文章编号: 1000-4750(2015)12-0225-08

# 非平稳随机地震作用的结构整体可靠度分析

刘章军,王 磊,黄 帅

(三峡大学土木与建筑学院, 宜昌 443002)

**摘 要:**应用随机过程的正交展开-随机函数方法,建立了非平稳地震动过程的概率模型,实现了用一个基本随机 变量来表达地震动过程的目的。通过选取基本随机变量的代表性离散点集,可以直接获取地震动过程的代表性样 本集合。结合概率密度演化理论,进行了多自由度 Duffing 系统的随机地震反应分析与抗震可靠度计算。研究表 明,非平稳地震动过程的概率模型与概率密度演化理论有机结合,可以实现复杂工程结构整体抗震可靠度的精确 计算。

关键词:非平稳地震动;概率模型;概率密度演化方法;整体可靠度;Duffing系统 中图分类号:O324;P315.9 文献标志码:A doi: 10.6052/j.issn.1000-4750.2014.07.0609

### GLOBAL RELIABILITY ANALYSIS OF STRUCTURES UNDER NON-STATIONARY RANDOM EARTHQUAKE EXCITATIONS

LIU Zhang-jun, WANG Lei, HUANG Shuai

(College of Civil Engineering & Architecture, China Three Gorges University, Yichang 443002, China)

**Abstract:** Referring to the orthogonal expansion & random function of stochastic processes, the probabilistic model of non-stationary ground motion processes is established, and the earthquake ground motion can be represented using a basic random variable. The representative discrete point set of the basic random variable can be selected, and the representative sample ensemble for non-stationary ground motion processes can be directly generated by the probabilistic model. The proposed earthquake probability model provides an opportunity to employ the probability density evolution method (PDEM) to study the stochastic nonlinear responses and seismic reliability of general structural systems. An example, which deals with a non-linear MDOF Duffing system subjected to random earthquake excitations, is investigated to validate the above approach.

Key words: non-stationary ground motion; probabilistic model; probability density evolution method; global reliability; Duffing system

在地震、强风及海浪等随机动力作用下,结构 的动力可靠度分析一般分为首次超越破坏可靠度 和疲劳破坏可靠度问题<sup>[1]</sup>。结构首次超越破坏可靠 度分析主要有基于跨越过程理论的方法和基于扩 散过程理论的方法<sup>[2]</sup>。基于跨越过程理论的动力可 靠度分析方法有内外向级数法、泊松过程法及其改 进方法和点过程法等,其中,泊松过程法及其改进 方法为最具代表性的一类方法,尤以 Vanmarcke 的 工作最具代表性<sup>[3]</sup>。在本质上,结构动力可靠度分 析是一个无穷多个静力可靠度分析的耦联问题,无 论是泊松过程假定还是修正的 Markov 假定,都不 可避免地带有难以控制的误差和经验选择的成分。 基于扩散过程理论的方法需要求解后向 Kolmogorov方程或广义 Pontrygin 方程,理论上是 精确方法,然而它假定系统受到白噪声或过滤白噪 声激励,且难以对四个自由度以上的系统进行求

收稿日期: 2014-07-11; 修改日期: 2015-02-02

基金项目:国家自然科学基金项目(51278282, 50808113);三峡地区地质灾害与生态环境湖北省协同创新中心项目(1681121)

通讯作者:刘章军(1973-),男,湖北人,教授,博士,博导,主要从事工程结构抗震研究(E-mail: liuzhangjun73@aliyun.com).

作者简介: 王 磊(1989-), 男, 湖北人, 硕士生, 主要从事工程结构抗震研究(E-mail: 15697208475@163.com);

黄 帅(1988一),男,湖北人,硕士生,主要从事工程结构抗震研究(E-mail:molidadaohs@163.com).

解<sup>[4]</sup>。20世纪70年代中后期,随机模拟方法及其 改进技术在结构动力可靠度分析中得到了重视<sup>[5]</sup>, 发展了多种方差缩减技术,提出了拉丁方抽样、重 要抽样和方向抽样等诸多方法<sup>[6]</sup>。这些方法在一定 程度上提高了 Monte Carlo 方法的效率,但对复杂 结构动力可靠度分析问题,仍然难以应用。近年来, 获得迅速发展的线抽样技术、子集抽样技术等新的 抽样技术<sup>[7-8]</sup>,与传统抽样方法相比极大地提高了 效率。然而,几乎所有这些改进的抽样技术都以牺 牲随机分析问题中具有本质重要性的全局性和对 问题的广泛适用性为代价,而且所得结果是随机收 敛的<sup>[9]</sup>。

2004 年以来,李杰和陈建兵<sup>[10-12]</sup>基于概率密 度演化的基本思想,获得了结构动力可靠度分析的 两种新方法<sup>[13]</sup>,并发展了结构体系可靠度分析的新 方法<sup>[14]</sup>。在基于概率密度演化理论的结构动力可靠 度分析中,并不出现在基于跨越过程分析中的困 难,也避免了基于后向 Kolmogorov 方程求解动力 可靠度时,对多维系统无法求解的困境。同时,在 结构体系可靠度计算中,由于基于非线性发展过程 求解,避免了经典结构体系可靠度分析中的相关性 处理困境。可见, 概率密度演化理论提供了计算结 构整体可靠度的工具。鉴于这一研究进展, 笔者在 随机过程正交展开基础上<sup>[15]</sup>,受文献[16]的启发, 建立了平稳和非平稳地震动过程的正交展开-随机 函数方法[17-18],实现了用一个基本随机变量来描述 地震动过程的概率特性。本文进一步结合建筑抗震 设计规范[19],建立符合建筑抗震设计所需的地震动 概率模型,并获得地震动过程的代表性样本集合, 进而与概率密度演化理论相结合,可实现复杂工程 结构的随机地震反应和抗震可靠度的精细化分析。

# 1 地震动过程的正交展开-随机函数 方法

在地震工程中,一般假定地震动加速度过程 $\{\ddot{X}_{g}(t), 0 \leq t \leq T\}$ 是一个零均值的二阶矩过程,其近似的正交展开式<sup>[15]</sup>:

$$\ddot{X}_{g}(t) \approx \sum_{n=1}^{N} \sqrt{\lambda_{n}} \xi_{n} f_{n}(t)$$
 (1a)

$$f_n(t) = \sum_{k=1}^{N} \phi_{nk} \varphi_k(t) = \boldsymbol{\Phi}_n^{\mathrm{T}} \boldsymbol{\psi}(t)$$
(1b)

式中: X<sub>g</sub>(t) 为地震动加速度过程; N 为展开项数;

 $\psi(t) = \{\varphi_1(t), \varphi_2(t), \dots, \varphi_N(t)\}^T$ 为区间 [0,*T*] 上标准 三角函数基的前 *N* 个基函数所组成的正交函数集;  $\xi_n$  (*n* = 1, 2, ..., *N*) 为一组标准正交随机变量,满足 如下的基本条件:

 $E[\xi_n] = 0, \quad E[\xi_m \xi_n] = \delta_{mn}$ (2) 其中:  $E[\cdot]$ 为数学期望;  $\delta_{mn}$ 为 Kronecker 记号。

在正交展开式(1)中,特征值 $\lambda_n$  ( $n = 1, 2, \dots, N$ ) 与标准特征向量 $\boldsymbol{\Phi}_n = \{\boldsymbol{\phi}_{n1}, \boldsymbol{\phi}_{n2}, \dots, \boldsymbol{\phi}_{nN}\}^T$ 应按特征值 的大小依次递减排列,且 $\lambda_n 与 \boldsymbol{\Phi}_n$ 由相关矩阵 $\boldsymbol{R}$ 来 计算:

 $\boldsymbol{R}\boldsymbol{\Phi}_{n} = \lambda_{n}\boldsymbol{\Phi}_{n}, \quad \boldsymbol{\Phi}_{m}^{\mathrm{T}}\boldsymbol{\Phi}_{n} = \delta_{mn}$ (3) 而相关矩阵  $\boldsymbol{R} = [r_{ij}]_{N \times N}$  中元素的计算式为<sup>[15]</sup>:

$$r_{ij} = \int_0^T \int_0^T R_{\ddot{X}_g}(t_1, t_2) \varphi_i(t_1) \varphi_j(t_2) dt_1 dt_2 ,$$
  
$$i, j = 1, 2, \cdots, N$$
(4)

式中:  $R_{\ddot{X}_{g}}(t_{1},t_{2}) = E[\ddot{X}_{g}(t_{1})\ddot{X}_{g}(t_{2})]$ 为地震动加速度 过程 $\ddot{X}_{g}(t)$ 的自相关函数; T为地震动的持续时间。

于是,地震动加速度过程模拟的均方相对误差 可表示为<sup>[15]</sup>:

$$\varepsilon(N) = 1 - \frac{\sum_{n=1}^{N} \lambda_n}{\int_0^T R_{\ddot{X}_g}(t,t) dt}$$
(5)

式中,均方相对误差 *ε*(*N*) <<1.0,对于地震动加速 度过程,本文建议其值不宜超过 0.05。

一般地,若直接应用式(1)来模拟地震动加速度 过程,则需要模拟数百上千个标准正交随机变量 *ξ<sub>n</sub>* (*n*=1,2,…,*N*)才能满足所需精度,这必将增加 工程结构随机地震反应分析的难度,尤其是获取地 震反应的概率密度函数。为此,文献[17]提出了随 机函数思想,将正交展开式(1)中的标准正交随机变 量表达为一个基本随机变量的函数形式。

根据文献[17], 假定标准正交随机变量的随机 函数表达式为:

$$\xi_n = \operatorname{cas}(n\Theta), \quad n = 1, 2, \cdots, N$$
 (6)

式中: cas(x) = cos(x) + sin(x)为 Hartley 正交基函数;基本随机变量 $\Theta$ 在区间[ $-\pi,\pi$ ]上均匀分布。可以验证<sup>[17]</sup>,式(6)构造的一组标准正交随机变量满足式(2)的基本条件,且其标准正交随机变量 $\xi_n$  (n=1,2,...,N)是非高斯分布。

此外,利用式(6)中的随机函数形式,还可构造

一组高斯的标准正交(独立)随机变量[16]:

$$\xi_n = \boldsymbol{\varPhi}^{-1} \left[ \frac{1}{2} + \frac{1}{\pi} \arcsin\left(\frac{\cos(n\boldsymbol{\Theta})}{\sqrt{2}}\right) \right], \quad n = 1, 2, \cdots, N$$
(7)

式中, 
$$\Phi^{-1}$$
 为标准高斯随机变量的分布函数  
 $\Phi(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{y} \exp\left(-\frac{t^2}{2}\right) dt$ 的反函数。

# 2 非平稳地震动加速度过程的正交 展开-随机函数模拟

在上述地震动加速度过程的正交展开-随机函数方法中,首先需要由地震动加速度过程的自相关函数来计算相关矩阵 R 的特征值  $\lambda_n$ 和标准特征向量  $\boldsymbol{\Phi}_n$ 。因此,对于非平稳地震动加速度过程,需要由演变功率谱密度函数来计算自相关函数。为简便之,本文仅考虑均匀调制的非平稳地震动过程。

于是,非平稳地震动加速度过程的演变功率谱 密度函数(单边谱)可表示为<sup>[18]</sup>:

$$S_{\ddot{X}_{a}}(t,\omega) = A^{2}(t)S(\omega)$$
(8)

式中: *S*(*ω*) 为平稳地震动加速度过程的功率谱密 度函数; *A*(*t*) 为确定性的强度调制函数, 可取为<sup>[20]</sup>:

$$A(t) = at \exp(-bt) \tag{9}$$

其中:参数 $a = 0.68 \text{ s}^{-1}$ ;  $b = 0.25 \text{ s}^{-1}$ 。

在式(8)中,可取平稳地震动加速度过程的功率 谱密度函数(单边谱)<sup>[20]</sup>:

$$S(\omega) = \frac{\omega_{\rm g}^4 + 4\zeta_{\rm g}^2 \omega_{\rm g}^2 \omega^2}{(\omega^2 - \omega_{\rm g}^2)^2 + 4\zeta_{\rm g}^2 \omega_{\rm g}^2 \omega^2} \cdot \frac{\omega^6}{\omega^6 + \omega_{\rm c}^6} \cdot S_0 \quad (10)$$

式中:  $\omega_{g}$ 和 $\zeta_{g}$ 分别为场地土的固有圆频率和阻尼 比;  $\omega_{c}$ 为低频截止频率;  $S_{0}$ 为谱强度因子,可按 下式计算:

$$S_0 = 2 \times \frac{\overline{a}_{\max}^2}{f^2 \pi \omega_g \left(2\zeta_g + \frac{1}{2\zeta_g}\right)}$$
(11)

其中: $\bar{a}_{max}$ 为随机地震动峰值加速度均值;f为峰值因子。

根据 Wiener-Khintchine 定理, 平稳地震动加速 度过程的自相关函数:

$$R(\tau) = S_0 \pi i \sum_{j=1}^{5} R_j(\tau) , \quad \tau = t_2 - t_1$$
 (12)

式中: i 为虚数单位;  $R_j(\tau)$  ( $j = 1, 2, \dots, 5$ )为:

$$R_{1}(\tau) = \frac{\omega_{g}^{4} + 4\zeta_{g}^{2}\omega_{g}^{2}\omega_{l}^{2}}{(\omega_{l} - \omega_{2})(\omega_{l} - \omega_{3})(\omega_{l} - \omega_{4})} \times \frac{\omega_{l}^{6}}{\omega_{l}^{6} + \omega_{c}^{6}} \exp(i|\tau|\omega_{l})$$
(13a)

$$R_{2}(\tau) = \frac{\omega_{g}^{4} + 4\zeta_{g}^{2}\omega_{g}^{2}\omega_{2}^{2}}{(\omega_{2} - \omega_{1})(\omega_{2} - \omega_{3})(\omega_{2} - \omega_{4})} \times \frac{\omega_{2}^{6}}{\omega_{2}^{6} + \omega_{c}^{6}} \exp(i|\tau|\omega_{2})$$
(13b)

$$R_{3}(\tau) = \frac{\omega_{g}^{4} + 4\zeta_{g}^{2}\omega_{g}^{2}\omega_{5}^{2}}{(\omega_{5}^{2} - \omega_{g}^{2})^{2} + 4\zeta_{g}^{2}\omega_{g}^{2}\omega_{5}^{2}} \times \frac{\omega_{5}^{6}\exp(i|\tau|\omega_{5})}{(\omega_{5} - \omega_{5})(\omega_{5} - \omega_{$$

$$(\omega_5 - \omega_6)(\omega_5 - \omega_7)(\omega_5 - \omega_8)(\omega_5 - \omega_9)(\omega_5 - \omega_{10})$$
  
(13c)

$$R_{4}(\tau) = \frac{\omega_{g}^{*} + 4\zeta_{g}^{*}\omega_{g}^{*}\omega_{6}^{2}}{(\omega_{6}^{2} - \omega_{g}^{2})^{2} + 4\zeta_{g}^{2}\omega_{g}^{2}\omega_{6}^{2}} \times \frac{\omega_{6}^{6}\exp(i|\tau|\omega_{6})}{(\omega_{6} - \omega_{5})(\omega_{6} - \omega_{7})(\omega_{6} - \omega_{8})(\omega_{6} - \omega_{9})(\omega_{6} - \omega_{10})}$$
(13d)

$$R_{5}(\tau) = \frac{\omega_{g}^{4} + 4\zeta_{g}^{2}\omega_{g}^{2}\omega_{7}^{2}}{(\omega_{7}^{2} - \omega_{g}^{2})^{2} + 4\zeta_{g}^{2}\omega_{g}^{2}\omega_{7}^{2}} \times \frac{\omega_{7}^{6}\exp(i|\tau|\omega_{7})}{(\omega_{7} - \omega_{5})(\omega_{7} - \omega_{6})(\omega_{7} - \omega_{8})(\omega_{7} - \omega_{9})(\omega_{7} - \omega_{10})}$$
(13e)

其中:

$$\begin{split} \omega_{1} &= \sqrt{1 - \zeta_{g}^{2}} \, \omega_{g} + \zeta_{g} \omega_{g} \mathbf{i} \; ; \; \omega_{2} = -\sqrt{1 - \zeta_{g}^{2}} \, \omega_{g} + \zeta_{g} \omega_{g} \mathbf{i} \; ; \\ \omega_{3} &= \omega_{1}^{*} \; ; \quad \omega_{4} = \omega_{2}^{*} \; ; \quad \omega_{5} = \omega_{c} \mathbf{i} \; ; \quad \omega_{6} = \frac{\sqrt{3}\omega_{c}}{2} + \frac{\omega_{c}}{2} \mathbf{i} \; ; \\ \omega_{7} &= -\frac{\sqrt{3}\omega_{c}}{2} + \frac{\omega_{c}}{2} \mathbf{i} \; ; \quad \omega_{8} = \omega_{5}^{*} \; ; \; \omega_{9} = \omega_{6}^{*} \; ; \quad \omega_{10} = \omega_{7}^{*} \; ; \\ \tilde{\mathcal{H}} \in " * " \; \bar{\mathcal{K}} \pi \mathrm{R} \pm \mathrm{Im} \, \underline{5} \mathrm{M} \, . \end{split}$$

于是,非平稳地震动加速度过程的自相关函数 为:

$$R_{\ddot{X}_{g}}(t_{1},t_{2}) = A(t_{1})A(t_{2})R(t_{2}-t_{1})$$
(14)

式中,  $R(t_2 - t_1) = R(\tau)$ 为平稳地震动加速度过程的 自相关函数, 即式(12)。

为了便于工程应用,本文采用《建筑抗震设计 规范》来确定非平稳地震动过程的概率模型参数 值。在《建筑抗震设计规范》(GB50011-2010)<sup>[19]</sup>中, 考虑场地类别为 III,设计地震分组为第1组,其特 征周期为 0.45 s, 在罕遇地震时, 其特征周期应为 0.5 s, 结构的阻尼比为 0.05, 抗震设防烈度为 8 度, 设计基本地震加速度为 0.2 g, 其中 g 为重力加速度。 对于上述非平稳地震动加速度过程的概率模型, 参数  $\omega_{\rm g} = 12.0 \text{ rad/s}$ ,  $\zeta_{\rm g} = 0.8$ ,  $\omega_{\rm c} = 2.0 \text{ rad/s}$ , f = 2.7, 设防地震时的峰值加速度均值  $\bar{a}_{\rm max} = 196 \text{ cm/s}^2$ , 罕遇地震时的峰值加速度均值  $\bar{a}_{\rm max} = 400 \text{ cm/s}^2$ 。

为了生成非平稳地震动加速度过程的代表性 样本。首先,将均匀分布的基本随机变量*Θ*在区间 [-π,π]上离散化,其离散代表点的计算公式<sup>[17]</sup>:

 $\theta_k = 0.01(k - 315) + 0.005$ ,  $k = 1, 2, \dots, 628$  (15) 从而,构成一个代表性离散点集  $\{\theta_1, \theta_2, \cdots, \theta_{628}\}$ ,并计算离散代表点的赋得概率  $P_k$  (k = 1, 2, ..., 628), 显然 $\sum_{k=1}^{628} P_k = 1$ 。然后, 将每 一个离散代表点 $\theta_k$  (k = 1, 2, …, 628) 代入标准正交 随机变量的随机函数表达式(6)或式(7)中,得到一组 标准正交随机变量的离散点值。最后,将这组标准 正交随机变量的离散点值代入正交展开式(1)中,即 可生成非平稳地震动加速度过程的一个代表性样 本时程,而代表性样本时程的出现概率即为相应离 散代表点的赋得概率。同时,在地震动过程的正交 展开-随机函数方法中,展开项数N = 600,均方相 对误差 $\varepsilon(N)$ =4.8%,满足误差要求,地震动持续 时间 T=20 s,时间步长  $\Delta t = 0.01$  s。图 1 分别给出 设防地震和罕遇地震作用的非高斯非平稳地震动 加速度过程的代表性样本时程。

图 2 为 628 条地震动代表性样本的总体均值、标准差与目标均值、标准差的比较,从图中可知, 628 条代表性样本的二阶统计值与目标值符合一 致,这表明基本随机变量的离散点数可以满足二阶 统计特性要求。







图 3 为 628 条地震动代表性样本的均值反应谱 曲线与规范反应谱曲线的比较,从图中可知,当结 构的基本周期在(0,2.25] s 时,样本总体的均值反 应谱曲线与规范反应谱曲线的符合程度较好,可以 满足建筑抗震设计要求。





# 3 多自由度 Duffing 系统的随机地震 反应

考察一个具有 Duffing 特性的 8 层剪切型钢筋 混凝土框架结构,底层层高 *h*<sub>1</sub>=5.0 m,其余层高 *h*=4.0 m,如图 4 所示,在随机地震作用下的运动方 程为<sup>[21]</sup>:

 $\ddot{X}_{g}(t)$ 为地震动加速度过程,如式(1)所示,单位为m/s<sup>2</sup>。 *E* 是一个8×8阶的常量矩阵:

$$\boldsymbol{E} = \begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ & & \ddots & & & \\ 0 & \cdots & 0 & -1 & 2 & -1 \\ 0 & \cdots & 0 & 0 & -1 & 1 \end{bmatrix}$$
(17)

在式(16)中,向量*X*、*X*<sup>3</sup>及*G*分别为:

$$\boldsymbol{X} = \begin{cases} \boldsymbol{X}_{1} \\ \boldsymbol{X}_{2} \\ \vdots \\ \boldsymbol{X}_{8} \end{cases}, \quad \boldsymbol{X}^{3} = \begin{cases} \boldsymbol{X}_{1}^{3} \\ \boldsymbol{X}_{2}^{3} \\ \vdots \\ \boldsymbol{X}_{8}^{3} \end{cases}, \quad \boldsymbol{G} = \begin{cases} -1 \\ \vdots \\ -1 \\ -1 \\ -1 \end{cases}$$
(18)

其中: *X<sub>n</sub>*/m(*n*=1,2,···,8)表示第*n*层楼板的相对 位移(相对于地面运动)。



图 4 结构计算简图 Fig.4 The model of structural analysis

对于上述物理上适定的随机动力系统,式(16)的解答是存在且唯一的,而且物理解答是基本随机向量 $\Theta$ 和时间t的函数,即相对位移解答:

$$\boldsymbol{X} = \boldsymbol{X}(\boldsymbol{\Theta}, t) \tag{19}$$

其分量形式可表示为:

$$X = X(\Theta, t) \tag{20}$$

这里,为书写简便,省去了X<sub>n</sub>的下标记号。

根据文献[10]的推导,广义密度演化方程为<sup>[11]</sup>:  
$$\partial p_{X\Theta}(x,\theta,t) + \dot{Y}(\theta,t)$$
;  $\partial p_{X\Theta}(x,\theta,t) = 0$  (21)

$$\frac{1}{\partial t} \frac{X}{\partial t} + X(\theta, t) \cdot \frac{1}{\partial x} = 0 \quad (21)$$

式中:  $p_{X\Theta}(x,\theta,t)$ 为 $(X,\Theta)$ 的联合概率密度函数;  $\dot{X}(\theta,t)$ 为 $\{\Theta = \theta\}$ 条件下X(t)的速度。

于是,在获得联合概率密度函数  $p_{X\Theta}(x,\theta,t)$  的基础上,即可得到分量 X(t) 的概率密度函数:

$$p_X(x,t) = \int_{\Omega_{\Theta}} p_{X\Theta}(x,\theta,t) \mathrm{d}\theta \qquad (22)$$

式中, $\Omega_{\Theta}$ 为 $\Theta$ 的分布空间。

图 5 为设防地震作用下的顶层相对位移反应的 概率信息,其中图 5(a)为地震反应的均值与标准差, 图 5(b)为典型时刻的概率密度函数。图 6 为罕遇地 震作用下的顶层相对位移反应的概率信息,其中图 6(a)为均值与标准差,图 6(b)为典型时刻的概率密 度函数。对比图 5(a)和图 6(a)可知,罕遇地震作用 下的最大反应均值约是设防地震的 4.5 倍,而最大 反应标准差约是设防地震的 2 倍。对比图 5(b)和图 6(b)可知,在罕遇地震作用下,不同时刻地震反应 的概率密度函数变化明显,表明罕遇地震作用下反 应的随机性更为显著。









Fig.6 The probabilistic information of the top floor displacement response under rare earthquake

## 4 多自由度 Duffing 系统的抗震 可靠度分析

#### 4.1 单一失效准则下的抗震可靠度

单一失效准则是指以框架结构中某一层的层间位移角超过限值[ø<sub>p</sub>],即认为结构失效:

 $R_{T,k} = \Pr\{|\Delta X_k(t)| / h_k < [\phi_p], t \in [0,T]\}$  (23) 式中:  $R_{T,k}$ 是第 k 层层间位移角的抗震可靠度;  $|\Delta X_k(t)|$ 是第 (k-1) 层与第 k 层的层间位移,其中 基底为第 0 层;  $h_k$ 是第 k 层的层间高度;  $[\phi_p]$ 是层 间位移角限值; T 为地震动的持续时间。

于是,构造每一层层间位移角的极值事件[14]:

$$\overline{X}_{k,\max} = \max_{t \in [0,T]} \left[ \left| \Delta X_k(t) \right| / h_k \right]$$
(24)

显然,式(23)可改写为:

$$R_{\mathrm{T},k} = \Pr\left\{\overline{X}_{k,\mathrm{max}} < [\phi_{\mathrm{p}}]\right\}$$
(25)

应用概率密度演化方法与等价极值事件思想<sup>[14]</sup>,在单一失效准则下,可以方便地计算剪切型 框架结构的抗震可靠度。

#### 4.2 结构整体抗震可靠度

结构整体失效准则是指在结构的所有层中只要某一层层间位移角超过限值[ø<sub>p</sub>],即认为结构 失效:

$$R_{\mathrm{T}} = \Pr\left\{\bigcap_{k=1}^{8} \left(\left|\Delta X_{k}(t)\right| / h_{k} < [\phi_{\mathrm{p}}]\right), \ t \in [0,T]\right\} (26)$$

根据等价极值事件思想<sup>[14]</sup>,可构造其等价极值 事件为:

$$\overline{X}_{\max} = \max_{1 \le k \le 8} [\overline{X}_{k,\max}]$$
(27)

于是,式(26)的等价形式可表示为:

$$R_{\rm T} = \Pr\left\{\overline{X}_{\rm max} < [\phi_{\rm p}]\right\} \tag{28}$$

应用概率密度演化理论,可以计算等价极值事件  $\overline{X}_{max}$  的概率密度函数及其累积分布函数,其中图 7 仅给出了设防地震和罕遇地震作用下框架结构的 等价极值事件的累积分布函数,根据累积分布函数 即可获得给定限值  $[\phi_n]$ 下的结构整体抗震可靠度。

从图 7 可知,当框架结构在设防地震作用下的整体 抗震可靠度刚好达到 1.0(即完全可靠)时,则对应的 层间位移角限值 [*ϕ*<sub>p</sub>]为 0.019,此时,框架结构在罕 遇地震作用下的整体抗震可靠度却为 0.6705。这表 明,即使框架结构在设防地震作用下是完全可靠 的,但在罕遇地震作用下结构整体失效的可能性却 高达 32.95 %。







结构抗震可靠度。

| 表 1  | 8 层框架结构的抗震可靠度         |
|------|-----------------------|
| 12 1 | 0 広性木 知 例 加 加 辰 引 非 反 |

 Table 1
 The seismic reliability of the multi-storey frame structure

|      | 层间位移角限值 [ <b>ø</b> <sub>p</sub> ] |        |        |        |  |
|------|-----------------------------------|--------|--------|--------|--|
| 失效准则 | 设防地震                              |        | 罕遇地震   |        |  |
|      | 1/50                              | 1/100  | 1/50   | 1/100  |  |
| 第1层  | 1.0000                            | 0.9366 | 0.7078 | 0.2893 |  |
| 第2层  | 1.0000                            | 0.9398 | 0.8427 | 0.2835 |  |
| 第3层  | 1.0000                            | 0.9796 | 0.9327 | 0.4528 |  |
| 第4层  | 1.0000                            | 0.9980 | 0.9874 | 0.5912 |  |
| 第5层  | 1.0000                            | 1.0000 | 1.0000 | 0.7033 |  |
| 第6层  | 1.0000                            | 1.0000 | 1.0000 | 0.8140 |  |
| 第7层  | 1.0000                            | 1.0000 | 1.0000 | 0.7693 |  |
| 第8层  | 1.0000                            | 1.0000 | 1.0000 | 0.9234 |  |
| 结构整体 | 1.0000                            | 0.9357 | 0.7078 | 0.2752 |  |

从表1可知,当层间位移角限值[ø<sub>p</sub>]=1/50时, 按照结构整体失效准则计算的抗震可靠度与按单 一失效准则计算的抗震可靠度相同,这表明结构整 体抗震可靠度与最弱链假设下的结构抗震可靠度 等价,所谓最弱链假设是指按单一失效准则计算的 最小抗震可靠度即为结构整体抗震可靠度。当层间 位移角限值[ø<sub>p</sub>]=1/100时,按照结构整体失效准则 计算的抗震可靠度比按单一失效准则计算的抗震 可靠度小,这表明结构整体抗震可靠度与最弱链假 设下的结构抗震可靠度并不等价。事实上,仅在各 个基本失效事件完全相关时,两者才是等价的。可 见,层间位移角限值越大,各基本失效事件趋于完 全相关,此时结构整体抗震可靠度与最弱链假设下 的结构抗震可靠度趋于一致。

#### 5 结论

应用随机过程的正交展开-随机函数方法,根据 国家《建筑抗震设计规范》(GB50011-2010),建立 了建筑抗震设计所用地震动过程的概率模型。同 时,结合概率密度演化理论,进行了多自由度 Duffing 系统的随机地震反应分析与抗震可靠度计 算。研究表明,本文方法具有如下特点:

(1) 非平稳地震动过程的正交展开-随机函数 方法较全面地反映了地震动的时域特性和频域特 性,如:强度非平稳性、持续时间、场地类别、地 震动峰值加速度、功率谱、反应谱。同时,模型参 数值能方便地由国家《建筑抗震设计规范》 (GB50011-2010)来确定。

(2) 非平稳地震动过程的正交展开-随机函数 方法可直接获取建筑抗震设计所用地震动的代表 性样本集合,进而能与最新发展的概率密度演化理 论相结合,可实现复杂工程结构的随机地震反应和 抗震可靠度的精细化分析。

#### 参考文献:

- [1] 李桂青,曹宏,李秋胜.结构动力可靠性理论及其应用[M].北京:地震出版社,1993:48-52.
  Li Guiqing, Cao Hong, Li Qiusheng. Structural dynamic reliability theory and its application [M]. Beijing: Seismological Press, 1993:48-52. (in Chinese)
- [2] 杨伟军,张振浩.基于连续 Markov 过程首超时间概率 分析的结构动力可靠性研究[J].工程力学,2011,28(7): 124-129.

Yang Weijun, Zhang Zhenhao. Structural dynamic reliability study based on the probability analysis of

first-passage time of continuous markov process [J]. Engineering Mechanics, 2011, 28(7): 124 - 129. (in Chinese)

- [3] Vanmarcke E H. Properties of spectral moments with applications to random vibration [J]. Journal of the Engineering Mechanics Division, ASCE, 1972, 98(EM2): 425-446.
- [4] Zhu W Q. Nonlinear stochastic dynamics and control in Hamiltonian formulation [J]. Applied Mechanics Reviews, 2006, 59(4): 230–248.
- [5] Goller B, Pradlwarter H J, Schuëller G I. Reliability assessment in structural dynamics [J]. Journal of Sound and Vibration, 2013, 332(10): 2488-2499.
- [6] Rubinstein R Y. Simulation and the monte carlo method[M]. New York: John Wiley & Sons, 1981: 119-160.
- [7] Au S K, Ching J, Beck J L. Application of subset simulation methods to reliability benchmark problems [J]. Structural Safety, 2007, 29(3): 183–193.
- [8] 徐瑞,张加兴,苏成.非平稳随机激励下结构动力可 靠度时域显式子集模拟法[J].工程力学,2013,30(7): 28-33.

Xu Rui, Zhang Jiaxing, Su Cheng. Time-domain explicit formulation subset simulation method for dynamic reliability of structures subjected to non-stationary random excitations [J]. Engineering Mechanics, 2013, 30(7): 28–33. (in Chinese)

- [9] 黄宏伟,陈建兵,何军,等. 工程结构可靠性与全过程风险控制[R].北京:中国建筑工业出版社,2011.
   Huang Hongwei, Chen Jianbing, He Jun, et al. Reliability of engineering structure and the whole process of risk control [R]. Beijing: China Architecture & Building Press, 2011. (in Chinese)
- [10] Li Jie, Chen Jianbing. Stochastic dynamics of structures
   [M]. Singapore: John Wiley & Sons Pte Ltd, 2009: 191-229.
- [11] 李杰,陈建兵.随机动力系统中的概率密度演化方程 及其研究进展[J].力学进展,2010,40(2):170-188.
  Li Jie, Chen Jianbing. Advances in the research on probability density evolution equations of stochastic dynamical systems [J]. Advances in Mechanics, 2010, 40(2):170-188. (in Chinese)
- [12] 陈建兵,李杰. 结构随机地震反应与可靠度的概率密 度演化分析研究进展[J]. 工程力学, 2014, 31(4): 1-9.
  Chen Jianbing, Li Jie. Probability density evolution' method for stochastic seismic response and reliability of structures [J]. Engineering Mechanics, 2014, 31(4): 1-9. (in Chinese)

- [13] Chen J B, Li J. The extreme value distribution and dynamic reliability analysis of nonlinear structures with uncertain parameters [J]. Structural Safety, 2007, 29(2): 77-93.
- [14] Li J, Chen J B, Fan W L. The equivalent extreme-value event and evaluation of the structural system reliability
   [J]. Structural Safety, 2007, 29(2): 112-131.
- [15] 李杰,刘章军.基于标准正交基的随机过程展开法[J]. 同济大学学报(自然科学版),2006,34(10):1279-1283.

Li Jie, Liu Zhangjun. Expansion method of stochastic processes based on normalized orthogonal bases [J]. Journal of Tongji University (Natural Science), 2006, 34(10): 1279–1283. (in Chinese)

- [16] 汤保新. 单源随机向量及其在随机分析中的应用[J]. 工程力学, 2012, 29(12): 51-55.
  Tang Baoxin. Monophyletic random vector and its application in stochastic analysis [J]. Engineering Mechanics, 2012, 29(12): 51-55. (in Chinese)
- [17] 刘章军,万勇,镇斌. 平稳地震动过程的正交展开-随机函数模型[J]. 应用基础与工程科学学报,2014,22(2): 199-208.
   Liu Zhangjun, Wan Yong, Zhen Bin. Simulation of

stationary ground motion processes: hybrid orthogonal expansion and random function approach [J]. Journal of Basic Science and Engineering, 2014, 22(2): 199–208. (in Chinese)

- [18] 刘章军,曾波,周宜红,等.地震动过程的概率模型及 在重力坝抗震可靠度分析中的应用[J].水利学报, 2014,45(9):1066-1074.
  Liu Zhangjun, Zeng Bo, Zhou Yihong, et al. Probabilistic model of ground motion processes and seismic dynamic reliability analysis of the gravity dam [J]. Journal of Hydraulic Engineering, 2014, 45(9): 1066-1074. (in Chinese)
- [19] GB50011-2010, 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010.
  GB50011-2010, Code for seismic design of buildings [S].
  Beijing: China Architecture & Building Press, 2010. (in Chinese)
- [20] 胡聿贤. 地震工程学[M]. 北京: 地震出版社, 1988: 235-240.

Hu Yuxian. Earthquake engineering [M]. Beijing: Seismological Press, 1988: 235–240. (in Chinese)

[21] Vasta M, Schuëller G I. Phase space reduction in stochastic dynamics [J]. Journal of Engineering Mechanics, 2000, 126(6): 626-632.