天然气地球化学

doi:10.11764/j.issn.1672-1926.2015.09.1814

塔里木盆地哈拉哈塘凹陷奥陶系原油 C₅--C7 轻烃全二维气相色谱与常规色谱对比分析

王亚鹏¹,常象春¹,程 斌²,师生宝²

(1. 山东科技大学沉积成矿作用与沉积矿产山东省重点实验室,山东 青岛 266590;

2. 中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249)

摘要:对塔里木盆地哈拉哈塘凹陷11个奥陶系原油样品进行了全二维色谱和常规气相色谱对比分析,研究结果表明哈拉哈塘原油反映了成熟—高成熟特征,属于典型海相原油,其源岩沉积于微 咸—咸水还原环境,母源类型一致。相对于一维气相色谱,全二维色谱所求庚烷值和异庚烷值降 低、C7 轻烃中链烷烃相对含量下降,而环烷烃相对含量上升。C6 轻烃和 Mango 参数对比良好。由 于原油直接进样分析不存在前处理过程,加上较高的分离能力,原油全二维直接进样分析结果反映 了更为准确的地质信息。

关键词:全二维色谱;常规色谱; C_5 — C_7 轻烃;哈拉哈塘凹陷;原油

中图分类号:TE122.1⁺13 文献标志码:A 文章编号:1672-1926(2015)09-1814-09 引用格式:Wang Yapeng,Chang Xiangchun,Cheng Bin,*et al*. Comparison of C_5 - C_7 light hydrocarbons in Halahatang Ordovi-cian Oil analyzed by comprehensive 2-D and conventional gas chromatography[J]. Natural Gas Geoscience,2015,26(9):1814-1822. [王亚鹏,常象春,程斌,等. 塔里木 盆地哈拉哈塘凹陷奧陶系原油 C_5 — C_7 轻烃全二维气相色谱与常规色谱对比分析[J]. 天然气地球 科学,2015,26(9):1814-1822.]

0 引言

轻烃组分作为原油的重要组成,蕴藏着大量的 地质地球化学信息。轻烃研究在石油勘探开发中已 经取得了大量研究成果。由于原油在成藏演化中遭 受物理、化学、生物过程等因素影响,传统一维色谱 技术在分析原油样品时,个别化合物难以做到完全 分离,进而产生共流出峰,对化合物的定性定量造成 了困难。20世纪90年代发展起来一种全二维气相 色谱(GC×GC)技术,它是多维色谱的一种,其利用 2根互相独立的色谱柱,通过一个调制器以串联方 式连接,按照化合物沸点不同,在第一根色谱柱中进 行一级分离,然后在液氮热调制器中聚焦,以脉冲升 温方式进入第二根柱子,达到正交分离的目的,在峰 容量、分辨率和灵敏度上都有较大提高。该技术已 广泛应用于烟草、中草药、酿酒、食品、石油化工和环 境分析等领域^[1],但在石油勘探开发研究中仍处于 探索阶段^[2]。本文对塔里木盆地塔北隆起哈拉哈塘 凹陷奥陶系 11 个原油样品进行了 C₅—C₇ 轻烃组分 的全二维色谱及常规气相色谱分析,对 2 组地球化 学参数进行了系统对比,以探讨全二维气相色谱分 析在石油地质样品分析中的应用意义。

1 地质背景

哈拉哈塘凹陷位于塔里木盆地塔北隆起中部南 斜坡,面积约为4000km²,四周被轮南低凸起、英买

收稿日期:2014-12-22;修回日期:2015-03-11.

基金项目:国家自然科学基金项目(编号:41272139);山东省自然科学杰出青年基金项目(编号:JQ201311);山东科技大学科技计划项目 (编号:2012KYJQ101)联合资助.

作者简介:王亚鹏(1990-),男,山东东营人,硕士研究生,主要从事油气地球化学研究. E-mail:wangyapeng91@163.com.

通讯作者:常象春(1974-),男,陕西绥德人,教授,博士,主要从事油气地质与地球化学研究. E-mail:xcchang@sina.com.

力低凸起、满加尔凹陷和轮台低凸起所围(图 1)。 其现今地质构造形态为晚加里东一早海西、晚海西 和印支期多期构造事件叠合作用结果。晚加里东晚 期,由于区域不均衡构造抬升,使哈拉哈塘地区 EW 向形成一大型南倾斜坡;早海西期 NW—SE 向挤压 运动形成 NE—SW 走向轮南背斜,寒武系盐岩的挤 压隆起发育英买力低凸起,两者之间形成哈拉哈塘 凹陷雏形,地层在正常沉积中慢慢发育成南高北低

沉积特征,形成如今的哈拉哈塘凹陷^[3]。下奥陶统 鹰山组——间房组经历了多期岩溶叠加改造,有着 良好的岩溶缝洞体储集空间,是奥陶系主要的含油 层段。前人^[4-5]研究表明,哈拉哈塘凹陷奥陶系油藏 是早期充注的原油遭受强烈生物降解后,与后期充 注的正常原油的混合,故使轻烃组成仅能揭示晚期 正常原油的地质地球化学信息。

2 样品与实验

本文实验所用原油样品均采自哈拉哈塘奥陶系

一间房组(O₂ y_i)。全二维气相色谱分析仪为美国 LECO 公司全二维气相色谱/飞行时间质谱联用仪, 由 Agilent 7890 气相色谱仪和 Leco 公司的 Pegasus4D 组成,具 CTC Combi Pal 型自动进样器,原油 直接进样,进样量为 0.5µL。一维色谱柱为 Petro 柱(50m×0.2mm×0.5µm);二维色谱柱为DB17-HT 柱(3m×0.1mm×0.1μm)。进样方式为分流 进样,分流比700:1,载气为氦气,流速为 1.8mL/min,进样口温度为 300℃,一维柱 35℃ (10min)后以0.5℃/min速率升至60℃(0.2min),再 以 2℃/min 速率升至 220℃(0. 2min), 然后再以 4℃/min 速率升温至 300℃ 恒温 5min。二维柱 55℃ (10min) 后 以 0.5℃/min 速 率 升 至 80℃ (0.2min),再以 2℃/min 速率升至 240℃(0.2min), 然后再以 4℃/min 速率升温至 320℃并恒温 5min。 谱图的采集速率可以达到 500 全扫描谱图/秒。

TOFMS 实验条件:电离能量为-70eV,检测器 电压为 1475V,采集速率/谱图为 100s⁻¹,质量扫描 范围为 40~520mu,离子源温度为 240℃,所得数据 再经 Pegasus 4D 工作站进一步处理。

传统一维色谱分析采用的仪器为 Agilent 6890N GC,色谱柱为 HP PONA 柱(50m×0.20mm× 0.5µm)。初温为 35℃,恒温 5min 后,以 3℃/min 速率升至 70℃,之后以 4.5℃/min 速率升至 300℃, 恒温 35min;载气为氦气;进样器温度为 300℃;采用 FID 检测器,温度为 300℃;分馏比为 100:1。

3 结果与讨论

3.1 原油轻烃总体组成特征

传统一维气相色谱分析在 C₈ 轻烃组分之后,共 逸出峰增多,在 C₈一C₈ 的烃类化合物峰上,虽然多 数化合物都已达到基线分离,但仍有 9 个左右的共 逸出峰[图 2(a)]。全二维色谱分析却能实现轻烃 化合物的完好分离和鉴定,图 2(b)是 HA801 井原 油样品的全二维点阵图,每一个点代表一个烃类化 合物,由于样品在进入仪器前仅需要简单的除去非 挥发性组分,这不仅有效避免了复杂样品前处理过 程中造成的组分损失,还在保证了分离效果的同时 大大节省了分析时间^[6-7]。在全二维 2D 点阵图上, 不同类型的化合物有规律的分布在不同区域,非常 易于分类识别鉴定,因此可以方便地获得所需要的 烃组成信息,并在宏观上把握样品异同。

C₅-C₈ 轻烃馏分由于不同的极性和沸点在全 二维色谱分析中得以分离。由图 3 可以清楚地看

学

到,原本在一维色谱柱上某些化合物的保留时间相同,如甲基环己烷和1,顺,2-二甲基环戊烷,但在全 二维色谱柱上保留时间却有明显差异。

3.2 C7 轻烃参数

3.2.1 正庚烷和异庚烷值

Thompson^[8]通过对 2 000 多个岩屑、岩心样品 进行轻烃组成研究,提出了庚烷值和异庚烷值参数 来表征原油成熟度,之后利用这2项参数将原油划 分出正常油、成熟油、高成熟油和生物降解油4种类型,同时用以区分原油母岩的干酪根类型^[9]。在一 维气相色谱仪器下,哈拉哈塘奥陶系原油庚烷值为 31.02%~38.98%,均值为36.47%;异庚烷值为 1.98~2.53,均值为2.30,属于高成熟油,体现脂肪 族特征。

在全二维色谱下, 庚烷值介于 22.97%~ 29.28%之间,均值为 25.57%; 异庚烷值为 1.25~ 2.15,均值为 1.88(图 4),均低于一维气相色谱结 果,属于成熟一高成熟原油。造成这种现象的原因 是由于 3-乙基戊烷和 2,2,4-三甲基戊烷在一维气 相色谱中与其他大峰呈共流特征(图 5,图 6),无法 单独检测,而在全二维仪器上得以有效分开,因此导 致了一维气相色谱中计算的正庚烷值比二维下计算 的要偏高。

3.2.2 C7 轻烃馏分组成特征

C₇ 轻烃族组成主要受烃源岩沉积水体盐度的 控制,沉积环境相似的油样,其C₇ 族组成分布也相 对集中。由图7(a)和表1可以看出,哈拉哈塘凹陷 奥陶系原油样品在一维色谱分析下,链烷烃含量为 57.21%~65.03%,均值为58.91%,C₇ 环烷烃含量 为28.86%~33.39%,均值为 30.52%,甲苯含量为 4.77%~15.94%,均值为 10.57%,C7 环烷烃/*i*C7 值全部小于 2,均值为 1.27,反映原油来自微咸一咸 水沉积环境^[10]。

图 3 H801 井原油样品全二维 C₅ — C₈ 轻烃馏分被分离的 共逸峰 3D 图

全二维色谱下链烷烃含量为42.85%~ 55.71%,均值为49.09%,环烷烃含量为34.57%~ 39.35%,均值为36.75%,芳香烃含量为7.2%~ 17.7%,均值为14.16%,C7环烷烃/*i*C7值也都小 于2,均值为1.29。链烷烃含量有所下降,而环烷 烃含量增加,推测可能是由于仪器本身分离机理不 同导致差异,原本在一维色谱上与甲基环己烷共流 出的1,顺,2-二甲基环戊烷,与2,5-二甲基己烷共 流出的乙基环戊烷;与3-乙基戊烷、2,2,4-三甲基 丁烷共流出的1,反,2-二甲基环戊烷被完全分离并 重新定量导致了环烷烃在 C₇ 馏分中所占比例增加 (图 6)。

图 5 H801 井原油部分轻烃全二维色谱 2D 轮廓 Fig. 5 GC×GC TIC chromatography of light hydrocarbon as a contour plot(well H801)

3.2.3 甲基环己烷指数

胡惕麟等^[11]定义了甲基环己烷指数,并建立了 判断原油干酪根类型以及沉积环境图版。

图 7(b)和表1中甲基环己烷指数反映了一维色 谱分析与全二维色谱分析具有一致性,哈拉哈塘凹陷 奧陶系原油样品均分布在Ⅰ型腐泥和Ⅱ型腐泥分界 线上,可以推测其有机质类型为腐泥Ⅰ型、Ⅱ型。

3.3 C。轻烃馏分组成

轻烃中C。族组分由正己烷、异构己烷、环己烷、 甲基环戊烷和苯组成。这组物质的研究对探讨成烃

可以看到,哈拉哈塘凹陷奥陶系原油样品在一维色 谱分析下正构烷烃含量为 33.86%~43.02%,均值

为 40.14%, 异构烷烃含量为 31.26%~35.80%, 均

母质、环境和成熟度有重要意义。将C₆轻烃中正己 烷和异构己烷之和,环己烷和甲基环戊烷之和及苯 的相对百分含量绘成三角图[图7(c)]。从表2中

图 7 哈拉哈塘凹陷轻烃组成三角图

表 1 GC×GC 与 GC 分析 C₇ 轻烃参数比较

Table 1 Comparison of C_7 light hydrocarbon parameters by $GC\!\times\!GC$ and GC

轻烃参数		井号	H11-1	H11-2	H13-1C	H601-1	H601-2	H601-3	H601-6	H801	H902	XK9C	H12
正庚烷/%		GC	37.45	37.18	37.34	35.24	35.85	36.51	36.00	31.02	38.98	38.28	37.30
		$GC \times GC$	29.28	25.77	25.69	26.37	26.10	23.28	23.97	24.84	27.42	22.97	25.62
异庚烷		GC	2.29	2.39	2.45	1.98	2.19	2.20	2.16	2.21	2.53	2.44	2.43
		GC×GC	2.15	1.96	2.04	1.78	1.85	1.25	1.92	2.05	2.08	1.84	1.79
	$nC_7 / \frac{9}{0}$	GC	52.83	54.89	55.05	51.12	53.24	53.09	53.12	45.82	56.04	55.38	54.86
с Ш		$GC \times GC$	42.75	39.58	38.80	38.85	39.64	34.53	37.41	37.24	41.29	36.04	36.77
C7 甲 基环己 烷指数	DMCyC ₅ /%	GC	13.53	14.59	14.36	15.41	15.11	14.62	14.97	14.30	13.60	13.82	14.08
		$GC \times GC$	20.66	23.46	22.83	24.00	24.41	28.79	25.46	20.18	22.79	27.76	22.24
	MCyC ₆ / %	GC	33.64	30.52	30.59	33.47	31.66	32.29	31.91	39.89	30.36	30.80	31.05
		$GC \times GC$	36.59	36.96	38.37	37.14	35.95	36.68	37.13	42.58	35.92	36.20	40.99
	C ₇ 链烷/%	GC	57.71	60.68	60.97	57.21	58.78	58.99	58.27	50.66	65.03	59.50	60.20
C		$GC \times GC$	51.10	50.86	49.58	49.22	49.47	42.85	49.62	45.36	55.71	48.83	47.39
	C7 环烷/%	GC	31.42	29.28	29.25	32.39	30.17	31.10	30.39	33.39	30.20	28.86	29.30
22 22 21 21		GC×GC	34.57	36.13	36.28	37.21	35.39	38.95	36.18	36.94	37.08	36.19	39.35
组成	せチレ /0/	GC	10.87	10.04	9.78	10.41	11.06	9.91	11.34	15.94	4.77	11.64	10.49
	方省定/ 20	$GC \times GC$	14.33	13.02	14.15	13.57	15.14	18.20	14.20	17.70	7.20	14.98	13.26
C ₇ 环烷烃/iC ₇ (N/I)		GC	1.40	1.17	1.16	1.39	1.23	1.31	1.27	1.49	1.14	1.22	1.19
		GC×GC	1.32	1.20	1.24	1.34	1.23	1.43	1.18	1.42	1.15	1.16	1.49

打风名粉	C6 轻烃组分/%												
轻烇参数	II	三己烷	乒	早己烷	C_6	环烷烃	苯						
井号	GC GC×GC		GC	GC×GC	GC	GC×GC	GC	GC×GC					
H11-1	40.20	31.47	31.26	29.05	25.70	35.28	2.83	4.20					
H11-2	41.47	27.44	35.80	39.14	19.79	28.91	2.94	4.51					
H13-1C	41.61	28.01	35.53	33.80	19.81	33.06	3.05	5.13					
H601-1	38.78	28.99	31.45	34.75	26.10	31.23	3.67	5.03					
H601-2	39.82	26.26	34.74	38.29	21.83	29.42	3.61	6.03					
H601-3	40.44	26.55	31.96	30.27	24.37	37.46	3.23	5.71					
H601-6	39.84	27.68	33.96	37.49	22.54	29.01	3.66	5.82					
H801	33.86	26.88	34.43	33.37	27.49	34.79	4.22	4.96					
H902	43.02	27.69	34.26	39.48	18.52	26.01	4.21	6.82					
XK9C	41.83	25.67	34.01	37.41	20.91	30.92	3.25	6.00					
H12	40.72	31.41	34.84	37.22	21.10	27.32	3.34	4.05					

表 2 C₆ 轻烃组分的 GC×GC 与 GC 分析比较 Table 2 Comparison of C₆ light hydrocarbon by GC×GC and GC

值为 33.84%,环烷烃含量为 18.52%~27.49%,均 值为 22.56%,苯含量为 2.83%~4.22%,均值为 3.46%。其表现为典型的海相油特征^[12]。

全二维色谱分析下,正构烷烃相对含量为 25.67%~31.47%,均值为28.01%,异构烷烃相对 含量为29.05%~39.48%,均值为35.48%,环烷烃 相对含量为26.01%~37.46%,均值为31.22%,苯 的相对含量为4.05%~6.82%,均值为5.30%。虽 然全二维下正己烷含量略低于一维色谱检测,而环 烷烃含量略高于一维色谱检测,推测由于2种仪器 检测器不同,造成较小的判别,总体来看2种仪器下 C₆组分各类型化合物所占比例基本相似[图7(c)], 全二维色谱与一维色谱对C₆组分表征一致。

3.4 Mango 参数

3.4.1 K_1, K_2

具有相似来源的原油, K_1 值稳定不变^[13]。如表3所示,一维气相色谱分析下,哈拉哈塘凹陷奥陶 系原油 K_1 值为1.01~1.07,均值为1.04;全二维 色谱分析下, K_1 值较之略高,为1.06~1.23,均值 为1.12。Mango 定义了参数 K_2 为 $P_3/(P_2+N_2)$, 可以反映源岩沉积环境和有机质类型,且海相原油 K_2 值较低,陆相原油则具有较高的 K_2 值^[14]。研究 区原油在一维色谱仪器下 K_2 值为0.18~0.22,均 值为0.20,反映典型海相油特征^[15]。全二维色谱分 析下计算 K_2 值,除 H601-3 井外,其他分布在 0.20~0.31之间,均值为0.28。可以看出,2种仪 器下 K_1 值、 K_2 值总体上较为接近,但彼此还是存 在一定差异,全二维色谱分析下的 K₁ 值、K₂ 值数 值均偏高,除因检测器不同导致差异外,一维色谱中 2-甲基己烷与 2,3-二甲基戊烷部分共流溢出,全二 维下 2 种化合物完全分离检出,也是 K₁ 值升高的 原因。而与 1,反,2-二甲基环戊烷共流溢出的 3-乙 基戊烷在全二维色谱下被清晰分离(图 8),使得 K₂ 值升高。

3.4.2 原油生成温度 T(℃)

Mango^[13]基于 Bement 等^[16]的研究工作和他 本人的分析资料,推导出了生油层最大埋深温度公 式 $T(\mathbb{C}) = 140 + 15 \text{Ln}(2, 4 - /2, 3 - \text{DMP})$ 。通过全二 维色谱和一维气相色谱计算哈拉哈塘凹陷奥陶系原 油样品生成温度,2 组数据均值均为 $123\mathbb{C}$,表现出 高度的一致性,说明 2,4-二甲基戊烷(2,4-DMP)与 2,3-二甲基戊烷(2,3-DMP)在 2 种仪器上表现出相 同的线性关系。

3.4.3 碳环优势指数

Mango^[17]提出将碳环优势指数(RP)作为表征 某种结构类型化合物在轻烃演化过程中占有优势的 组成特征,其可用于区分原油母质来源。2种仪器 下 C₇碳环优势指数三角图如图 7(d)所示,结合表 3 数据,可以看出碳环优势指数在 2 种仪器下有良好 的对比性,异构烷烃含量和甲基环己烷含量相当,即 原油具有 3RP 和 6RP,且异构烷烃含量高于甲基环 己烷含量,表示烃源岩有机质以腐泥型为主。环戊 烷含量均超过 15%,显示出海相原油特征^[17]。全二 维色谱下二甲基环戊烷的检出量略有升高,但整体

图 8 H801 井样品油部分一维气相色谱 Fig. 8 Part of traditional gas chromatogram of oil sample(well H801)

表	3	GC×GC 与 GC 轻烃 Mango 参数分析比较
Table 3	Cor	nparison of Mango parameters by GC×GC and GC

								参数							
井号		K_1		K_2		3RP/%		5RP/%		6RP/%		$T/^{\circ}\mathbb{C}$		$R_{ m O}/\%$	
	GC	GC×GC	GC	GC×GC	GC	GC×GC	GC G	$C \times GC$	GC GC×GC		GC GC×GC		GC	GC×GC	
H11-1	1.03	1.07	0.18	0.2	41.8	41.61	16.71	21.07	41.54	37.32	121.3	124.5	0.82	0.86	
H11-2	1.05	1.07	0.19	0.3	46.1	43.91	17.43	21.78	36.45	34.31	124.3	123.3	0.85	0.84	
H13-1C	1.06	1.14	0.19	0.28	46.2	43.17	17.18	21.2	36.59	35.63	124.9	121.8	0.86	0.82	
H601-1	1.01	1.06	0.21	0.29	41.9	40.63	18.32	23.31	39.8	36.06	120.4	121.4	0.80	0.82	
H601-2	1.03	1.1	0.22	0.3	44.8	42.87	17.85	23.11	37.4	34.02	122.9	123.7	0.84	0.85	
H601-3	1.04	1.13	0.2	0.43	43.3	39.07	17.66	26.8	39.01	34.13	121.7	113.7	0.82	0.72	
H601-6	1.03	1.11	0.21	0.3	44	44.03	17.9	22.76	38.14	33.21	122.1	123.4	0.83	0.84	
H801	1.06	1.16	0.22	0.29	40.2	39.98	15.79	19.3	44.04	40.72	125.1	124.3	0.86	0.85	
H902	1.04	1.13	0.21	0.31	46.8	44.82	16.47	21.42	36.77	33.76	124.1	123.1	0.85	0.84	
XK9C	1.07	1.11	0.19	0.27	45.1	44.73	17.01	23.99	37.92	31.29	125.9	124.6	0.87	0.86	
H12	1.05	1.23	0.2	0.29	45.6	38.62	16.97	21.59	37.41	39.79	124.0	124.1	0.85	0.85	

含量分布与一维色谱分析相同,表明了研究区晚期 充注的原油为同源油^[18]。

4 结论

(1)全二维色谱及传统气相色谱下的庚烷值及 异庚烷值均表明哈拉哈塘凹陷奧陶系原油属于高成 熟油,烃源岩有机质类型为Ⅰ型和Ⅱ型。但全二维 色谱由于能够清晰分离 3-乙基戊烷、2,2,4-三甲基 戊烷,所求数值虽比一维色谱数值略低,但更为 准确。

(2)在 C₆、C₇ 轻烃馏分组成特征中,2 种仪器所 获得的正构烷烃、异构烷烃、环烷烃相对组成相似, 均反映了研究区原油样品烃源岩以腐泥型有机质为 主。但全二维色谱下一些原本共环烷基烃被分离检 出,导致环烷烃含量略有升高。

(3)Mango 参数在 2 种色谱技术上表现出了良 好的可比性。仅在 K₁ 值、K₂ 值上略有差异,推测 原因为 3-乙基戊烷的检出,以及 2-甲基已烷和 2,3-二甲基戊烷的分离导致。在原油生成温度以及碳环 优势指数上,2 种仪器反映的地球化学信息一致。2 种技术均证明研究区原油属海相原油特点,具有 3RP 和 6RP,烃源岩有机质类型为腐泥型,原油生 成温度为 123℃左右。

参考文献(References):

- [1] Gao Xuanbo, Chang Zhenyang, Dai Wei, et al. Recent advance in analysis of petroleum geological samples by comprehensive two-dimensional gas chromatography[J]. Chinese Journal of Chromatography, 2014, 32(10):1058-1065. [高儇博,常振阳, 代威,等. 全二维气相色谱在石油地质样品分析中的应用进展 [J]. 色谱, 2014, 32(10):1058-1065.]
- [2] Vendeuvre C, Bertoncini F, Duval L, et al. Comparison of conventional gas chromatography and comprehensive two-dimensional gas chromatography for the detailed analysis of petrochemical samples [J]. Journal of Chromatography A, 2004, 1056(1/2):155-162.
- [3] Cui Haifeng, Zheng Duoming, Teng Tuanyu. Petroleum geologic characteristics and exploration orientation in Halahatang Depression of Tabei Uplift[J]. Lithologic Reservoirs, 2009, 21
 (2):54-58. [崔海峰,郑多明,滕团余. 塔北隆起哈拉哈塘凹陷 石油地质特征与油气勘探方向[J]. 岩性油气藏, 2009, 21(2): 54-58.]
- [4] Chang Xiangchun, Wang Tieguan, Cheng Bin, et al. Geochemical characteristics of light hydrocarbons from the central part of Tabei Uplift and their implications[J]. Natural Gas Geoscience, 2014, 25(7): 1058-1064. [常象春,王铁冠,程斌,等. 塔 北隆起中部原油轻烃地球化学特征及其意义[J]. 天然气地球 科学, 2014, 25(7): 1058-1064.]
- [5] Cheng Bin, Wang Tieguan, Chang Xiangchun. Application of C₅-C₇ light hydrocarbons in geochemical studies: A case study of Ordovician crude oils from the Halahatang Depression, Taibei Uplift[J]. Natural Gas Geoscience, 2013, 24(2): 398-405.
 [程斌, 王铁冠, 常象春. C₅-C₇ 轻烃在原油地球化学研究中的应用——以塔北隆起哈拉哈塘凹陷奥陶系原油为例[J]. 天然 气地球科学, 2013, 24(2): 398-405.]
- [6] Wang Huitong, Weng Na, Zhang Shuichang, et al. Identification of petroleum aromatic fraction by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometer[J]. Chinese Science Bulletin, 2010, 55(21): 21-29. [王汇形,翁娜,张水昌,等. 全二维气相色谱/飞行时间质谱对 原油芳烃分析的图谱识别[J]. 科学通报, 2010, 55(21): 21-29.]

- [7] Jiang Qigui, Ma Yuanyuan, Qian Menhui, et al. Comparison between comprehensive 2D gas chromatography and conventional gas chromatography in geochemical analysis of petroleum geology[J]. Petroleum Geology and Experiment, 2012, 34 (3): 303-308. [蒋启贵, 马媛媛, 钱门辉,等. 石油地质样品全 二维色谱与传统色谱技术地化分析比较[J]. 石油实验地质, 2012, 34(3): 303-308.]
- [8] Thompson K F M. Light hydrocarbons in subsurface sediments[J]. Geochimic et Cosmochimic Acta, 1979, 43: 657-672.
- [9] Thompson K F M. Classification and thermal history of petroleum based on light hydrocarbons[J]. Geochimic et Cosmochimic Acta, 1983, 47:303-316.
- [10] Wang Peirong, Xu Guanjun, Xiao Tingrong, et al. Application of C₇ light hydrocarbon parameters in identifying source rock depositional environment[J]. Petroleum Exploration and Development, 2007, 34(2): 156-159. [王培荣, 徐冠军, 肖廷荣, 等. 用 C₇ 轻烃参数判识烃源岩沉积环境的探索[J]. 石油勘探 与开发, 2007, 34(2): 156-159.]
- [11] Hu Tilin, Ge Baoxiong, Zhang Yigang, et al. The development and application of fingerprint parameters for hydrocarbons absorbed by source rocks and light hydrocarbons in natural gas[J]. Experimental Petroleum Geology, 1990, 12(4): 375-394. [胡惕麟, 戈葆雄, 张义纲,等. 源岩吸附烃和天然气轻烃指纹参数的开发和应用 [J]. 石油实验地质, 1990, 12(4): 375-394.]
- [12] Lin Renzi, Zhang Min, Xu Zhongyi. Geochemistry characteristics of light hydrocarbons(C₁-C₇) in light oils[J]. Journal of Jianghan Petroleum Institute, 1989, 11(1):11-16. [林壬子,张敏,徐中一. 轻质油中 C₁-C₇ 轻烃的地球化学特征[J]. 江汉石油学院学报, 1989, 11(1):11-16.]
- [13] Mango F D. The light hydrocarbons in petroleum: A critical review[J]. Organic Geochemistry, 1997, 24(7/8):417-440.
- [14] Wang Xiang, Zhang Min, Huang Xinghui. Compositions and geochemical characteristics of light hydrocarbons in typical marine oils and typical coal formed oils[J]. Natural Gas Geoscience, 2008, 19(1):18-22. [王祥,张敏,黄兴辉. 典型海相油 和典型煤成油轻烃特征及地球化学意义[J]. 天然气地球科 学, 2008, 19(1):18-22.]
- [15] Zhu Yangming, Zhang Chunming. Application of Mango's light hydrocarbon parameters in classification of oils from Tarim Basin[J]. Geochmica, 1999, 29(1): 26-33. [朱扬明,张春明. Mango 轻烃参数在塔里木原油分类中的应用[J]. 地球化学, 1999, 29(1): 26-33.]
- Bement W O, Levey R A, Mango F D. The temperature of oil generation as defined with C₇ chemistry maturity parameter (2,4-DMP/2,3-DMP ratio)[C]//Grimalt J O, Dorronsoro C. Organic Geochemistry: Developments and Applications in Energy, Climate, Environment and Human History. Donostia-San Sebastian, Spain: AIGOA, 1995: 505-507.
- Mango F D. The origin of light cycloalkanes in petroleum: Ring preference in the closure of carbocyclic rings [J]. Geochimic et Cosmochimic Acta,1994,58;895-901.

[18] Zhu Yangming. Novel theory and applications of steady-state catalysis of light hydrocarbons[J]. Petroleum Explorationist, 1998,3(3):6-9. [朱扬明. 稳态催化轻烃成因理论及其应用前 景[J]. 勘探家,1998,3(3):6-9.]

Comparison of C₅-C₇ Light Hydrocarbons in Halahatang Ordovi-cian Oil Analyzed by Comprehensive 2-D and Conventional Gas Chromatography

WANG Ya-peng¹, CHANG Xiang-chun¹, CHENG Bin², SHI Sheng-bao²

(1. Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China; 2. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China)

Abstract: Eleven Ordovician oil samples from Halahatang Depression were investigated by 2-D gas chromatography(GC×GC) and conventional gas chromatography to contrast their C_5 - C_7 light hydrocarbons compositions. The results indicate that Halahatang oils are typical mature-high mature marine oils, deposited in a brackish-salty reducing environment with similar source input. The C_6 light hydrocarbon and Mango parameters obtained from the conventional gas chromatography correlate well with those from the GC×GC, however, the C_7 light hydrocarbon from the GC×GC is characterized by lower heptane and isoheptane values, decrease of paraffin and increase of cycloalkane abundance. Due to no need for pretreatment, oil direct injection for the GC×GC; Conventional gas chromatography; C_5 - C_7 light hydrocarbon; Halahatang Depression;

Crude oil

2015 年第 10 期部分文章预告

海相碳酸盐岩埋藏溶孔规模与分布规律初探
塔里木盆地寒武纪—早奥陶世构造古地理与岩相古地理格局再厘定——基于地震地层证据的新认识
鄂尔多斯盆地大牛地气田致密砂岩储层三维岩石力学参数场研究
沁水盆地砂岩游离气成藏主控因素分析 林玉祥, 栾伟娜, 韩继雷, 张春荣, 吴玉琛, 等
柴达木盆地东部中下侏罗统残留分布及控制因素 李军亮,肖永军,林 武,柴先平,张俊锋
渤海湾盆地临清坳陷西部中生界烃源岩生烃演化 孙耀庭,徐守余,张世奇,李玉兰,李 辉,等
鄂尔多斯盆地油气微渗漏高光谱信息提取研究 王香增, 付金华, 李志忠, 郭建明, 高瑞民, 等
鄂尔多斯盆地长7致密油开发试验及认识 李忠兴,李 健, 屈雪峰, 李宪文, 雷启鸿, 樊建明
水力压裂中的应力阴影效应与数值计算 王 宇,李 晓,王金波,郑 博,张 搏,等
有水气藏单井水侵阶段划分新方法 李 勇,李保柱,夏 静,张 晶,郭 凯,等
考虑多缝应力干扰的页岩储层压裂转向角计算模型 李勇明,王琰琛,赵金洲,许文俊
基于分形理论的煤储层水力压裂裂缝数值模拟研究 张小东,张 硕,杨艳磊,张 鹏,魏高洋