le, which is then optimized with opt -Os -misched=ilpmin -misched-regpressure -enable-misched

-inline and further translated to a .s �le with llc -misched=ilpmin -enable-misched -misched-regpressure.

As a result of these settings, addition and subtraction functions were fully inlined. This improves speed in com-

parison to calls to assembly functions by avoiding the function call overhead (at the expense of roughly 1KB

larger code).

We obtained cycle counts from the systick cycle counter of an STM32F0Discovery development board. We

also experimented with an LPC1114 Cortex-M0 chip but were unable to achieve the full performance of the

Cortex-M0 even for very simple code (like a sequence of 1000 NOPs). For the �default� power pro�le the cycle

counts we obtained were exactly a factor of 1.25 higher than expected. When switching to the �performance�

pro�le (see [34, Section 7.16.5]), we achieved better performance, but still not the expected cycle counts.

ARM's Cortex-M microcontrollers are rapidly becoming the device of choice for applications that previously

used less powerful 8-bit or 16-bit microcontrollers. It is surprising to see that there is relatively little previous

work on speeding up ECC on Cortex-M microcontrollers and in particular on the Cortex-M0. Probably the most

impressive previous work has recently been presented by De Clerq, Uhsadel, Van Herrewege, and Verbauwhede

who achieve a performance of 2 762 000 cycles for variable base-point scalar multiplication on the 233-bit Koblitz
curve sect233k1 [11]. This result is hard to directly compare to our result for three reasons. First the curve is

somewhat smaller and targets the 112-bit security level rather than then 128-bit security level targeted by our
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Table 4 Cycle counts, sizes, and stack usage of elliptic-curve scalar-multiplication software for ARM Cortex-M0 micro-
controllers

Implementation Curve Clock cycles Size RAM usage

De Clercq, Uhsadel, Van Herrewege,
Verbauwhede [11]

NIST K-233 2 762 000 n/a n/a Bytes

Wenger, Unterluggauer, Werner [42] NIST P-256 ≈ 10 730 000 7 168 Bytes 540 Bytes

This paper Curve25519 3 589 850 7 900 Bytes 548 Bytes

implementation. Second the implementation in [11] is not protected against timing attacks. Third the software

presented in [11] performs arithmetic on an elliptic-curve over a binary �eld. All the underlying �eld arithmetic

is thus very di�erent.

The only scienti�c paper that we are aware of that optimizes arithmetic on an elliptic curve over a large-

characteristic prime �eld for the Cortex-M0 is the 2013 paper by Wenger, Unterluggauer, and Werner [42]. Their

scalar multiplication on the secp256r1 curve is reported to take 10, 730, 000 cycles, almost exactly 3 times slower

than our result.
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