DOI:10.13671/j.hjkxxb.2014.1027

吴绽蕾,王东启,李杨杰,等.2015.长江口崇明东滩海三棱藨草对沉积物有机碳库的贡献研究[J].环境科学学报,35(11):3639-3646 Wu Z L, Wang D Q, Li Y J, et al. 2015. The contribution of Scirpus mariqueter to sediment carbon storage of Chongming East Tidal Flat wetland in Yangtze River Estuary[J]. Acta Scientiae Circumstantiae, 35(11):3639-3646

长江口崇明东滩海三棱藨草对沉积物有机碳库的贡 献研究

吴绽蕾1,王东启1,*,李杨杰1,常思琦1,胡泓1,王军1,王初2,陈振楼1

华东师范大学地理科学学院,地理信息科学教育部重点实验室,上海 200241
上海师范大学旅游学院地理系,上海 200234
收稿日期:2014-10-11 修回日期:2014-12-02 录用日期:2014-12-03

摘要:湿地植被通过光合作用、埋藏分解等方式将有机碳输送至沉积物中,为了探究植被对于湿地沉积物有机碳库的贡献率,本文使用埋管与 长石粉样方两种手段,以崇明东滩为例,定量估算了海三棱藨草植被对潮滩沉积物有机碳库的贡献率.埋管研究显示,不同温度下死亡植被分 解输入和沉积物呼吸降解过程的差异是造成沉积物中冬夏两季有机碳含量差异明显的主要原因.冬末时节埋管沉积物有机碳平均含量为 5.72 mg·g⁻¹,碳库呈"积累"状态;夏季含量减少为 4.89 mg·g⁻¹,碳库呈"亏损"状态.海三棱藨草死亡、倒伏和掩埋,使得沉积物有机碳含量剖面出现 显著分层,埋管样品中分层间隔为 10 cm 左右,与长石粉样方测研究区域当年沉积速率相对应(11.6 cm·a⁻¹:2012 年 8 月 28 日—2013 年 9 月 2 日).沉积物有机碳含量与δ¹³C值的显著负相关性(p<0.01)表明,植被输入有机碳的累积和降解是沉积物碳库动态变化的主要因素.忽略有机 质降解中碳的分馏作用下,根据碳同位素质量平衡混合模型,计算得出春夏季植被有机碳净输入为 0.65 mg·g⁻¹,约占沉积物有机碳库含量的 7.35%,秋冬季节植被有机碳净输入为 2.06 mg·g⁻¹,约为占有机碳库含量的 31.20%.

关键词:湿地植被;贡献率;埋管;长石粉;δ¹³C

文章编号:0253-2468(2015)11-3639-08 中图分类号:X522 文献标识码:A

The contribution of *Scirpus mariqueter* to sediment carbon storage of Chongming East Tidal Flat wetland in Yangtze River Estuary

WU Zhanlei¹, WANG Dongqi^{1,*}, LI Yangjie¹, CHANG Siqi¹, HU Hong¹, WANG Jun¹, WANG Chu², CHEN Zhenlou¹

1. Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographical Sciences, East China Normal University, Shanghai 200241

2. Department of Geography, School of tourism, Shanghai Normal University, Shanghai 200234

Received 11 October 2014; received in revised form 2 December 2014; accepted 3 December 2014

Abstract: Marsh plants capture the carbon from atmosphere by photosynthesis to create carbohydrates which could be imported into the soil as organic matter. Assessment of carbon stocks in marsh plant and allochthonous terrigenous particle settlements is a basic step in evaluating the carbon sequestration potential of the wetland ecosystem. By using the feldspar marker horizons and pipe bury method, the contribution of *Scirpus mariqueter* to the organic carbon storage of Chongming east tidal flat wetland sediment was calculated. Results show that buried plants decomposition and sediments respiration in different temperatures are the key factors which cause the significant difference in the sediment organic carbon contents in summer and winter. In buried pipe, organic carbon accumulated in winter, and its' content reached 5.72 $mg \cdot g^{-1}$. Winter is the "carbon accumulating" period of the sediment organic

作者简介:吴绽蕾(1989—),女,E-mail: wzlelsa@126.com; * 通讯作者(责任作者), E-mail: dqwang@geo.ecnu.edu.cn

Biography: WU Zhanlei(1989-), female, E-mail: wzlelsa@126.com; * Corresponding author, E-mail: dqwang@geo.ecnu.edu.cn

基金项目:国家自然科学基金(No. 41473094,40903049);科技基础性工作专项(No.2014FY210600);上海市自然科学基金项目(No. 14ZR1412100);中央高校基本科研业务费专项资金资助

Supported by the National Natural Science Foundation of China (No. 41473094, 40903049), the Special Project of the Ministry of Science and Technology (No. 2014FY210600), the Natural Science Foundation of Shanghai (No. 14ZR1412100) and the Fundamental Research Funds for the Central Universities

carbon pool. However, in summer, sediment carbon content decreased to 4.89 mg·g⁻¹ in the buried pipe, which is a "carbon losing" period. The organic carbon content in the buried pipe sediment profiles showed significant variation due to the decomposing of dead and buried *S. mariqueter* and the microbe respiration in sediment. The internal distance between the organic carbon accumulation layer is about 10 cm, which was corresponding to the short-term (≤ 1 year) marsh accumulation rate (11.6 cm·a⁻¹, from August 28th, 2012 to September 2th, 2013) measured by feldspar marker horizons. The significant negative correlation (p<0.01) between the buried pipe sediment organic carbon and the δ^{13} C contents suggests that the organic carbon dynamic in sediment, accumulation and degradation, was affected by the plant inputs, and the organic carbon from *S. mariqueter* decomposition is the main portion of the sediment organic carbon pool was estimated by using the reference on a simple two component mixing equation. Net input of organic carbon from *S. mariqueter* into the sediments was about 0.65 mg·g⁻¹ in half summer year and 2.06 mg·g⁻¹ in half winter year, account for 7.35% and 31.20% to the sediments carbon pool respectively.

Keywords: marsh plant; contribution; buried pipe; feldspar marker; δ^{13} C

1 引言(Introduction)

湿地是陆地生物碳库中最大的组成部分 (Chmura et al., 2003),作为联系海洋与陆地系统的 过渡地带,在物理、化学和生物等过程的耦合作用 下,引起海源、陆源有机质在河口及滨岸带积累储 存(Thornton and Manus, 1994),其碳封存效率为各 生态系统中最高(Hopkinson et al., 2012). 沉积物有 机质来源于植被、输沙沉降.植被通过光合作用捕捉 大气中的 CO₂(Ouyang and Lee, 2013),伴随植被调 落及植株倒伏死亡,将有机质输入沉积物(Bouillon et al., 2000).此外河口和海岸带湿地植被还通过改 变水动力,加速沉积(Madsen et al., 2001),提高了 有机碳埋藏效率.如在沿海沉积物的研究中发现,红 树林、海草区域沉积物有机碳含量明显高于无植被 地区(Kennedy et al., 2004), de Kovel 等在对于流动 沙地原生演替的过程中发现,伴随植被演替,土壤 碳储量增加(de Kovel et al., 2000).

20世纪 50 年代初 Craig 在研究中首次发现不 同来源的有机质可能具有不同的 δ^{13} C值(Craig, 1953),而后更多学者证实,不同来源的有机质在同 位素组成特征方面确实存在明显差异(Peterson *et al.*, 1999).碳稳定同位素的化学性质相对保守, ¹³C在分解过程中可以保持相对稳定,因此 δ^{13} C可提 供较为可靠的物源信息(Graham *et al.*, 2001; Goñi *et al.*, 2003),在追溯有机质来源方面具有一定优势 (Middleburg *et al.*, 1998; Graham *et al.*, 2001),可 应用于海岸带湿地有机碳来源研究.研究显示,陆源 有机质 δ^{13} C值较低,海源有机质 δ^{13} C值介于 -26% ~ 28% 间,海源 δ^{13} C值为-19% ~ 22% (Fontugne *et al.*, 1987).依据此,Bouillon 等得出潮间带红树林系统 δ^{13} C的范围在-29.4% ~ -20.6% 之间,证明了其源于 海洋与陆地的共同输入(Bouillon *et al.*, 2003). Schelde河口沉积物中δ¹³C值介于-26.3‰~-28.9‰ 间,说明其有机质主要为陆源输入(Middleburg *et al.*, 1998).但上述文献只是通过数值类比得到的 定性评价,缺乏定量估算.

长江口作为超大型多泥沙浑浊河口,海陆交互 作用强烈.入海径流每年携带巨量泥沙进入河口,大 量有机质在河口区沉降汇聚并埋藏,形成了一个庞 大的有机质蓄积库(Milliman et al., 1984).长江河 口悬浮颗粒物有机碳δ¹³C值显示,枯水期源于河源、 海源有机碳:丰水期则显示了陆源有机碳的支配地 位(Tan et al., 1991). Wu 等在对于长江口悬浮颗粒 物溯源的研究中发现,长江口悬浮颗粒物有机质主 要源于土壤,淡水浮游植物对其有机物贡献很小 (Wu et al., 2007),吴莹等对长江河口悬浮颗粒物稳 定碳同位素进行了研究,结果显示,稳定碳同位素 值变动幅度不大,介于-23.6%~-27.1%。之间,体现 了区域陆源有机质和水生植物输入贡献的混合(吴 莹等, 2002).余婕等对长江口潮滩悬浮颗粒物与表 层沉积物的研究中发现,表层沉积有机质稳定碳同 位素值季节差异小,其主要源于悬浮颗粒物的沉降 (余婕等, 2008).Chen 等对于崇明东滩盐沼沉积物 的研究中得出,夏季(7、8月份)高温,沉积物矿化分 解速率较高,沉积物碳库容量减少,进入10月,海三 棱藨草的枯萎倒伏则显著增加了沉积物表层有机 碳的含量(Chen et al., 2005).虽然湿地植被与外源 来沙在对沉积物有机碳库输入方面所扮演的重要 角色已得到印证,但其对于碳库的具体贡献率并未 得到明确评估与量化.鉴于此,本文选择长江河口崇 明东滩作为研究区域,采用长石粉标记与埋管方 法,结合碳同位素数据,对外源颗粒物输入和本地 植被输入碳素在湿地沉积物碳库所占比例进行了 定量估算.

2 材料与方法(Materials and methods)

2.1 研究区域环境概况

长江是中国最大的河流,也是世界第三大河流 (Yang, 1998).自长江三峡水库建成运用后,来自上 游的泥沙滞留于库区,出库泥沙量减少.依据大通水 文站水沙过程监测资料,三峡水库蓄水前(1953-2002年)多年平均径流量为9011亿m³、多年平均 输沙量为 4.27 亿 t; 蓄水后(2003—2011 年) 多年平 均径流量为 8121 亿 m³、多年平均输沙量为 1.43 亿 t,年平均输沙量减少了66.51%,但输沙量依旧可观. 其中,6月—10月为长江下游径流输沙的主要时期 (沈焕庭, 2001).崇明东滩位于长江河口崇明岛以 东,向东海方向伸展.由长江径流夹带的巨量泥沙在 江海的相互作用下沉积而成,为长江口规模最大, 发育最为完善的河口型潮汐滩涂湿地,属淡咸水交 汇地带.湿地植被海三棱藨草(Scirpus mariqueter)为 我国滩涂盐沼植被的特有种,也是长江口淤涨型潮 滩的典型盐沼先锋植物,球茎与匍匐根状茎并存, 根系发达(Frid and James, 1989).一般四月末发芽, 十一月初期死亡(Wang et al., 2009),具有促淤功 能.长江口是国内海三棱藨草分布面积最大的区域 (陈家宽, 2003).近年来由于中低潮滩的过度围垦 与外来植被的入侵,海三棱藨草的面积已由 2003 年 的 7602.24 hm²下降至 2008 年的 4234.7 hm²(黄华 梅,2009).其在崇明东滩、九段沙、南汇、长兴岛和 横沙岛均有分布.其九段沙沙洲的发育和盐沼植被 的演替受人为影响相对较小,植被的演替发育基本 上处于自然状态,目前是海三棱藨草最大分布区.

图1 研究区域位置示意图

Fig.1 Sketch map of the sampling area

2.2 样品采集与预处理方法

2.2.1 埋管沉积物采集 2011 年 3 月将 18 根 25 cm 长 PVC 管插入海三棱藨草生长区域, PVC 管顶 部正好与沉积物表层齐平, 当月采集沉积物柱样 3 根,其后的 4—9 月,每个月都拔除其余 15 根管中的 海三棱藨草植株, 使其中没有植被生长, 只是接受 外来颗粒物沉积.一年后, 分别于 2012 年 3 月、5 月、7 月, 2013 年 3 月、6 月各采集 3 根沉积物柱样.

2.2.2 悬浮颗粒物采集 2011 年在东滩南侧盐沼 边缘海三棱藨草覆盖滩面设立了潮滩涨潮水样采 集站位,分别于2011年1月(冬季)、5月(春季)、9 月(夏季)、11月(秋季)采集潮汐水样,用于获得潮 汐水体颗粒物样品.水样置于聚乙烯瓶中保存,采样 结束后运送回实验室处理.

2.2.3 长石粉标记区域采集 2012 年 8 月 28 日, 使用长石粉在海三棱藨草植被区域设置了一个 1.5 m×1.5 m 样方,于 2013 年 9 月 2 日用直径 11 cm,长 40 cm 的不锈钢钢管采集 25 cm 深柱样.长石粉层至 地表为当年沉积层,直尺测量沉积深度并记录和 拍照.

2.3 样品处理和测试方法

长石粉和埋管柱样样品采集后运送回实验室, 按照1 cm 厚度进行切分,装入聚乙烯袋密封并带称 量湿重.样品风干称量干重,研磨,过100 目尼龙网 筛.过筛后的沉积物分为若干份,置于聚乙烯袋中保 存以备分析.

采集的潮汐水样于室温下用真空过滤器抽滤 过 0.45 µm 微孔滤膜,含颗粒物样品滤膜经 45 ℃恒 温烘干、用不锈钢刮刀刮取悬浮颗粒物样品,秤重 研磨均匀,获得悬沙样品,置于聚乙烯袋内密封 保存.

有机碳含量测定:沉积物与悬浮颗粒物样品的 有机碳含量通过重铬酸钾外加热法获得(Nelson et al., 1996).

碳稳定同位素测定:沉积物与悬浮颗粒物样品 用1 mol·L⁻¹的 HCl 溶液浸泡淋洗多次,除去可能存 在的无机碳,后用超纯水淋洗多次至中性,最后恒 温烘干(Mazumder *et al.*, 2010).碳同位素比用 FinniganMAT公司 DELTA plus/XL 型稳定同位素质 谱仪测定.碳稳定同位素值采用相对于国际标准的 PDB,实验结果分析误差为±0.2×10⁻³.

2.4 数据分析方法

¹²C 与¹³C作为自然界中最常见的碳同位素,其

含量分别占自然界碳素总量的 98.89%与 1.11%(朱 书法等, 2005).稳定碳同位素比值δ¹³C通过被测样 品的同位素比值相对于标准样品的同位素比值的 千分差表示.其计算方法为:

样品中¹³C质量百分含量计算为:

 ${}^{13}C_{\text{Sample}}(\%) = \{ ({}^{13}C/{}^{12}C)_{\text{Standard}} \times [\delta^{13}C_{\text{Sample}}/1000 + 1] \} / \{ 1 + ({}^{13}C/{}^{12}C)_{\text{Standard}} \times [\delta^{13}C_{\text{Sample}}/1000 + 1] \}$ (2)

假定研究区域内有机质主要来源于外源沉降 与本地植被固定两者的混合输入,以及¹³C在有机碳 降解中不发生分馏,即分馏系数等于1,沉积物中有 机碳质量守恒和¹³C质量守恒分别遵循公式(3)和 (4):

$$X = C_{POC} - C_{SOC} + Y$$
(3)
$$X \times {}^{13}C_{POC} = \left[({}^{13}C_{POC} \times C_{POC}) - ({}^{13}C_{SOC} \times C_{SOC}) \right] + {}^{13}C_{POC} \times Y$$
(4)

其中, X 为颗粒物沉降后其有机碳矿化损失量 (mg·g⁻¹); Y 为植被腐烂分解的净有机碳输入量 (mg·g⁻¹); $C_{SOC/POC/PLOC}$ 为沉积物(SOC)/颗粒物 (POC)/植被中(PLOC)有机碳含量(mg·g⁻¹); ¹³ $C_{SOC/POC/PLOC}$ 为沉积物(SOC)/颗粒物(POC)/植被 中(PLOC)中¹³C质量百分含量(%).

3 结果(Results)

3.1 研究区域短期沉积速率确定

长石粉标记方法被用于标记短期(6个月至12 个月)内潮滩的沉积速率,这一方法被国外学者广 泛使用(Howe et al., 2009; Saintilan et al., 2013). 根据观测的长石粉埋藏深度数据(图 2),2012 年 8 月 28 日至 2013 年 9 月 2 日,1 年内研究区域的平均 沉积速率为 11.8 cm·a⁻¹.研究结果与 Yang 等对于最 近两百年长江口潮间带区域沉积速率研究中 10~20 cm 的研究结果类似(Yang et al., 2001).高于 Du 等 运用¹³⁷Cs 技术测定长江口 0.24~0.35 cm·a⁻¹的沉积 速率与放射性核素²¹⁰Pb、¹³⁷Cs 技术、数字高程模型 结合所获得的 1.73~8.30 cm·a⁻¹的长江河口沉积速 率(Du et al., 2006; Wei et al., 2007).究其原因,可 能是地貌原因导致的外源泥沙供应、泥沙沉积分布 区域的差异,以及植被对来沙的高效捕捉等原因加 速了湿地的垂向增长速率(Baustian et al., 2012).

- **图 2 2013 年 9 月 2 日长石粉区域采样剖面图**(使用微距拍摄, 图像两边有些变形)
- Fig.2 Vertical profile of the feldspar marker horizons in September 2th, 2013

3.2 埋管沉积物有机碳含量垂向变化特征

图 3 清楚的显示出海三棱藨草生长和死亡掩埋 过程产生的沉积物有机碳含量垂直剖面分层的现 象.每年秋季(10 月底、11 月初)海三棱藨草死亡后, 地上部分倒伏在地表,被后续沉降的颗粒物掩埋, 形成一个有机碳的富集区域,沉积物有机碳含量垂 向剖面上具有明显的有机碳富集层(图 3).柱样采 集初始时间为 2011 年 3 月,在表层 2010 年秋冬季 节死亡的的海三棱藨草刚刚被掩埋,还未大量分 解;而 15~20 cm 处有机碳富集层对应了前一年度 (2009 年秋冬季节)海三棱死亡掩埋.春季 4 月,海 三棱藨草发芽,促进了泥沙的沉积,在海三棱藨草

埋藏层上堆积了一层颗粒物(5~15 cm),这一层颗 粒物因为埋藏的植被残体主要为海三棱藨草植被 的茎秆部位,植被输入有机碳含量相对较少,有机 碳含量明显低于海三棱藨草残体埋藏层.长石粉样 方数据表明这一区域的沉积速率为 11.6 cm·a⁻¹,验 证了埋管柱样中海三棱藨草的埋藏层深度.

表层海三棱藨草埋藏层在第2年开始出现明显 的植被腐烂、有机碳输入现象,2012年3月沉积物 有机碳含量明显高于 2011 年,然而夏季高温,土壤 呼吸作用加强,植被残体降解初期输入的有机碳为 易降解组分,高温下易降解组分有机碳降解明显; 植被凋落物由易分解组分与难分解组分(木质素、 胡敏酸等)构成(Manzoni et al., 2010),经过再一个 年度的腐烂和分解,易分解组分消耗,木质素、纤维 素等难分解物质浓度上升(Aerts, 1997),相对难降 解的有机碳输入和保存到沉积物中;同时在 2013 年 沉积物上部接受沉积埋藏,沉积物有机碳主要转为 厌氧呼吸,降解速度降低,到 2013 年 3 月、6 月, 2011年沉积物中海三菱藨草死亡掩埋层有机碳累 计明显(图3).沉积物中植被残留物的分解、滞留至 少需要持续 1-3 年的时间(Rustad, 1994).对于底 层 2009 年海三菱藨草死亡埋藏层,其埋藏于 2009 年冬季,2011年和2012年植被残体腐烂输入过程 明显,木质素等的输入可能是导致沉积物有机碳含 量显著增加的主要原因.此后随着土壤中有机碳不 断分解与输入过程的减少,2013年有机碳含量开始 降低.埋管中沉积物有机碳含量的变化表明植被对 于沉积物有机碳的重要作用(McLeod et al., 2011).

4 讨论(Disscussion)

3.1 沉积物有机碳含量与碳稳定同位素相关性 分析

沉积物有机碳含量由有机质输入与降解之间 的平衡决定(Singh and Gupta, 1977),大量的外源颗 粒、植被的死根腐解归还与地表凋落物输入,为沉 积物提供了丰富的碳源(Jobbagy and Jackson, 2002).有机碳累积速率受纬度、潮差、盐沼植被属 性、高程等多方面影响,因此不同区域具有相当大 的差异(Ouyang and Lee, 2013).碳稳定同位素 (^{13}C 、 ^{12}C)的化学性质相对保守,有机碳 $\delta^{13}C$ 可以提 供较可靠的物源信息(Meyers, 1994).研究显示,依 照光合作用方式的不同,植被可分为 C₃、C₄与 CAM 植被(陈华, 2006).长江流域 C₃植被碎屑 $\delta^{13}C$ 平均 值为-27‰(Gordon and Goñi, 2003),有机碳含量为 15%(Goñi *et al.*, 2003).长江中游挺水植物(黄实、 芦苇等)δ¹³C平均值为-25.52‰±2.07‰(黄亮等, 2006).植被δ¹³C值明显高于长江口临近陆架区表层 沉积物δ¹³C值-19.9‰~-22.4‰(杨丽阳等, 2008). 因此,植被输入沉积物有机碳¹³C贫化更低.

图 4 埋管沉积物 δ^{13} C值与 SOC 含量变化的相关性

由图 4 可知,2011 年 3 月到 2013 年 6 月,埋管 沉积物中平均有机碳含量变化与 δ^{13} C值呈显著负相 关($R^2 = 0.45$,p < 0.01),即 SOC 含量越高, δ^{13} C越偏 向负值,说明海三棱藨草盐沼沉积物中有机碳的变 化多为植被输入的有机碳循环.这是由于海三棱藨 草为长江河口湿地特有的典型 C₃植被其 δ^{13} C值介于 -27.2% ~ -29.3% 间(陈华,2006),本研究中测定 的海三棱藨草植株值为-28.3%,明显低于长江口悬 浮颗粒物 δ^{13} C含量范围(-23.6% ~ -27.1%,吴莹等, 2002),因此每当植被输入有机碳超过呼吸分解,净 输入使得沉积物中有机碳的¹³C丰度降低.

4.2 植被输入对沉积物碳库的贡献率分析

研究表明,碳稳定同位素在有机质分解过程中 可以保持相对稳定(Graham *et al.*, 2001; Goñi *et al.*, 2003).虽然有研究表明,有机碳分解时,可能 存在¹³C的分馏过程,但大量的对于陆地生态系统、 森林生态系统土壤有机质分解过程的研究中均未 发现显著的碳同位素分馏现象(Bostrom *et al.*, 2007; Cleveland *et al.*, 2004; Ekblad *et al.*, 2002). 因此在本文研究计算中假设有机质分解中不存在 ¹³C分馏过程,利用不同来源有机质δ¹³C值的差异, 借鉴碳同位素质量平衡混合模型(Thornton and Manus, 1994),计算植被对于沉积物有机碳输入的 贡献率.研究区域不同时段外源颗粒物、表层沉积物、植被的有机碳含量、δ¹³C值见表 1.

表1 悬浮颗粒物、沉积物及植被有关碳同位素质量平衡混合模型 计算的各项相关数据

Table 1 The related data about the mass balance model of carbon stable isotopes in the suspended particle matter, sediment and marsh plant

各项指标 一	指标数值和单位	
	2012年8月—	2013年2月—
	2013 年 2 月	2013年9月
悬浮颗粒物有机碳	12 20	12.61
含量/(mg·g ⁻¹)	15.59	12.01
悬浮颗粒物δ ¹³ C值	-25.10‰	-25.02‰
沉积物有机碳含量/	6.60	8.87
$(mg \cdot g^{-1})$		
沉积物δ ¹³ C值	-25.56‰	-25.12‰
悬浮颗粒物有机碳丢失量/	X	
$(mg \cdot g^{-1})$		
植被输入有机碳含量/	Y	
$(mg \cdot g^{-1})$		
植被δ ¹³ C值	-28.29‰	
国际标准碳稳定同位素标准	0.11237	
物质 PDB(¹³ C/ ¹² C)值		
植被(¹³ C/ ¹² C)值	0.01092	
悬浮颗粒物(¹³ C/ ¹² C)值	0.01096	
沉积物(¹³ C/ ¹² C)值	0.01095	

依据公式(3)和(4),得出整个研究区域内沉积 物有机碳库植被的输入贡献率小于外源来沙输入. 其中,春夏季植被有机碳输入为0.65 mg·g⁻¹,约占 沉积物有机碳库含量的 7.35%, 秋冬季节植被有机 碳输入为 2.06 mg·g⁻¹,约占有碳库含量的31.20%. 结果证明了外源颗粒物沉降埋藏有机碳是长江口 潮滩沉积物碳库的主要来源,但是本地植被的固定 和输入对沉积物碳库容量也有重要的贡献,尤其是 在沉积物碳库循环中,本地植被有机碳输入是被降 解有机碳的主体部分,使得碳库容量得以维持和保 存.对于红树林湿地生态系统的研究中同样有类似 发现,植被碎屑是红树林湿地沉积物碳库的一个重 要补充,但大多数进入沉积物中的植被碎屑输入的 有机碳会被微生物快速降解(Kristensen et al., 2008), 淹水时期, 较新的红树林凋落物会在 10~14 d 间失去接近 40% 的有机碳(Twilley et al., 1997). 其快速降解持续了生态系统的生产力.

若进一步考虑分馏作用及交换机制,由于特定 酶越发青睐较轻的元素,即微生物在对于植被残体 等的有机质分解中会优先利用较轻的碳源,使有机 质中δ¹³C值升高,因此碳同位素分馏效应会造成δ¹³C 值偏大(刘涛泽等, 2008),具体计算仍需进行深入 讨论研究.

5 结论(Conclusions)

1)受外源泥沙供应、泥沙沉积分布区域差异、 植被对来沙的高效捕捉等因素影响,崇明东滩海三 棱藨草区域沉积速率极高,为11.6 cm·a⁻¹(2012 年 8月28日—2013 年9月2日).倒伏死亡植被的埋 藏分解是影响沉积物表层有机碳含量最主要的因 素.海三棱藨草生长期沉积层有机碳含量相对较少, 出现明显间隔层.

2) 埋管沉积物中有机碳含量与δ¹³C值的显著负 相关性(*p*<0.01) 表明植被输入有机碳的累积和降 解是沉积物碳库动态变化的主要因素,即当植被输 入有机碳超过呼吸分解,净输入使得沉积物中有机 碳的¹³C丰度降低.

3)不同季节植被对于沉积物有机碳的贡献率 存在明显差异.春夏季节海三棱藨草输入到沉积物 中有机碳为0.65 mg·g⁻¹,约占沉积物有机碳库含量 的7.35%.秋冬季节植被有机碳输入较高,为2.06 mg·g⁻¹,约为占有机碳库含量的31.20%.

责任作者简介:王东启(1976—),男,博士,副研究员,硕士 生导师,从事地球化学研究,主持和参加国家与省部级项目 10 余项,发表论文 80 篇.

参考文献(References):

- Aerts R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship [J]. Oikos, 79 (3): 439-449
- Baustian J J, Mendelessohn I A, Hester M W. 2012. Vegetation's importance in regulating surface elevation in a coastal salt marsh facing elevated rates of sea level rise[J]. Global Change Biology, 18 (11): 3377-3382
- Bostrom B, Comstedt D, Ekblad A. 2007. Isotope fractionation and ¹³C enrichment in soil profiles during the decomposition of soil organic matter[J]. Ecosystem Ecology, 153(1): 89-98
- Bouillon S, Mohan P C, Sreenivas N, et al. 2000. Sources of suspended organic matter and selective feeding by zooplankton in an estuarine mangrove ecosystem as traced by stable isotopes [J]. Marine Ecology Progress Series, 208: 79-92
- Chen H M, Wang D Q, Chen Z L, et al. 2005. The variation of sediments organic carbon content in Chongming east tidal flat during *Scirpus mariqueter* growing stage [J]. Journal of Geographical

Sciences, 15(4): 500-508

- 陈华. 2006. 长江口滨岸湿地盐生植被对生源要素循环的影响[D]. 上海:华东师范大学
- 陈家宽. 2003. 上海九段沙湿地自然保护区科学考察集[M]. 北京: 科学出版社
- Chmura G L, Anisfeld S C, Cahoon D R, et al. 2003. Global carbon sequestration in tidal, saline wetland soils [J]. Global Biogeochemical Cycles, 17(4): 1-22
- Cleveland C C, Neff J C, Townsend A R, et al. 2004. Composition, dynamics, and fate of leached dissolved organic matter in terrestrial ecosystems: results from a decomposition experiment [J]. Ecosystems, 7(3): 275-285
- de Kovel C G F, van Mierlo A J E M, Wilms Y J O, et al. 2000. Carbon and nitrogen in soil and vegetation at sites differing in successional stage[J]. Plant Ecology, 149(1): 43-45
- Du L, Yi C L, Pan S M, et al. 2006. Sedimentary records of water environment in lake Chaohu in the Yangtze Delta Region, China[J]. Journal of Coastal Research, 32(12): 242-245
- Ekblad A, Nyberg G, Högberg P. 2002. ¹³C-discrimination during microbial respiration of added C₃-, C₄- and ¹³C-labelled sugars to a C₃-forest soil[J]. Oecologia, 131(2): 245-249
- Frid C, James R. 1989. The marine invertebrate fauna of a British coastal salt marsh[J]. Ecography, 12(1): 9-15
- Goñi M A, Maria J T, Perkey D W. 2003. Sources and distribution of organic matter in a river-dominated estuary (Winyah Bay, SC, USA) [J]. Estuarine, Coastal and Shelf Science, 57(5/6): 1023-1048
- Gordon E S, Goñi M A. 2003. Sources and distribution of terrigenous organic matter delivered by the Atchafalaya River to sediments in the northern Gulf of Mexico[J]. Geochimica et Cosmochimica Acta, 67 (13): 2359-2375
- Graham M C, Eaves M A, Farmer J G, et al. 2001. A study of carbon and nitrogen stable isotope and elemental ratios as potential indicators of source and fate of organic matter in sediments of the Forth Estuary, Scotland [J]. Estuarine, Coastal and Shelf Science, 52 (3): 375-380
- Hopkinson C S, Wei J C, Hu X P. 2012. Carbon sequestration in wetland dominated coastal systems-a global sink of rapidly diminishing magnitude [J]. Current Opinion in Environmental Sustainability, 4(2): 186-194
- Howe A J, Rodríguez J F, Saco P M. 2009. Surface evolution and carbon sequestration in disturbed and undisturbed wetland soils of the Hunter estuary, southeast Australia [J]. Estuarine, Coastal and Shelf Science, 84(1): 75-83
- 黄华梅. 2009. 上海滩涂盐沼植被的分布格局和时空动态研究[D]. 上海:华东师范大学
- Jobbagy E G, Jackson R B. 2002. The vertical distribution of soil organic

carbon and its relation to climate and vegetation [J]. Ecological Applications, 10(2): 423-436

- Kennedy H, Beggins J, Duarte C M, et al. 2010. Seagrass sediments as a global carbon sink: isotopic constraints [J]. Global Biogeochemical Cycles, 24(4), doi: 10.1029/2010GB003848
- Kristensen E, Bouillon S, Dittmar T, et al. 2008. Organic carbon dynamics in mangrove ecosystems: A review[J]. Aquatic Botany, 89 (2): 201-219
- 刘涛泽,刘丛强,张伟. 2008. 植被恢复中坡地土壤颗粒有机碳分布 特征和δ¹³C值组成[J]. 生态环境, 17(5); 2031-2036
- Madsen J D, Chambers P A, James W F, et al. 2001. The interaction between water movement, sediment dynamics and submersed macrophytes[J]. Hydrobiologia, 444(1/3): 71-84
- Manzoni S, Trofymow J A, Jackson R B, et al. 2010. Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter[J]. Ecological Monographs, 80(1): 89-106
- Mazumder D, Iles J, Kelleway J, et al. 2010. Effect of acidification on elemental and isotopic compositions of sediment organic matter and macro-invertebrate muscle tissues in food web research [J]. Rapid Communications in Mass Spectrometry, 24(20): 2938-2942
- Mcleod E, Chmura G L, Bouillon S, et al. 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO₂[J]. Frontiers in Ecology and the Environment, 9(10): 552-560
- Meyers P A. 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter [J]. Chemical Geology, 114(3/4): 289-302
- Milliman J D, Xie Q C, Yang Z S. 1984. Transfer of particulate organic carbon and nitrogen from the Yangtze river to the ocean [J]. American Journal of Science, 284(7); 824-834
- Nelson D W, Sommers L E, et al. 1996. Total carbon, organic carbon, and organic matter. Methods of soil analysis. Methods of soil analysis [A].SSSA Book Series 5, Madison, Wisconsin, Soil Science Society of America. 961-1010
- Thornton S F, Manus M J. 1994. Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: Evidence from the Tay Estuary, Scotland [J]. Estuarine, Coastal and Shelf Science, 38 (3): 219-233
- Ouyang X, Lee S Y. 2013. Carbon accumulation rates in salt marsh sediments suggest high carbon storage capacity [J]. Biogeosciences Discuss, 10(12): 19155-19188
- Rustad L E. 1994. Element dynamics along a decay continuum in a red spruce ecosystem in marine, USA[J]. Ecology, 75(4): 867-879
- Saintilan N, Rogers K, Mazumder D, et al. 2013. Allochthonous and autochthonous contributions to carbon accumulation and carbon store

in southeastern Australian coastal wetlands [J]. Estuarine, Coastal and Shelf Science, 128: 84-92

- 沈焕庭. 2001. 长江河口物质通量[M]. 北京:海洋出版社
- Singh J S, Gupta S R. 1977. Plant decomposition and soil respiration in terrestrial ecosystems [J]. The Botanical Review, 43(4): 449-528
- Tan F C, Cai D L, Edmond J M. 1991. Carbon isotope geochemistry of the Changjiang estuary[J]. Estuarine, Coastal and Shelf Science, 32 (4): 395-403
- Wang D Q, Chen Z L, Xu S Y. 2009. Methane emission from Yangtze estuarine wetland, China[J]. Journal of Geophysical Research, 114 (G2); G02011; doi: 10.1029/2008JG000857
- Wei T Y, Chen Z Y, Duan L Y, et al. 2007. Sedimentation rates in relation to sedimentary processes of the Yangtze Estuary, China[J]. Estuarine, Coastal and Shelf Science, 71(1/2): 37-46
- Wu Y, Zhang J, Liu D J, et al. 2007. Sources and distribution of carbon within the Yangtze River system [J]. Estuarine, Coastal and Shelf

Science, 71(1/2): 13-25

- 吴莹, 张经, 张再峰, 等. 2002. 长江悬浮颗粒物中稳定碳、氮同位素的季节分布[J]. 海洋与湖沼, 33(5): 546-552
- 杨丽阳,吴莹,张经,等.2008.长江口邻近陆架区表层沉积物的木 质素分布和有机物来源分析[J].海洋学报,30(5):35-42
- Yang S L.1998. The role of *scirpus* marsh in attenuation of hydrodynamics and retention of fine sediment in the Yangtze Estuary [J]. Estuarine, Coastal and Shelf Science, 47(2): 227-233
- Yang S L, Ding P X, Chen S L. 2001. Changes in progradation rate of the tidal flats at the mouth of the Changjiang (Yangtze) River, China [J]. Geomorphology, 38(1/2): 167-180
- 余婕, 刘敏, 许世远, 等. 2008. 长江口潮滩有机质稳定碳同位素时 空分布与来源分析[J]. 地理研究, 27(4): 847-854
- 朱书法,刘丛强,陶发祥.2005.δ¹³C方法在土壤有机质研究中的应 用[J].土壤学报,42(3):495-503