
1

�Data Structure

College of Computer Science

Chapter 2 Linerar List



2

�Data Structure

College of Computer Science

•• Definition of ADTDefinition of ADTDefinition of ADTDefinition of ADTDefinition of ADTDefinition of ADTDefinition of ADTDefinition of ADT
•• Sequential ListSequential ListSequential ListSequential ListSequential ListSequential ListSequential ListSequential List
•• Singly Linked ListSingly Linked ListSingly Linked ListSingly Linked ListSingly Linked ListSingly Linked ListSingly Linked ListSingly Linked List
•• Circular Linked ListCircular Linked ListCircular Linked ListCircular Linked ListCircular Linked ListCircular Linked ListCircular Linked ListCircular Linked List
•• Doubly Linked ListDoubly Linked ListDoubly Linked ListDoubly Linked ListDoubly Linked ListDoubly Linked ListDoubly Linked ListDoubly Linked List
•• ApplicationsApplicationsApplicationsApplicationsApplicationsApplicationsApplicationsApplications

outline



3

�Data Structure

College of Computer Science

2.1  Definition 2.1  Definition 
•• Linear listLinear listLinear listLinear listLinear listLinear listLinear listLinear list
•• Length of listLength of listLength of listLength of listLength of listLength of listLength of listLength of list
•• Empty listEmpty listEmpty listEmpty listEmpty listEmpty listEmpty listEmpty list
•• Order Order Order Order Order Order Order Order 



4

�Data Structure

College of Computer Science

ADT of Linear ListADT of Linear List
• ADT List {
• Data object：D＝{ ai | ai ∈ElemType, i=1,2,...,n, n≥0 }
• Relation ：R1＝{ <ai-1 ,ai >|ai-1 ,ai∈D, i=2,...,n }
• Operations ：
• InitList( &L ) 。
• DestroyList( &L )
• ListEmpty( L )
• ListLength( L ) 
• PriorElem( L, cur_e, &pre_e )
• NextElem( L, cur_e, &next_e )
• GetElem( L, i, &e )
• LocateElem( L, e, compare( ) )
• ListTraverse(L, visit( )) 
• ClearList( &L ) 
• PutElem(& L, i, e ) 
• ListInsert( &L, i, e ) 
• ListDelete(&L, i, &e）
• } ADT List



5

�Data Structure

College of Computer Science

Examples for using the basic Examples for using the basic 
operationsoperations

• Set Union ASet Union ASet Union ASet Union A＝AAAA∪BBBB
• purgepurgepurgepurge（LLLL）
• Merging two ordered listMerging two ordered listMerging two ordered listMerging two ordered list



6

�Data Structure

College of Computer Science

Set union Set union 
• void union(List &La, List Lb) {
• //
• La_len = ListLength(La);
• Lb_len =ListLength(Lb); // length
• for (i = 1; i <= Lb_len; i++) {
•   GetElem(Lb, i, e);// e is the ith element
•   if(!LocateElem(La, e, equal( )) 
•     ListInsert(La, ++La_len, e);//}
• } // union



7

�Data Structure

College of Computer Science

Remove all repetitive elementsRemove all repetitive elements
•  void purge(L)
• {
•   int i=1;j,x,y;
•  while (i<ListLength(L))
•   {Getelem(L,i,x);
•      j=i+1;
•     while (j<listLength(L)）
•     {Getelem(L,j,y);
•     if (x==y) ListDelete(L,j);
•       else j++;
•      }
•   i++;
•  }
• }



8

�Data Structure

College of Computer Science

Merge Merge orderedlistorderedlist  
•  void MergeList(List La, List Lb, List & Lc) {
• InitList(Lc);
• i = j = 1; k = 0;
• La_len = ListLength(La);   Lb_len = ListLength(Lb);
• While ( I <= La_len ) && ( J <= Lb_len ) { // La and Lb's all non-empty 
•   GetElem(La, i, ai); GetElem(Lb, j, bj);
•   if (ai <= bj) {  ListInsert(Lc, ++k, ai); ++i; }
•   else { ListInsert(Lc, ++k, bj); ++j; }
•  }
•  while (i <= La_len) {
•   GetElem(La, i++, ai);
•   ListInsert(Lc, ++k, ai);
• }
•   while (j <= Lb_len) {
•   GetElem(Lb, j++, bj);
•   ListInsert(Lc, ++k, bj);
• }
• } // merge_list 



9

�Data Structure

College of Computer Science

Discussion on the merging Discussion on the merging 
• Assuming that  , A does not include the repetition elements and  B 

is similar to A ，  how to  remove the repetition element when 
merging A with B ？
–  if (ai < bj) {  ListInsert(Lc, ++k, ai); ++i; }
–     else if (ai > bj) { ListInsert(Lc, ++k, bj); ++j; }
–     else i++;/*{ListInsert(Lc, ++k, bj); ++I;++j; }*/

–  First merging  then  Purge 

• If A and B may   possess the repetition elements  How to do ？



10

�Data Structure

College of Computer Science

2.2 Sequential   list 2.2 Sequential   list 
The elements are stored in a consecutive storage area  one by one 



11

�Data Structure

College of Computer Science

Notes Notes ：：
• With ordered pair <ai-1 ， ai> to express “ Storage  is 

adjacent to” ，  loc（ai）=loc（ai-1）+C
• Unnecessary  to store logic relationship 
• First data component location can  decide all data 

elements  locations 



12

�Data Structure

College of Computer Science

Sequential storage map definition Sequential storage map definition Sequential storage map definition Sequential storage map definition Sequential storage map definition Sequential storage map definition Sequential storage map definition Sequential storage map definition 
v  The data component is depicted in the way of the array : 
v     typedef struct {
v      ElemType data[maxsize];
v      int length; //'s current length 
v } SqList;



13

�Data Structure

College of Computer Science

The data component is stored in the The data component is stored in the The data component is stored in the The data component is stored in the 
way of the pointer : way of the pointer : way of the pointer : way of the pointer : 

• //----- Sequential storage organization of the dynamic allocation of linear list  -----//----- Sequential storage organization of the dynamic allocation of linear list  -----//----- Sequential storage organization of the dynamic allocation of linear list  -----//----- Sequential storage organization of the dynamic allocation of linear list  -----
• #define LIST_INIT_SIZE 80 #define LIST_INIT_SIZE 80 #define LIST_INIT_SIZE 80 #define LIST_INIT_SIZE 80 
• #define LISTINCREMENT 10#define LISTINCREMENT 10#define LISTINCREMENT 10#define LISTINCREMENT 10

• typedeftypedeftypedeftypedef    structstructstructstruct { { { {
•         ElemTypeElemTypeElemTypeElemType    ****elemelemelemelem; //'s dedicated space base ; //'s dedicated space base ; //'s dedicated space base ; //'s dedicated space base 
•         intintintint length; //'s current length  length; //'s current length  length; //'s current length  length; //'s current length 
•         intintintint    listsizelistsizelistsizelistsize; // The distributed  memory capability; // The distributed  memory capability; // The distributed  memory capability; // The distributed  memory capability
• } } } } SqListSqListSqListSqList; ; ; ; 



14

�Data Structure

College of Computer Science

Sequential map implementations Sequential map implementations Sequential map implementations Sequential map implementations 
 1. Initialization of linear list 
•  array ：
• pointer 
Status InitList_Sq(SqList &L) {
// Constitute a hollow linear list L 。
L.elem = (ElemType *)
        malloc(LIST_INIT_SIZE *sizeof(ElemType));
if (!L.elem) exit(OVERFLOW); //'s memory allocation is fail 
L.length = 0; //'s length is 0 
L.listsize = LIST_INIT_SIZE ; //'s intial stage memory capability 
return OK;
} // InitList_Sq



15

�Data Structure

College of Computer Science

 2.  LocateElement by content ：
• A. array ：
• B. pointer 
int LocateElem_Sq(SqList L, ElemType e,Status (*compare)(ElemType, ElemType)) 

{
// using  Compare ( ) 
// If finding ，return the index otherwise  return 0 。
i = 1; // The initial value of I is the the 1st element
p = L.elem; // The initial value of P is the the 1st element storage site 
while (i <= L.length && !(*compare)(*p++, e))  ++i;
if (i <= L.length) return i;
else return 0;
} // LocateElem_Sq
This  algorithm time complexity is :  O( ListLength(L) )



16

�Data Structure

College of Computer Science

Discussion Discussion Discussion Discussion ：

• Unnecessary to have LocateElem ( L ,i) function Unnecessary to have LocateElem ( L ,i) function Unnecessary to have LocateElem ( L ,i) function Unnecessary to have LocateElem ( L ,i) function 
• Searching frame Searching frame Searching frame Searching frame 
• Modification of searching algorithm ---Use the Modification of searching algorithm ---Use the Modification of searching algorithm ---Use the Modification of searching algorithm ---Use the 

sentinel sentinel sentinel sentinel 



17

�Data Structure

College of Computer Science

 3. ListInsert ( &L ) ：
• A. the array ：
• B. the pointer 
Ask ： When inserting the element ， What does the logical organization of linear list 

change ？
(a1, …, ai-1, ai, …, An ) revises ( A1  …, ai-1, e, ai, …, an)
Status ListInsert_Sq(SqList &L, int pos, ElemType e) {
// fresh element E can be inserted in  sequential linear list L element
// The validate value of Pos is in the range of 1 ≤pos≤Listlength_Sq(L)+1
if (pos < 1 || pos > L.length+1) return ERROR; 
If ( L.length >= L.listsize ) { 
  newbase = (ElemType *)realloc(L.elem,(L.listsize+LISTINCREMENT)*sizeof (ElemType));
  if (!newbase) exit(OVERFLOW); //'s memory allocation is fail 
  L.elem = newbase; // fresh base 
  L.listsize += LISTINCREMENT; // adds the memory capability 
}



18

�Data Structure

College of Computer Science

 q = &(L.elem[pos-1]); 
for (p = &(L.elem[L.length-1]); p >= q; --p) 
  *(p+1) = *p; 
 *q = e; 
++L.length; 
return OK;
} // ListInsert_Sq

The algorithm time complexity is :  O( ListLength(L) )



19

�Data Structure

College of Computer Science

Discussion Discussion Discussion Discussion ：

• If afterwards insertions ？
• Pay attention to the relationship between the 

initial value assignment with moves
• If inserting  more than one ( M ) elements ？

– M+L.length?L.listsize
– Move mode 



20

�Data Structure

College of Computer Science

 4. the ListDelete ( &L ) realization ：
• Using  array 
• Using  pointer 
Ask ：When deleting  the element ，What does the logical organization of linear 

list  change ？
(a1, …, ai-1, ai, ai+1, …, An ) the alteration is ( A1  …, ai-1, ai+1, …, an)
Status ListDelete_Sq(SqList  &L, int pos, ElemType &e) {
// The legality of Pos is in therange of 1 ≤pos≤ListLength_Sq(L)
if ((pos < 1) || (pos > L.length)) return ERROR; 
p = &(L.elem[pos-1]); // P act as the element’s place to be deleted
e = *p; // the element value assigns to E 
q = L.elem+L.length-1; // tail element place 
for (++p; p <= q; ++p) *(p-1) = *p; // Element left shift
--L.length; //'s length reduces 1 
return OK;
} // ListDelete_Sq
The algorithm time complexity is :  O( ListLength(L) )



21

�Data Structure

College of Computer Science

Discussion Discussion Discussion Discussion ：

• Relationship between  the moving with the initial value
• If  to delete  more than one elements ？

– Place Pos+m  ？ L.length
– Move mode  



22

�Data Structure

College of Computer Science

Assignment 1 Assignment 1 ：：
• To give an example to illustrate data structure idea and To give an example to illustrate data structure idea and To give an example to illustrate data structure idea and To give an example to illustrate data structure idea and 

describe it  in abstract data type form .describe it  in abstract data type form .describe it  in abstract data type form .describe it  in abstract data type form .
• Analyses the time complexity of the following algorithms Analyses the time complexity of the following algorithms Analyses the time complexity of the following algorithms Analyses the time complexity of the following algorithms 。
                                    1. i=1;                 2. i=n;                 3. x=y=1;1. i=1;                 2. i=n;                 3. x=y=1;1. i=1;                 2. i=n;                 3. x=y=1;1. i=1;                 2. i=n;                 3. x=y=1;
            while (s<n)       do {                      while(x++             while (s<n)       do {                      while(x++             while (s<n)       do {                      while(x++             while (s<n)       do {                      while(x++ **** y++<n); y++<n); y++<n); y++<n);
            { i++;s+=i;}       i++;            { i++;s+=i;}       i++;            { i++;s+=i;}       i++;            { i++;s+=i;}       i++;
                                        } while (i<n)                                        } while (i<n)                                        } while (i<n)                                        } while (i<n)
• Design an Improve Design an Improve Design an Improve Design an Improve LocateElem'sLocateElem'sLocateElem'sLocateElem's algorithm  to look for all  algorithm  to look for all  algorithm  to look for all  algorithm  to look for all 

the elements matching the  relationship the elements matching the  relationship the elements matching the  relationship the elements matching the  relationship 。
• Design an algorithm to reverse an sequential list (aDesign an algorithm to reverse an sequential list (aDesign an algorithm to reverse an sequential list (aDesign an algorithm to reverse an sequential list (a1111aaaa2222..a..a..a..annnn)-)-)-)-

>(a>(a>(a>(annnnaaaan-1n-1n-1n-1…………aaaa1111))))



23

�Data Structure

College of Computer Science

Summing Up
• Advantages  ：

– Stores a collection of items contiguously.
• Stores no relations
• Access randomly 

•  Disadvantages  ： 

– Need to shift many elements in the array 
whenever there is an insertion or deletion.

– Need to allocate a fix amount of memory in 
advance.



24

�Data Structure

College of Computer Science

2.3 realization of linear list - linked list 2.3 realization of linear list - linked list 

• Singly linked list 
• Circular linked list 
• Two-way linked list 



25

�Data Structure

College of Computer Science

Linked Lists Linked Lists Linked Lists Linked Lists vs. vs. vs. vs. Sequential ListSequential ListSequential ListSequential List

• Stores a collection of 
items non-contiguously.

• Allows addition or 
deletion of items in the 
middle of collection 
with only a constant 
amount of data 
movement.

• Allow allocation and 
deallocation of memory 
dynamically.

• Stores a collection of 
items contiguously.

• Need to shift many 
elements in the array 
whenever there is an 
insertion or deletion.

• Need to allocate a fix 
amount of memory in 
advance.



26

�Data Structure

College of Computer Science

2.3.1 2.3.1 Singly Linked Lists: General IdeaSingly Linked Lists: General IdeaSingly Linked Lists: General IdeaSingly Linked Lists: General Idea
• Each item in the list is stored with an indication of where 

the next element is.
• Must know where first element is.
• The list will be a chain of objects of type ListNode that 

contain the data and a reference to the next ListNode in 
the list.

A B C D

A B C D800 992712 0

7128001000 992

List in memory

Linked List

datadatadatadata Next  Next  Next  Next  →→→→



27

�Data Structure

College of Computer Science

Singly linked list storage mapping Singly linked list storage mapping Singly linked list storage mapping Singly linked list storage mapping Singly linked list storage mapping Singly linked list storage mapping Singly linked list storage mapping Singly linked list storage mapping 

• Header pointer 、Header node 、First node 



28

�Data Structure

College of Computer Science

Lists: Header node
• Deletion of first item and insertion of new first item are 
special cases.
• Can avoid by using header node; contains no date, but serves 
to ensure that first "real" node in linked has a predecessor.
• Searching routines will skip header.

A B C

Header



29

�Data Structure

College of Computer Science

Singly Linked list storage structure definition Singly Linked list storage structure definition Singly Linked list storage structure definition Singly Linked list storage structure definition 

• typedef struct LNode {
•    ElemType data; //'s data field 
•   struct Lnode *next; // pointer domain 
• } LNode, *LinkList; 

• LNode *L;// is declaration chained list L 
• LinkList L;



30

�Data Structure

College of Computer Science

singly linked list operation realization  singly linked list operation realization  singly linked list operation realization  singly linked list operation realization  

• void CreateList_L(LinkList &L, int n) {
• L = NULL; The // establishs the empty list
• for (i = n; i > 0; --i) {
•   p = (LinkList) malloc (sizeof (LNode));
•   scanf(&p->data); //'s input element value 
•   p->next = L; L = p; The //
•  }
• } //

1．Create a linked list 

        .swf



31

�Data Structure

College of Computer Science

inserting before first node inserting before first node inserting before first node inserting before first node inserting before first node inserting before first node inserting before first node inserting before first node 

  newnode→next = p→next;

  p→next = newnode;



32

�Data Structure

College of Computer Science

There is a header node There is a header node There is a header node There is a header node ：    
• void CreateList_L(LinkList &L, int n) {
• L = (LinkList) malloc (sizeof (LNode));
• L->next = NULL;  // establishs a node 
• for (i = n; i > 0; --i) {
•   p = (LinkList) malloc (sizeof (LNode)); 
•    // Generate the fresh node 
•   scanf(&p->data); //'s input element value 
•   p->next = L->next; L->next = p; //
•  }
• } // CreateList_L
• The algorithm time complexity is : O(Listlength(L))



33

�Data Structure

College of Computer Science

Insert at the rear  Insert at the rear  Insert at the rear  Insert at the rear  ：
• LinkList  create()
• {
•  head=NULL;
•  r=NULL;
•  ch=getchar();
• while(ch<>’$’)
•  { s=malloc(sizeof(LinkList));
•    s->data=ch;
•    if (head==NULL) head=s; // in the empty list 
•    else r->next=s;
•    r=s;
•    ch=getchar();
•   }
• if (r) r->next=NULL;// is as to the non- empty list 
• return head;
• }

        .swf



34

�Data Structure

College of Computer Science

Using a header node for rear inserting Using a header node for rear inserting Using a header node for rear inserting Using a header node for rear inserting 
• LinkList  create() {
•  head=(LinkList) malloc (sizeof (LNode));
• head->next = NULL; The // establishs a node 
• r=head;
• ch=getchar();
• while(ch<>’$’)
•  { s=(LinkList) malloc (sizeof (LNode));
•    s->data=ch;
•    r->next=s;
•    r=s;
•    ch=getchar();
•   }
•  r->next=NULL;// is as to the non- empty list 
• return head;
• }



35

�Data Structure

College of Computer Science

2.Searching 2.Searching 2.Searching 2.Searching ：
•  GetElem ( L ) : 
• Status GetElem_L(L, int pos, ElemType &e) {
• // Initialization ，The P points to first node ，The J act as the counter 
• p = L ->next; ；j = 1;//
• while (p && j<pos) { 
• // With the pointer look for until P points to Posth element or p is empty 
•    p = p->next; ++j;
•   }
• if ( !p || j>pos )   return ERROR; 
• e = p->data; // Then gets Posth element 
• return OK;
• } // GetElem_L

    A. According to the sequence searching ：

`Whether including a header node ？
`If not ，how to implement it 



36

�Data Structure

College of Computer Science

•  GetElem ( L ) : 
• Manipulating essentially : traversing the list 
• Status GetElem_L(L, int pos, ElemType &e) {
• p = L  ；j = 1;//
• while (p && j<pos) { 
• // until P points to Pos element or p is empty 
•    p = p->next; ++j;
•   }
• if (  !p||j>pos )   return 0; 
• e lse  return j;
• } // GetElem_L `The empty list situation ought 

to be considered earlier 



37

�Data Structure

College of Computer Science

LinkList  Find (LinkList  L，ElemType value ) 
{
//
     LinkList  p = L→next;     //first node 
     while ( p != NULL && p→data != value )  

p = p→next;
     return p;     
     // P is living , when the seeking is  
succeeful
     // P is null , when the seeking is 
failure or a emptying list 
}

Search on content Search on content Search on content Search on content Search on content Search on content Search on content Search on content ：：

`Whether including a header node ？
`If not ，how to implement it 



38

�Data Structure

College of Computer Science

3. Insertion 3. Insertion 

•• insertion alternation insertion alternation insertion alternation insertion alternation insertion alternation insertion alternation insertion alternation insertion alternation 
••  First kind of situation  First kind of situation  First kind of situation  First kind of situation  First kind of situation  First kind of situation  First kind of situation  First kind of situation ：：：：：：：：inserting at the front inserting at the front inserting at the front inserting at the front inserting at the front inserting at the front inserting at the front inserting at the front 
••                                                                                                                                                         newnodenewnodenewnodenewnodenewnodenewnodenewnodenewnode→→→→→→→→nextnextnextnextnextnextnextnext = head ;     = head ;     = head ;     = head ;     = head ;     = head ;     = head ;     = head ;    
••                    head =                    head =                    head =                    head =                    head =                    head =                    head =                    head = newnodenewnodenewnodenewnodenewnodenewnodenewnodenewnode；；；；；；；；

（（Before Before Before Before Before Before Before Before ））                                                                                                                                                                （（After  After  After  After  After  After  After  After  ））

headheadheadhead

newnodenewnodenewnodenewnode newnodenewnodenewnodenewnode

headheadheadhead



39

�Data Structure

College of Computer Science

         

   

         

––         Second kind of situation Second kind of situation Second kind of situation Second kind of situation Second kind of situation Second kind of situation Second kind of situation Second kind of situation ：：inserting in the middle inserting in the middle inserting in the middle inserting in the middle inserting in the middle inserting in the middle inserting in the middle inserting in the middle 
                                                                                                newnodenewnodenewnodenewnodenewnodenewnodenewnodenewnode→→nextnextnextnextnextnextnextnext = p = p = p = p = p = p = p = p→→next;next;next;next;next;next;next;next;

          p          p          p          p          p          p          p          p→→next = next = next = next = next = next = next = next = newnodenewnodenewnodenewnodenewnodenewnodenewnodenewnode；；



40

�Data Structure

College of Computer Science

––         Third kind of situation Third kind of situation Third kind of situation Third kind of situation Third kind of situation Third kind of situation Third kind of situation Third kind of situation ：：：：：：：：inserting  at the inserting  at the inserting  at the inserting  at the inserting  at the inserting  at the inserting  at the inserting  at the 
chained list end chained list end chained list end chained list end chained list end chained list end chained list end chained list end 

                                                                        newnodenewnodenewnodenewnodenewnodenewnodenewnodenewnode→→→→→→→→nextnextnextnextnextnextnextnext = p = p = p = p = p = p = p = p→→→→→→→→next;next;next;next;next;next;next;next;
     p     p     p     p     p     p     p     p→→→→→→→→next = next = next = next = next = next = next = next = newnodenewnodenewnodenewnodenewnodenewnodenewnodenewnode；；；；；；；；



41

�Data Structure

College of Computer Science

•• Insert  behind a node Insert  behind a node Insert  behind a node Insert  behind a node Insert  behind a node Insert  behind a node Insert  behind a node Insert  behind a node 
•• Inset  before a nodeInset  before a nodeInset  before a nodeInset  before a nodeInset  before a nodeInset  before a nodeInset  before a nodeInset  before a node
•• Insert  P  at the front Insert  P  at the front Insert  P  at the front Insert  P  at the front Insert  P  at the front Insert  P  at the front Insert  P  at the front Insert  P  at the front 
•• Using the header node Using the header node Using the header node Using the header node Using the header node Using the header node Using the header node Using the header node 

Insertion  realization Insertion  realization Insertion  realization Insertion  realization Insertion  realization Insertion  realization Insertion  realization Insertion  realization ：：：：：：：：



42

�Data Structure

College of Computer Science

• Status ListInsert_L( L, int pos, ElemType e) {
• //The Pos element of single chained list L  afterwards 

inserting element E 
• p = L; j = 0;
• while (p && j < pos) 
•  { p = p->next; ++j; } // looks for Pos node 
• if (!p || j > pos-1) return ERROR; 
• s = (LinkList) malloc ( sizeof (LNode)); 
• s->data = e; s->next = p->next; 
• p->next = s;
• return OK;
• } // LinstInsert

example1 example1 example1 example1 example1 example1 example1 example1 ：：：：：：：：

单链表的插入.swf



43

�Data Structure

College of Computer Science

• How to find its predecessor ：
• 1 Find Pos element ，Keep the predecessor  Q 

while (p && j < pos) 
{ q=p；p = p->next; ++j; }

Do the related operation according the value of Q 

• 2  using a rear insertion ，Interchange again 
• 3 ：Find Pos-1's element earlier
• 4 ：Find P earlier ，and then its predecessor Q

      q=head;//
      while(q->next!=p) 
        q=q->next;
Caution：had better use a header node 。

Insert  before Pos node Insert  before Pos node Insert  before Pos node Insert  before Pos node Insert  before Pos node Insert  before Pos node Insert  before Pos node Insert  before Pos node ：：：：：：：：



44

�Data Structure

College of Computer Science

• InsertBefore  (head,p,x)

• {

•     LinkList s, q;

•     s=malloc(sizeof(LinkList));

•     s->data=x;

•     q=head;//'s head node 

•     while(q->next!=p) 

•       q=q->next;  

•     s->next=p;

•     q->next=s;

• }



45

�Data Structure

College of Computer Science

Find Previous List NodeFind Previous List NodeFind Previous List NodeFind Previous List Node

/* If X is not found, then Next field of returned value is NULL */
/* Assumes a header, why ? */

        Position  FindPrevious( ElementType X, List L )
        {
            Position P;

/* 1*/      P = L;
/* 2*/      while( P->Next != NULL && P->Next->data != X )
/* 3*/          P = P->Next;

/* 4*/      return P;
        }

2 4 6 8
Previous



46

�Data Structure

College of Computer Science

Insert at the frontInsert at the frontInsert at the frontInsert at the frontInsert at the frontInsert at the frontInsert at the frontInsert at the front

  newnode→next = p→next;

  p→next = newnode;



47

�Data Structure

College of Computer Science

• Delete the  successor of current node
• Delete current node 

Delete the node at Delete the node at Delete the node at Delete the node at Delete the node at Delete the node at Delete the node at Delete the node at 
iiiiiiiithththththththth        

4.  Delete operations4.  Delete operations4.  Delete operations4.  Delete operations



48

�Data Structure

College of Computer Science

Status ListDeleteAfter(LinkList L, LinkList p) {
     if (!p->next) error(“no successor!”);
     r=p->next;
     p->next=r->next;
    free(r);
}

The algorithm time complexity is : O(1)

Delete the successor Delete the successor ：：



49

�Data Structure

College of Computer Science

uFind predecessor 
uIf  current node is the first node ？

Delete current node Delete current node ：：



50

�Data Structure

College of Computer Science

Status ListDelete (LinkList L, ElemType e) {
     p=q=L;
     if (!P) Error(“The list is empty!”);
     if (p->data==e)
      {  L=p->next; free p; return;}
     while (p && p->data !=e)
       {   q=p; p=p->next;}
     q->next=p->next;
     free(p);
}
The algorithm time complexity is : O(ListLength(L))

Delete current node algorithm Delete current node algorithm ：：

If using a header node ？



51

�Data Structure

College of Computer Science

 q = p q = p q = p q = p→next;next;next;next;
 p p p p→next = qnext = qnext = qnext = q→next;next;next;next;
 free q; free q; free q; free q;

Delete first node using a  Delete first node using a  Delete first node using a  Delete first node using a  Delete first node using a  Delete first node using a  Delete first node using a  Delete first node using a  
header node header node header node header node header node header node header node header node 



52

�Data Structure

College of Computer Science

Status ListDelete_L(LinkList  L, int pos, ElemType &e) {
// delete Posth element ， returns such value by E
p = L; j = 0;
while (p->next && j < pos-1) {
// Look for Pos node ，P point to its predecessor Pos-1's node 
p = p->next; ++j;
}
if (!(p->next) || j > pos-1) 
return ERROR; The // delete error 
q = p->next; p->next = q->next; The // delete 
e = q->data; free(q);
return OK;
} // ListDelete_L
The algorithm time complexity is : O(ListLength(L))

Delete current node Delete current node （（header node header node ）：）：



53

�Data Structure

College of Computer Science

Status ListLength_L(LinkList L) {
//traverse
p = L; j = 0;
while (p->next) {
  ++j; p = p->next; 
 }
return j;
} // ListLength_L
The algorithm time complexity is : O(ListLength(L))

5.To compute the length 5.To compute the length ：：

uIf the initial value is a p=L->next ？
 j=0; while (p)

uIf not including  a header node ？
P=L; j=0; while (p)



54

�Data Structure

College of Computer Science

Example 2-1's algorithm time complexity 
Control structure ： For cycles       Manipulate essentially ：LocateElem(La, e, equal( ))
Acing as when achieving the abstract data form linear list with the order map : 
   O( ListLength(La)×ListLength(Lb) )
When in order acing as when the abstract data form linear list is achieved in the link style map : 
   O( ListLength(La)×ListLength(Lb) )
Example 2-2's algorithm time complexity 
Control structure ： While's cycle is manipulated essentially ：GetElem(L, i, e)
Acing as when achieving the abstract data form linear list with the order map : 
   O( ListLength(L)2 )
When in order acing as when the abstract data form linear list is achieved in the link style map : 
   ( ListLength(L) 2 )
example 2-3's algorithm time complexity      Control structure ：Three coordinations Whiles cycle 
Manipulate essentially ：ListInsert(Lc, ++k, e)
Acing as when achieving the abstract data form linear list with the order map : 
   O( ListLength(La)+ListLength(Lb) )
When in order acing as when the abstract data form linear list is achieved in the link style map : 
   O( (ListLength(La)+ListLength(Lb) )，Yet room complexity difference 。

3 3 3 3 3 3 3 3 、、Application of algorithm Application of algorithm Application of algorithm Application of algorithm Application of algorithm Application of algorithm Application of algorithm Application of algorithm 



55

�Data Structure

College of Computer Science

2.3.2 static chained list2.3.2 static chained list2.3.2 static chained list2.3.2 static chained list2.3.2 static chained list2.3.2 static chained list2.3.2 static chained list2.3.2 static chained list

Distribute node J Distribute node J Distribute node J Distribute node J Distribute node J Distribute node J Distribute node J Distribute node J ：：        j = j = j = j = j = j = j = j = avilavilavilavilavilavilavilavil;  ;  ;  ;  ;  ;  ;  ;  avilavilavilavilavilavilavilavil =  =  =  =  =  =  =  = 
A[avil].cur;//'sA[avil].cur;//'sA[avil].cur;//'sA[avil].cur;//'sA[avil].cur;//'sA[avil].cur;//'sA[avil].cur;//'sA[avil].cur;//'s tail pointer page-down  tail pointer page-down  tail pointer page-down  tail pointer page-down  tail pointer page-down  tail pointer page-down  tail pointer page-down  tail pointer page-down 
free Node I free Node I free Node I free Node I free Node I free Node I free Node I free Node I ：：        A[i].cur = A[i].cur = A[i].cur = A[i].cur = A[i].cur = A[i].cur = A[i].cur = A[i].cur = avilavilavilavilavilavilavilavil;  ;  ;  ;  ;  ;  ;  ;  avilavilavilavilavilavilavilavil = i;//'s tail is  = i;//'s tail is  = i;//'s tail is  = i;//'s tail is  = i;//'s tail is  = i;//'s tail is  = i;//'s tail is  = i;//'s tail is 
leaved out leaved out leaved out leaved out leaved out leaved out leaved out leaved out 
（（Notes Notes Notes Notes Notes Notes Notes Notes ：：        AvilAvilAvilAvilAvilAvilAvilAvil act as present in the form the second  act as present in the form the second  act as present in the form the second  act as present in the form the second  act as present in the form the second  act as present in the form the second  act as present in the form the second  act as present in the form the second 
place of last element place of last element place of last element place of last element place of last element place of last element place of last element place of last element ））

Use array defining Use array defining Use array defining Use array defining Use array defining Use array defining Use array defining Use array defining ，，The dedicated space size is The dedicated space size is The dedicated space size is The dedicated space size is The dedicated space size is The dedicated space size is The dedicated space size is The dedicated space size is 
unchangeable in the calculation process unchangeable in the calculation process unchangeable in the calculation process unchangeable in the calculation process unchangeable in the calculation process unchangeable in the calculation process unchangeable in the calculation process unchangeable in the calculation process 



56

�Data Structure

College of Computer Science

Linked List Variants
A (dummy) head nodehead nodehead nodehead node is used so that every node has a predecessor
� eliminates special cases for inserting and deleting.

first 9 17 22 26 34?

The data part of the head node might be used to store some information
about the list, e.g., the number of values in the list.

A (dummy) trailer nodetrailer nodetrailer nodetrailer node can be used so that every node has a successor

first 9 17 22 26 34? ?

If data portion of element is large, two or more lists can share the same trailer
node



57

�Data Structure

College of Computer Science

2.3.3 2.3.3 Circularly Linked Lists
instead of the last node containing a NULL pointer, it contains a pointer to the first node

For such lists, one can use a single pointer to the last node in the list, because then one has
direct access to it and "almost-direct" access to the first node.

9 17 22 26 34last

Each node in a circular linked list has a predecessor(and a successor), provided that the
list is nonempty.
� insertion and deletion do not require special consideration of the first node.

Using a trailer node
Treat each node as the first



58

�Data Structure

College of Computer Science

•• Example of circular linked list Example of circular linked list Example of circular linked list Example of circular linked list Example of circular linked list Example of circular linked list Example of circular linked list Example of circular linked list 

•• Girdle form head node Girdle form head node Girdle form head node Girdle form head node Girdle form head node Girdle form head node Girdle form head node Girdle form head node 
circular linked list  circular linked list  circular linked list  circular linked list  circular linked list  circular linked list  circular linked list  circular linked list  



59

�Data Structure

College of Computer Science

Circularly Linked Lists
Traversal must be modified: don't an infinite loop looking for end of  list as signalled by a
null pointer.

Like other methods, deletion must also be slightly modified.

Deleting the last node is signalled when the node deleted points to itself.

if (first == 0) // list is empty
// Signal that the list is empty

else
{

ptr = predptr->next; // hold node for deletion

if (ptr == predptr) // one-node list
first = 0;

else // list with 2 or more nodes
predptr->next = ptr->next;

delete ptr;
}



60

�Data Structure

College of Computer Science

 Left insertion ：
 void left_insert_CL(rear,x)
  {
     p=malloc(sizeof(LNode));
    p->data=x;
    if (rear==NULL) { p->next=p; rear 
=p;}
    else { p->next= rear ->next; rear -
>next=p;}
 }
 If using an header node ？



61

�Data Structure

College of Computer Science

 ( right insertion of circular 
linked list ）：
 void right_insert_CL(rear,x)
  {
     p=malloc(sizeof(LNode));
     p->data=x;
     if (rear==NULL)  
      { p->next=p; rear =p;}
     else 
      { p->next= rear ->next; rear 
->next=p;rear=p;}
 }
 If using an header node ？



62

�Data Structure

College of Computer Science

 left deletion：

 void left_dele_CL(rear)
  {
     if ( rear!=NULL)
    { 
    p=rear->next;
    if (p==rear) 
rear=NULL;//only one node
    else rear->next=p->next;
    free p; 
  }
}



63

�Data Structure

College of Computer Science

Example  1 Example  1 Example  1 Example  1 Example  1 Example  1 Example  1 Example  1 ：：：：：：：：LA+LB==>LCLA+LB==>LCLA+LB==>LCLA+LB==>LCLA+LB==>LCLA+LB==>LCLA+LB==>LCLA+LB==>LC

• Linklist  connect(ra ,rb)

•   Linklist  ra, rb;

•  {  Linklist  p;

•     p=ra->next;            

•     ra->next=rb->next->next;       

•     free(rb->next); rb->next=p; 

•      return   rb;

•     } 



64

�Data Structure

College of Computer Science

example2 example2 example2 example2 example2 example2 example2 example2 ：：：：：：：：The length is more than 1 The length is more than 1 The length is more than 1 The length is more than 1 The length is more than 1 The length is more than 1 The length is more than 1 The length is more than 1 ，，，，，，，，there is not a herder node there is not a herder node there is not a herder node there is not a herder node there is not a herder node there is not a herder node there is not a herder node there is not a herder node 、、、、、、、、Head Head Head Head Head Head Head Head 
pointer pointer pointer pointer pointer pointer pointer pointer ，，，，，，，，The P points to some nodes in the list The P points to some nodes in the list The P points to some nodes in the list The P points to some nodes in the list The P points to some nodes in the list The P points to some nodes in the list The P points to some nodes in the list The P points to some nodes in the list ，，，，，，，，Attempt to delete that Attempt to delete that Attempt to delete that Attempt to delete that Attempt to delete that Attempt to delete that Attempt to delete that Attempt to delete that 
nodenodenodenodenodenodenodenode’’’’’’’’s predecessor s predecessor s predecessor s predecessor s predecessor s predecessor s predecessor s predecessor 。。。。。。。。

LinkListLinkListLinkListLinkListLinkListLinkListLinkListLinkList        DelCirListDelCirListDelCirListDelCirListDelCirListDelCirListDelCirListDelCirList（（（（（（（（pppppppp））））））））
        {   q=p;The predecessor of // searching P {   q=p;The predecessor of // searching P {   q=p;The predecessor of // searching P {   q=p;The predecessor of // searching P {   q=p;The predecessor of // searching P {   q=p;The predecessor of // searching P {   q=p;The predecessor of // searching P {   q=p;The predecessor of // searching P 
      while (q->next!=p) q=q->next;      while (q->next!=p) q=q->next;      while (q->next!=p) q=q->next;      while (q->next!=p) q=q->next;      while (q->next!=p) q=q->next;      while (q->next!=p) q=q->next;      while (q->next!=p) q=q->next;      while (q->next!=p) q=q->next;
      r=q ;The predecessor of // searching Q       r=q ;The predecessor of // searching Q       r=q ;The predecessor of // searching Q       r=q ;The predecessor of // searching Q       r=q ;The predecessor of // searching Q       r=q ;The predecessor of // searching Q       r=q ;The predecessor of // searching Q       r=q ;The predecessor of // searching Q 
      while (r->next!=q) r=r->next;      while (r->next!=q) r=r->next;      while (r->next!=q) r=r->next;      while (r->next!=q) r=r->next;      while (r->next!=q) r=r->next;      while (r->next!=q) r=r->next;      while (r->next!=q) r=r->next;      while (r->next!=q) r=r->next;
      r->next=p;      r->next=p;      r->next=p;      r->next=p;      r->next=p;      r->next=p;      r->next=p;      r->next=p;
      free      free      free      free      free      free      free      free（（（（（（（（        q);q);q);q);q);q);q);q);
      return p;      return p;      return p;      return p;      return p;      return p;      return p;      return p;
}}}}}}}} If first While cycles using 

  ( q->next->next! = P ) 



65

�Data Structure

College of Computer Science

iiii
nnnn

iiii
iiii

nnnn
nnnnnnnn

xxxxaaaa

xxxxaaaaxxxxaaaaxxxxaaaaaaaaxxxxPPPP

∑
=

=

++++=

0000

2222
222211110000

          

  )( L

2.3.4 polynomial ( Polynomial ) application 2.3.4 polynomial ( Polynomial ) application 



66

�Data Structure

College of Computer Science

•• Express the linear list : Express the linear list : Express the linear list : Express the linear list : Express the linear list : Express the linear list : Express the linear list : Express the linear list : 
  P = (p0, p1,   P = (p0, p1,   P = (p0, p1,   P = (p0, p1,   P = (p0, p1,   P = (p0, p1,   P = (p0, p1,   P = (p0, p1, ……………………，，pnpnpnpnpnpnpnpn))))))))
•• It is also unsuitable to express the form like S ( X ) = 1 + It is also unsuitable to express the form like S ( X ) = 1 + It is also unsuitable to express the form like S ( X ) = 1 + It is also unsuitable to express the form like S ( X ) = 1 + It is also unsuitable to express the form like S ( X ) = 1 + It is also unsuitable to express the form like S ( X ) = 1 + It is also unsuitable to express the form like S ( X ) = 1 + It is also unsuitable to express the form like S ( X ) = 1 + 

3x3x3x3x3x3x3x3x1000010000100001000010000100001000010000        
•• Writing factor and index numberWriting factor and index numberWriting factor and index numberWriting factor and index numberWriting factor and index numberWriting factor and index numberWriting factor and index numberWriting factor and index number
        （（（（p1, e1p1, e1p1, e1p1, e1p1, e1p1, e1p1, e1p1, e1））, (p2, e2), , (p2, e2), , (p2, e2), , (p2, e2), , (p2, e2), , (p2, e2), , (p2, e2), , (p2, e2), ┄┄, (, (, (, (, (, (, (, (pm,empm,empm,empm,empm,empm,empm,empm,em) ) ) ) ) ) ) ) ））
••         How about the defectsHow about the defectsHow about the defectsHow about the defectsHow about the defectsHow about the defectsHow about the defectsHow about the defects

Expressing the polynomial  Expressing the polynomial  



67

�Data Structure

College of Computer Science

•• Every one node Every one node Every one node Every one node Every one node Every one node Every one node Every one node adddadddadddadddadddadddadddaddd data member  data member  data member  data member  data member  data member  data member  data member NextsNextsNextsNextsNextsNextsNextsNexts        
during the polynomial chained list being during the polynomial chained list being during the polynomial chained list being during the polynomial chained list being during the polynomial chained list being during the polynomial chained list being during the polynomial chained list being during the polynomial chained list being 
living is expressed living is expressed living is expressed living is expressed living is expressed living is expressed living is expressed living is expressed ，，，，，，，，As the link pointer As the link pointer As the link pointer As the link pointer As the link pointer As the link pointer As the link pointer As the link pointer 。。。。。。。。

•• Strong point is Strong point is Strong point is Strong point is Strong point is Strong point is Strong point is Strong point is ：：：：：：：：

        The number of item of polynomial may rise The number of item of polynomial may rise The number of item of polynomial may rise The number of item of polynomial may rise The number of item of polynomial may rise The number of item of polynomial may rise The number of item of polynomial may rise The number of item of polynomial may rise 
dynamiclydynamiclydynamiclydynamiclydynamiclydynamiclydynamiclydynamicly        。。。。。。。。

        It is convenient to insert,delete the element It is convenient to insert,delete the element It is convenient to insert,delete the element It is convenient to insert,delete the element It is convenient to insert,delete the element It is convenient to insert,delete the element It is convenient to insert,delete the element It is convenient to insert,delete the element 。。。。。。。。

The link expressing  The link expressing  



68

�Data Structure

College of Computer Science

ADT Polynomial {
Data object ：D＝{ ai | ai ∈TermSet, i=1,2,...,m, m≥0 }
  
Data relationship ：R1＝{ <ai-1 ,ai >|ai-1 ,ai∈The index number value of Ai-1 ＜
The index number value of Ai ，i=2,...,n }
Basic opertions ：
CreatPolyn ( &P ) 
DestroyPolyn ( &P )
PrintPolyn ( &P )
AddPolyn (…) 
SubtractPolyn (…) 
MultiplyPolyn  ( … )
PolynLength ( P )
} ADT Polynomial

Polynomial ( Polynomial ) type definition Polynomial ( Polynomial ) type definition Polynomial ( Polynomial ) type definition Polynomial ( Polynomial ) type definition Polynomial ( Polynomial ) type definition Polynomial ( Polynomial ) type definition Polynomial ( Polynomial ) type definition Polynomial ( Polynomial ) type definition 



69

�Data Structure

College of Computer Science

typedeftypedeftypedeftypedef    structstructstructstruct  {  {  {  {
                intintintint    coefcoefcoefcoef;;;;
                intintintint exp; exp; exp; exp;
                PolyLinkPolyLinkPolyLinkPolyLink next; next; next; next;
} } } } ****PolyLinkPolyLinkPolyLinkPolyLink; ; ; ; 

Polynomial ( Polynomial ) node definition Polynomial ( Polynomial ) node definition Polynomial ( Polynomial ) node definition Polynomial ( Polynomial ) node definition Polynomial ( Polynomial ) node definition Polynomial ( Polynomial ) node definition Polynomial ( Polynomial ) node definition Polynomial ( Polynomial ) node definition 



70

�Data Structure

College of Computer Science

Polynomial adding to of chained list Polynomial adding to of chained list Polynomial adding to of chained list Polynomial adding to of chained list Polynomial adding to of chained list Polynomial adding to of chained list Polynomial adding to of chained list Polynomial adding to of chained list 

AH = 1 - 10x6 + 2x8 +7x14AH = 1 - 10x6 + 2x8 +7x14AH = 1 - 10x6 + 2x8 +7x14AH = 1 - 10x6 + 2x8 +7x14
BH = - x4 + 10x6 - 3x10 + 8x14 +4x18BH = - x4 + 10x6 - 3x10 + 8x14 +4x18BH = - x4 + 10x6 - 3x10 + 8x14 +4x18BH = - x4 + 10x6 - 3x10 + 8x14 +4x18



71

�Data Structure

College of Computer Science

 Polynomial AddPolyn ( const Polynomial 
& pa, const Polynomial & pb ) {

    ha=GetHead(pa); hb=GetHead(pb);
   qa=NextPos(ha); qb=NextPos(hb);
while ( !Empty(pa) && !Empty(pb) )
 { a=GetCurElem(qa); b=GetCurElem(qb);
   switch ( *compare ( a, b ) ) {
   case ‘=’ : //Index number is equal to 

        sum = a.coef + b.coef;
        If ( Sum = 0.0 ) {// leaves out Pa's 
current node 
         DelFirst(ha,qa); FreeNode(qa);
        DelFirst(hb,qb); FreeNode(qb); 
qb=NextPos(pb,hb);
        qa=NextPos(pa,ha);
        }
        Factor value among Else {// alteration Pa 
            setCurElem(qa,sum);ha=qa; 
        }



72

�Data Structure

College of Computer Science

            break;
        case '<' :

   ha= qa; 
qa=Nextpos(pa,qa);   
             break;
        case '>' :

 
DelFirst(hb,qb);InsFirst(ha,qb );
            qb=Nexpos(pb,hb);
   }//switch
 }//while
   if ( !Empty(pb) )  
Append(pa,qb);
   else  FreeNode(hb);
} 



73

�Data Structure

College of Computer Science

Doubly Linked ListDoubly Linked ListDoubly Linked ListDoubly Linked List

• Add an extra pointer to the previous node.
• Increase the memory used for every node.
• More pointers to adjust for insertion and deletion.
• Eliminate the use of previous node for deletion.

A B C D

Doubly linked list



74

�Data Structure

College of Computer Science

storage organization definition storage organization definition 
• //
• typedef struct DuLNode {
•    ElemType data; //'s data field 
•    struct DuLNode *prior; 
•    struct DuLNode *next;
•  } DuLNode, *DuLinkList;



75

�Data Structure

College of Computer Science

••
p == pp == pp == pp == pp == pp == pp == pp == p→→→→→→→→priorpriorpriorpriorpriorpriorpriorprior→→→→→→→→next == pnext == pnext == pnext == pnext == pnext == pnext == pnext == p→→→→→→→→nextnextnextnextnextnextnextnext→→→→→→→→prior prior prior prior prior prior prior prior 

Non- empty list Non- empty list Non- empty list Non- empty list Non- empty list Non- empty list Non- empty list Non- empty list          Empty list          Empty list          Empty list          Empty list          Empty list          Empty list          Empty list          Empty list 



76

�Data Structure

College of Computer Science

Seeking is succeeded Seeking is succeeded Seeking is succeeded Seeking is succeeded Seeking is succeeded Seeking is succeeded Seeking is succeeded Seeking is succeeded 

The seeking is not  succeeded The seeking is not  succeeded The seeking is not  succeeded The seeking is not  succeeded The seeking is not  succeeded The seeking is not  succeeded The seeking is not  succeeded The seeking is not  succeeded 

Two-way circular linked list seeking algorithm Two-way circular linked list seeking algorithm Two-way circular linked list seeking algorithm Two-way circular linked list seeking algorithm Two-way circular linked list seeking algorithm Two-way circular linked list seeking algorithm Two-way circular linked list seeking algorithm Two-way circular linked list seeking algorithm 



77

�Data Structure

College of Computer Science

IntIntIntInt  Find (  Find (  Find (  Find (DuLinkListDuLinkListDuLinkListDuLinkList DL DL DL DL，const Type & const Type & const Type & const Type & 
target ) {target ) {target ) {target ) {
//The seeking is successfully returned 1 //The seeking is successfully returned 1 //The seeking is successfully returned 1 //The seeking is successfully returned 1 ，
If not return 0 If not return 0 If not return 0 If not return 0 。
                p = DLp = DLp = DLp = DL→next;next;next;next;
    while ( p != DL && p    while ( p != DL && p    while ( p != DL && p    while ( p != DL && p→data != target )data != target )data != target )data != target )

  p = p  p = p  p = p  p = p→next;next;next;next;  // // // //AbideingAbideingAbideingAbideing by the link  by the link  by the link  by the link 
lookeslookeslookeslookes for  for  for  for 
    if ( p != DL ) return 1;// finds     if ( p != DL ) return 1;// finds     if ( p != DL ) return 1;// finds     if ( p != DL ) return 1;// finds 
    return 0; The //     return 0; The //     return 0; The //     return 0; The // gosgosgosgos back up the form  back up the form  back up the form  back up the form 
head head head head ，Not find Not find Not find Not find 

}}}}



78

�Data Structure

College of Computer Science

pppp→prior = current;prior = current;prior = current;prior = current;
pppp→next =currentnext =currentnext =currentnext =current→next;next;next;next;
pppp→nextnextnextnext→prior = p;    //current-prior = p;    //current-prior = p;    //current-prior = p;    //current-
>next->prior=p;>next->prior=p;>next->prior=p;>next->prior=p;
currentcurrentcurrentcurrent→next = p;next = p;next = p;next = p;

Insert Insert Insert Insert Insert Insert Insert Insert 



79

�Data Structure

College of Computer Science

current=Find(DL,X);current=Find(DL,X);current=Find(DL,X);current=Find(DL,X);
if (current==NULL) Error;if (current==NULL) Error;if (current==NULL) Error;if (current==NULL) Error;
p=(p=(p=(p=(DuLinkList)malloc(sizeof(DLNodeDuLinkList)malloc(sizeof(DLNodeDuLinkList)malloc(sizeof(DLNodeDuLinkList)malloc(sizeof(DLNode
));));));));
p->data= Y ;p->data= Y ;p->data= Y ;p->data= Y ;
pppp→prior = current;prior = current;prior = current;prior = current;
pppp→next =currentnext =currentnext =currentnext =current→next;next;next;next;
pppp→nextnextnextnext→prior = p;    //current-prior = p;    //current-prior = p;    //current-prior = p;    //current-
>next->prior=p;>next->prior=p;>next->prior=p;>next->prior=p;
currentcurrentcurrentcurrent→next = p;next = p;next = p;next = p;
}}}}



80

�Data Structure

College of Computer Science

currentcurrentcurrentcurrentcurrentcurrentcurrentcurrent→→nextnextnextnextnextnextnextnext→→prior = currentprior = currentprior = currentprior = currentprior = currentprior = currentprior = currentprior = current→→        
prior;        currentprior;        currentprior;        currentprior;        currentprior;        currentprior;        currentprior;        currentprior;        current→→ prior  prior  prior  prior  prior  prior  prior  prior 
→→next = currentnext = currentnext = currentnext = currentnext = currentnext = currentnext = currentnext = current→→next;next;next;next;next;next;next;next;

Delete Delete Delete Delete Delete Delete Delete Delete 



81

�Data Structure

College of Computer Science

2.1 Attempt to explain an header pointer 、Head node 
、First element node 。
2.2 When choose the Sequential list 、When choose the 
linked list .Give some examples to show this. ？
2.3 Reverse the single linked list 。
2.4 Write an algorithm to insert a X into an ordered 
list to maintain the ordered list 。
2.5 Write an algorithm to delete the element at the 
right side of the circular linked list 。
2.6 Write an algorithm to delete the first node that 
has the value X in a doubly linked list。

Assignment 2 Assignment 2 Assignment 2 Assignment 2 Assignment 2 Assignment 2 Assignment 2 Assignment 2 



82

�Data Structure

College of Computer Science

2.1 implement the linked list type 。
2.2 Josephues problem 

Experiment Experiment Experiment Experiment Experiment Experiment Experiment Experiment 



83

�Data Structure

College of Computer Science

•• For example N = 3    m = 8For example N = 3    m = 8For example N = 3    m = 8For example N = 3    m = 8For example N = 3    m = 8For example N = 3    m = 8For example N = 3    m = 8For example N = 3    m = 8



84

�Data Structure

College of Computer Science

1 、Prepare
2 、discipline 
3 、Laboratory report 
Write laboratory report ，Consist of the main idea of 
algorithm 、Main data structure 、The algorithm 
achieves essentially 、Debug process 、Conclusion and 
what one has learned 。

Requirements  Requirements  Requirements  Requirements  Requirements  Requirements  Requirements  Requirements  ：：



85

�Data Structure

College of Computer Science

-End-


