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ABSTRACT. Let G be a classical complex Lie group, P any parabolic subgroup
of G, and X = G/P the corresponding homogeneous space, which parametrizes
(isotropic) partial flags of subspaces of a fixed vector space. In the mid 1990s,
Fulton, Pragacz, and Ratajski [F3, PR2, FP] asked for global formulas which
express the cohomology classes of the universal Schubert varieties in flag bun-
dles — when the space X varies in an algebraic family — in terms of the Chern
classes of the vector bundles involved in their definition. This has applications
to the theory of degeneracy loci of vector bundles and is closely related to the
Giambelli problem for the torus-equivariant cohomology ring of X. In this
article, we explain the answer to these questions which was obtained in [T7],
in terms of combinatorial data coming from the Weyl group.

0. INTRODUCTION

The theory of degeneracy loci of vector bundles has its roots in the 19th century,
motivated by questions in elimination theory and enumerative algebraic geome-
try. The modern subject began with the work of Thom and Porteous in topology,
which was generalized and extended to the algebraic setting by Kempf, Laksov,
and Lascoux [KL, L1, F5]. The simplest example involves two complex vector
bundles F, F on a smooth algebraic variety M. Given a generic map of vector
bundles f : E — F and r any integer, the locus M, of points m € M where
rank(fy,) < 7 is called a degeneracy locus. Thom [Th] showed that the homol-
ogy class of M, must be Poincaré dual to a universal polynomial in the Chern
classes of the vector bundles E and F', and Porteous [Po] later found this repre-
senting polynomial. Such degeneracy loci arise frequently in problems of algebraic
geometry and singularity theory, therefore explicit Chern class formulas for these
loci can be quite useful. We refer to [Tu, P3, FP, FR2, Ka2] for surveys, and to
[Be, DP, EvG, FR1, F3, FL, HT, JLP, Kal, KT2, PP, P1, PR2, Sa, SdS, T1, T3]
for an incomplete list of applications.

In a series of papers in the 1990s, Fulton [F1, F2, F3] generalized the work of
Kempf-Laksov further, to a map of flagged vector bundles, and studied an analogue
of the same problem for the other classical Lie groups. This involved degeneracy
loci given by incidence relations between a pair of isotropic flags of subbundles of
a fixed vector bundle, which is equipped with a symplectic or orthogonal form. In
all cases, the Schubert polynomials representing the cohomology classes of the loci
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were defined by an algorithm using divided difference operators (stemming from
[BGG, D1, D2, LS1]) applied to a ‘top polynomial’ which represented the class of
the diagonal (the locus of points on the base variety where the two flags coincide).
Related computations were performed at much the same time by Pragacz and
Ratajski [PR2], and other competing theories of Schubert polynomials in the Lie
types B, C, and D were discovered [BH, FK3, LP1]. In [F3] and [FP, §9.5], Fulton
and Pragacz asked for combinatorially explicit, global formulas for the cohomology
classes of degeneracy loci, which have a similar shape for all the classical groups,
and are determinantal whenever possible. The aim of this article is to describe the
answer to this question which was obtained in [T7], building on a series of earlier
works, in terms of data coming from the Weyl group.

Graham [Gr] recast the above degeneracy locus problem using the language of
Lie theory, and studied the universal case when the structure group G of the fibre
bundles involved is any complex reductive group (see also [Brl, §6.6]). He observed
that the degeneracy locus question of [F3] is essentially equivalent to the problem
of obtaining a formula for the equivariant Schubert classes in the torus-equivariant
cohomology ring of the flag variety G/B (when G is a classical group, there is also
the twisted case, when the bilinear form takes values in a line bundle). Indeed,
from the point of view of a Lie theorist, there seems to be no reason to exclude the
exceptional groups from the degeneracy locus story. We will suggest two reasons
below why the classical groups appear to be special for this question.

In type A, the double Schubert polynomials of Lascoux and Schiitzenberger
[L2, LS1] were characterized as the unique polynomials that satisfy the general de-
generacy locus formula of [F1]. Fomin and Kirillov [FK3] observed that this strong
uniqueness property breaks down in type B, where in fact there is a plethora of
theories of (single) Schubert polynomials. However, the Schubert polynomials of
Billey and Haiman [BH] impressed us as the most combinatorially explicit theory
among those available in the other classical Lie types. These polynomials enjoyed
most of the properties of the type A single Schubert polynomials, but their transla-
tion (as given in [BH]) into Chern class formulas in H*(G/B) involved a change of
variables and an ensuing loss of combinatorial control. This problem was first ad-
dressed by the author [T3, T4], using a more natural and geometric substitution of
the variables, with applications to arithmetic intersection theory. Ikeda, Mihalcea,
and Naruse [IMN] later introduced double versions of the Billey-Haiman Schubert
polynomials and extended the substitution of [T3, T4] to this setting — expressing it
in a better way, as a ring homomorphism (the geometrization maps of §7.3). With
this work, the search for a satisfactory analogue of the Lascoux-Schiitzenberger
theory in the other classical Lie types was finally over.

Although the decision of which theory of Schubert polynomials to use is clearly
important, by construction they only provide formulas in terms of the Chern
roots of the vector bundles involved. When the initial degeneracy locus prob-
lem carries the symmetries of a parabolic subgroup P of G, we seek an answer
which manifestly exhibits the same symmetries. This should generalize the Jacobi-
Trudi determinants and Schur Pfaffians that appear when the Schubert polynomi-
als are evaluated on (maximal) Grassmannian elements of the Weyl group, as in
[KL, F3, PR2, FP, KT1]. In other words, we desire formulas that are native to
G/ P, i.e., expressed in terms of Schubert classes that live in the cohomology ring
of the homogeneous space G/P. It turned out that a precise understanding of the



GIAMBELLI AND DEGENERACY LOCUS FORMULAS FOR CLASSICAL G/P SPACES 3

Giambelli problem for H*(G/P), which is closely related to the degeneracy locus
formulas above, was necessary for further progress.

The cohomology of X = G/P is a free abelian group on the basis of Schubert
classes, the cohomology classes of the Schubert varieties. When G is a classical Lie
group, there are certain special Schubert classes among these, which generate the
ring H*(X). This is one place where the fact that G is classical is important: at
present, we do not know how to define special classes for the exceptional groups.
For classical G, one has a good definition of special Schubert varieties, which is uni-
form across the four types. In this case, the variety X parametrizes partial flags of
subspaces of a vector space, which in types B, C, and D are required to be isotropic
with respect to an orthogonal or symplectic form. If X is an (isotropic) Grassman-
nian, then the special Schubert varieties are defined as the locus of (isotropic) linear
subspaces which meet a given (isotropic or coisotropic) linear subspace nontrivially,
following [Pi, BKT1]. The special Schubert varieties on any partial flag variety X
are the inverse images of the special Schubert varieties on the Grassmannians to
which X projects. The special Schubert classes are the cohomology classes of the
special Schubert varieties; in most examples, they are equal to the Chern classes of
the universal quotient bundles over X, up to a factor of two.

The Giambelli problem for H*(X) challenges us to write a general Schubert
class as an explicit polynomial in the above special classes. The papers [G1, BKT2,
BKT4] addressed this question for all (isotropic) Grassmannians, and [BKTY1, T7]
extended the answer to any classical G/P space. To do this, we had to go beyond
the known hermitian symmetric, fully commutative examples, and invent a consid-
erable body of new combinatorics. The Schubert classes are indexed by (typed)
k-strict partitions, the Giambelli formulas are expressed using Young’s raising op-
erators [Y, Li] and studied using a new calculus of these operators [BKT2, T5], the
Schur polynomials are extended to theta and eta polynomials, and instead of Young
tableaux, we count paths in k-transition trees. Ultimately, all of these objects can
be understood purely in terms of the combinatorics of the Weyl group of (signed)
permutations.

The degeneracy locus problem is equivalent to the Giambelli problem when the
space X varies in an algebraic family, and thus would appear to be more difficult.
Indeed, in most cases where determinantal formulas for the double Schubert poly-
nomials representing the loci were known, these formulas were significantly more
complicated than their single versions — which address the Giambelli problem in
that case. The type A paper [BKTY1] changed that paradigm: it established the
surprising fact that if one uses the language of quiver polynomials, then the answer
to the degeneracy locus problem has the same shape as that for the Giambelli prob-
lem, and indeed, a near identical proof! This picture was generalized to all classical
types in [T7], in a synthesis which used all of the above ingredients, and added
some new ones. The results were combinatorial splitting formulas for the Schubert
polynomials of [BH, IMN], and direct translations of these into degeneracy locus
formulas, with the symmetries native to the appropriate G/P space.

The goal of this paper is to explain the above story. The narrative combines
elements from algebraic geometry, Lie theory, and combinatorics, and we have
strived to keep the exposition as self-contained as possible. We include one original
contribution: a new proof of the main result of [IMN], which states that the dou-
ble Schubert polynomials in types B, C, and D represent the Schubert classes. The
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setup in [IMN] uses localization in equivariant cohomology, which we do not require
here. The key idea — exploited in [T5, T7, T8] — is to use the elegant approach
to Schubert polynomials via the nilCoxeter algebra and the Yang-Baxter equation,
pioneered in [FS, FK2, FK3]. One of the advantages of this approach is that the
Schubert polynomials are defined simply and directly in terms of reduced decom-
positions in the Weyl group, without requiring the use of a ‘top polynomial’. From
this point of view, one can also understand why the stability property of Schubert
polynomials is needed: it is only in the stable equivariant cohomology ring that
compatibility with divided differences alone (both left and right! — an important
insight of [IMN]) is enough to characterize the universal Schubert classes, up to a
scalar factor. Anderson and Fulton [AF] have recently also given a different proof
of the main theorem of [IMN], within the framework of degeneracy loci, using a
geometric argument which employs Kazarian’s multi-Schur Pfaffians [Kal].

We have made no attempt to write a survey, and in particular the extensive
literature on the Schubert calculus and the equivariant cohomology of homoge-
neous spaces is barely touched upon. In special cases, there are alternatives to
the combinatorial formulas shown here; the reader may consult [AF, Ar, Bi2, BJS,
BKT2, BKT4, FP, I, IN1, Kal, KT1, LRS, L4, Mi2, T5, T8, TW] for examples
of what is known, and the papers [Brl, BKT1, BKTY1, IMN, T5, T7] for further
references to related research. Throughout this article, we work with cohomology
groups, at times with rational coefficients. However, from these, one can deduce
results for cohomology with integer coefficients, and also in the algebraic category,
for the Chow groups of algebraic cycles modulo rational equivalence. The necessary
modifications to achieve this are explained in detail in [Brl, EGr, F3, Gr].

This article is organized as follows. We begin in §1 and §2 with a discussion of
Giambelli formulas for Grassmannians, expressing them using the language of rais-
ing operators. Section 3 contains general facts about the cohomology of G/ P spaces
and the Giambelli problem in this context. The combinatorial data coming from
the Weyl group and the algebraic objects necessary to state the general degeneracy
locus formulas are given in §4 and §5, respectively. In particular, §5.3 contains
splitting formulas for Schubert polynomials, which admit direct translations in §6
to Chern class formulas for degeneracy loci. Section 7 outlines the proofs of the
main theorems, and §8 contains some questions for the future.

This project would not have been possible without the contributions of many
authors, a list too long to mention here. I am particularly grateful for the hard
work and support of my collaborators Anders Buch, Andrew Kresch, and Alexander
Yong over a period of many years. I also thank the anonymous referee for comments
on an earlier version of the paper.

1. THE GIAMBELLI FORMULA OF CLASSICAL SCHUBERT CALCULUS

The main object of study in classical Schubert calculus is the Grassmannian
X = G(m,n), which is the set of all m-dimensional complex linear subspaces of
V = C"™. Given any subset H of V', we let (H) denote the C-linear span of H. Let
e1,...,e, denote the canonical basis of C", and d = n — m be the codimension of
the subspaces in X. The general linear group GL, (C) acts transitively on X, and
the stabilizer of the point (ey,...,e,,) under this action can be identified with the
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subgroup P of matrices in GL,,(C) of the block form

(1)

where the 0 in the lower left corner denotes a d X m zero matrix. In this way we
get a description of X as a coset space

X = GL,(C)/P

from which one can deduce that X is a complex manifold of dimension md. The
subgroup P is a mazimal parabolic subgroup of GL,(C). A similar analysis shows
that the manifold X is isomorphic to U(n)/(U(m) x U(d)), and hence is a compact
manifold. In fact, X is a projective algebraic variety, and may be described by
a system of quadratic polynomial equations, known as the Pliicker relations. For
further details on this and other aspects of this section, we refer to [F4, Ma].

In the latter half of the 19th century, Hermann Schubert gave a first systematic
treatment of enumerative projective geometry [Scl], in which the Grassmannian
X played a prominent part. The course of his study led him to introduce certain
natural closed algebraic subsets of X, later known as the Schubert varieties [Sc2].
To define them, set F; = (e1,...,e;) for each integer ¢ € [1,n], and consider the
complete flag of subspaces

F, . 0= CF,C---CF,=V.

The stabilizer B C GL,,(C) of F, is the Borel subgroup of upper triangular matrices
in GL,,(C). In modern language, the Schubert varieties are the closures of the B-
orbits in X. Each B-orbit in X is called a Schubert cell; there are finitely many
such cells, and they induce a cell decomposition of the manifold X.

We call a subset P C [1,n] of cardinality m an index set. Any point X € X
defines an index set P(X) by

PE)={pe[l,n] | ENE,2EXNF,_1}.

Observe that P(X') = P(X) for any point ¥’ in the orbit B.X. C X. On the other
hand, given any subspace ¥ C V, one can easily construct a basis {g1,...,gn} of
V such that F; = (g1,...,g;) for each i and ¥ = ({g1,..., g, } NE). It follows from
this that any point ¥’ € X such that P(X') = P(X) must be in the orbit B.X. In
other words, the B-orbits (or Schubert cells) in X correspond 1-1 to the index sets
P. We let X3 (F,) denote the Schubert cell given by P, that is,

(1) Xp(F) :={¥e X [P(X)="P}.

The definition implies that we have a cell decomposition
G(m,n) = HX%(F,)
P

Suppose that P = {p1 < --- < py, } is an index set. Any subspace ¥ € X3 (F,) is
spanned by the rows of a unique m x n matrix A = {a;;} in a special reduced row
echelon form: there is a pivot entry 1 in position (4, p;), all other entries in the ith
row after the pivot are zero, and all entries below the pivot entries are zero. If j < p;
and j # p, for all r < 4, then a;; is a free variable, and gives an affine coordinate
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for the Schubert cell X%,. For example, if m =4, n =10, and P = {3,5,6,9}, then

*x x 1 0 0 0 0 0 0 O
A— * x 0« 1 0 0 0 0 O
*+ x 0« 01 0 0 0 O
* x 0 %« 0 0 x x 1 0

From this description we see that the B-orbit X2 is isomorphic to affine space oldn
where |P| is the number of #’s in the reduced row echelon form of matrices in the

cell, namely
m

Pl = (p; — )
j=1
At this point it is convenient to introduce a different parametrization for the
Schubert cells which makes their codimension apparent: let

)\j::d-i-j—pj, 1<7<m.

It is clear that there is a 1-1 correspondence between the vectors A = (A1, ..., A\p)
and index sets P (for fixed m and n); for example P = {3,5,6,9} corresponds to
A =(4,3,3,1). The conditions on the index set P imply that

d>M 22X 2> 2> Ay, 20,

equivalently, that A = (A1,..., An) is a partition whose first part A; is at most d
and number of nonzero parts A; is at most m. Recall that any partition A can be
represented by a Young diagram of boxes, arranged in left-justified rows, with A;
boxes in the jth row. The above conditions state that the diagram of A is contained
in an mx d rectangle, which is the Young diagram of the partition (d™) = (d, ..., d).
The example shown below corresponds to a Schubert cell in G(4,10) indexed by
the partition A = (5,4, 2).

We identify a partition with its Young diagram; an inclusion A C p of partitions
corresponds to the containment of their respective diagrams. The weight of A,
denoted |\, is the total number of boxes in A, hence |A| = Z;nzl Aj, and A is a
partition of the integer |A|. For each A as above, we have a Schubert cell X3, which
is equal to X% for the index set P corresponding to A\. X3 has (complex) dimension
m
> (d =) =md— |\ =dimX — |},
j=1

and therefore codimension || in X.

The Schubert variety X (F,) is the closure of the Schubert cell X3 (F,); it is an
algebraic variety also of codimension |\| in X. We have

X(F) =[] XpF.)={S € X | dm(EZnFa;_»,) >4, 1<j<m}
O

For each partition A contained in (d™), let [Xy] € H2*(X,Z) denote the cohomol-
ogy class Poincaré dual to the cycle defined by X, (F,). If F! is another complete
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flag, then there is an element g in GL,,(C) such that g - F, = F!. It follows that
[XA(FV)] = [XA(F))], and therefore that the Schubert class [X ] only depends on
the partition A, and not on the flag F,. The cell decomposition of X implies that
the classes of the Schubert varieties give a Z-basis for H*(X,Z). In other words,
there is a direct sum decomposition

H (X,2)= @ z[X.].
)

Ac(dm

Of course, the cohomology H*(X,Z) is also a commutative ring under the cup
product, and dually under the intersection product of homology cycles. It follows
that the structure of this ring is determined by intersecting Schubert varieties in
general position. The simplest such varieties are the special Schubert varieties

X (F)={Se€X |SNFy1_, #0}

for 1 < r < d (here the index r is identified with the partition (r,0,...,0)). Histor-
ically, it was natural to focus on the X, since these spaces are the easiest to work
with geometrically. The corresponding classes [X,.] are the special Schubert classes.
These cohomology classes can be realized as characteristic classes of certain uni-
versal vector bundles over G(m,n). Let E’ denote the tautological rank m vector
bundle over X, E the trivial rank n vector bundle, and E” = E/E’ the rank d
quotient bundle, so that we have a short exact sequence

(2) 0—-FE -E—E' =0

of vector bundles over X. Then [X,] is by definition the r-th Segre class of E’, or
equivalently, the r-th Chern class of E”, denoted ¢, (E").

The work of Pieri [Pi] and Giambelli [G1] established that the special classes
¢, = ¢.(E") generate the cohomology ring H* (X, Z). Giambelli proved the following
explicit formula which writes a general Schubert class [X,] as a polynomial in special
classes:

(3) [Xa] = det(cx, 1i—i(E"))1<ij<m-

In equation (3) and in the remainder of this paper, our convention is that ¢g = 1
and ¢, = 0 whenever r < 0. Observe that there are relations among the ¢, in
H*(X,Z), so that the right hand side of formula (3) is not unique. However, the
natural inclusion G(m,n) < G(m + 1,n + 1) induces a surjection

H*(G(m + 1,n + 1), Z) — H*(G(m,n), Z).

For a fixed partition A and codimension d, the Giambelli polynomial in (3) is the
unique one that is preserved under the above map, for all m greater than or equal
to the number of (nonzero) parts of .

For our purposes here it will be important to rewrite formula (3) using A. Young’s
raising operators [Y]. An integer sequence is a sequence of integers o = (a1, ag, . . .)
only finitely many of which are nonzero. Given any integer sequence v and natural
numbers i < j, we define

Rij(a) = (a1,...,a; +1,...,a5 —1,...).

A raising operator R is any monomial in these R;;’s. If (¢1, cq, .. .) is any ordered set
of commuting independent variables, we let ¢, := [],~; ¢a,, with the understanding
that ¢o = 1 and ¢, = 0 if r < 0. For any raising operator R, set Rcq = Cra (note
that we slightly abuse the notation here and consider that the raising operator R
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acts on the index «, and not on the monomial ¢, itself). Consider the raising
operator expression

RO = H(l - Rzg)
i<j
If we expand the infinite product R° as a formal power series in the R;; and apply
the result to c,, only finitely many of the summands are nonzero. Therefore R’ c,,
is a well defined polynomial in the variables c,, and in fact we have

(4) Rl¢, = det(ca;+j—i)ij-
Equation (4) is a formal consequence of the Vandermonde identity
I &i—x)=det(x"")1<ijcm ;
1<i<j<m
for a proof of this see e.g. [T6]. It follows that we may rewrite (3) as
(5) [(X\] = R ea(E"),

where c\(E") =[], ¢x,(E"”) denotes a monomial in the Chern classes of E”, and
RO is applied to ¢y as above.

Example 1. We have

[(X(5,4,2)] = (1 = Ri2)(1 — Ry3)(1 — Ra23) ¢(5,4,2)
= (1 = Ri2 — Ri3 — Ra3 + Ri2Ri3 + Ri2Ro3 + Ri3Ra3 — Ri2Ri3Ra3) ¢(5,4,2)

= C(5,4,2) ~ €(6,3,2) ~ €(6,4,1) — €(5,5,1) T €(7.3,1) T C(6,4,1) T €(6,5,0) — €(7,4,0)

Cs Cg Cr
= C5C4C2 — C6C3C2 — 0301 + c7c3C1 +C6C5 —C7C4 = | €3 €4 Cs
1 C1 Co

Soon after he proved (3), Giambelli published a second paper [G2] where he
studied a parallel formalism in the theory of symmetric polynomials. For any integer
7, let e,(Y(4)) denote the r-th elementary symmetric polynomial in the commuting

variables Y(4) = (y1,...,¥4). Given a partition p with at most d nonzero parts,
consider
(6) su(Y(a)) = det(yf'ﬁd_j)lsl‘,js(i/det(yf_j)lsmsw

The s,(Y(q)) for varying 4 may be identified with the polynomial characters of
the general linear group GL,(C); this had been established a few years earlier by
Schur in his 1901 thesis [S1] (in fact, equation (6) is a special case of the Weyl
character formula). For any partition A, let X be the conjugate partition, whose
Young diagram is the transpose of the diagram of A. Then Jacobi and Trudi proved
that the Schur polynomial s5(Y(4)) satisfies

(7) 55 (Y(a)) = R% ex(Yiq)) = det(ex,+j—i(Ya))ii

for any A C (d™), where ey := []; ex,. We may thus consider s5 as a polynomial
in the algebraically independent variables e,., for 1 < r < d. In the theory of char-
acteristic classes, the variables yi, ..., yq represent the Chern roots of the quotient
vector bundle E”, and e, (Y(4)) is identified with the r-th Chern class ¢, (£"). Using
¢(E") to denote the total Chern class 1+ ¢1(E”) + -+ + c4(E"”) of E”, we obtain
the following restatement of equations (3) and (5).
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Theorem 1 (Classical Giambelli, [G1]). For any partition A\ whose diagram fits
inside an m x (n —m) rectangle, we have

(8) [X3] = s5(c(E))
in the cohomology ring of G(m,n).

For more on the connection between the representation theory of the general
linear group and the classical Schubert calculus, see [Bel, BK, T2].

2. GIAMBELLI FORMULAS FOR ISOTROPIC GRASSMANNIANS

The study of homogeneous spaces of Lie groups was extended further during
the first half of the twentieth century by the work of Elie Cartan [C1, C2] and
Ehresmann [E]. They considered the irreducible compact hermitian symmetric
spaces, which generalize the Grassmannian G(m,n), and began exploring their
cohomology rings. Rather than proceeding along the lines of the classical Schubert
calculus, this work used Cartan’s theory of invariant differential forms. It was only
in the 1980s that analogues of Pieri’s rule and Giambelli’s formula were obtained
for all hermitian symmetric Grassmannians, in the work of Hiller and Boe [HB] and
Pragacz [P2]. More recently, Pragacz and Ratajski [PR1, PR3] proved Pieri type
rules and Buch, Kresch, and the author [BKT1, BKT2, BKT4] generalized both the
Pieri and Giambelli formulas of [HB, P2] to arbitrary symplectic and orthogonal
Grassmannians, using different notions of special Schubert classes. We will follow
the references [BKT2, BKT4] in this section.

Let V = CV and equip V with a nondegenerate skew-symmetric or symmetric
bilinear form ( , ). A subspace ¥ of V is called isotropic if the restriction of ( , )
to X vanishes identically. Since the form is nondegenerate, the dimension of any
isotropic subspace is at most N/2. Given a nonnegative integer m < N/2, we let
X denote the complex manifold which parametrizes all the isotropic subspaces of
dimension m in V. This space has a transitive action of the group G = Sp(V') or
G = SO(V) of linear automorphisms preserving the form on V, unless m = N/2
and the form is symmetric. In the latter case the space of isotropic subspaces has
two isomorphic connected components, each a single SO(V') orbit.

An isotropic flag F, is a complete flag

0=FCHnC- - CFy=V

of subspaces of V such that F; = Fjl whenever i + j = N; in particular, F; is an
isotropic subspace for all i < N/2. Let B C G denote the Borel subgroup which
is the stabilizer of the flag F,. The Schubert cells in X relative to the flag F, are
the orbit closures for the natural action of B on X. We call a subset P of [1, N] of
cardinality m an index set if for all i, j € P we have i +j # N + 1. A point ¥ in
X defines an index set P(X) by the prescription

P() = {pe LN | SN F, 28N Fp),

since no vector in F; \ F}j_ is orthogonal to a vector in Fy11—; \ Fy_;, for each j.
In the same manner as in §1, equation (1) establishes a one to one correspondence
between Schubert cells X2 (F,) relative to F, and index sets P.

The closures of the Schubert cells are the Schubert varieties Xp(F,), and their
classes [Xp] in H*(X,Z) are the Schubert classes, which form an additive basis of
H*(X,Z). Moreover, there are special Schubert varieties, consisting of the locus of
subspaces ¥ in X which meet a given subspace F; non-trivially, and corresponding
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special Schubert classes, which generate the cohomology ring of X. In the following
sections, we will see that the Schubert varieties and classes may equivalently be
indexed by k-strict partitions and typed k-strict partitions. As in §1, this is a
convention which makes their codimension (or cohomological degree) apparent, and
we will require in order to state the Giambelli formulas of this section.

2.1. Symplectic Grassmannians. Suppose that N = 2n is even and the form
(,) is skew-symmetric, so that X = IG(m,2n) is a symplectic Grassmannian.
Write m = n—k for some k with 0 < k <n—1. If £ = 0, then X is the Lagrangian
Grassmannian LG(n, 2n), and if k = n— 1, then X is projective 2n— 1 space P?"~1,
since every line through the origin in V is isotropic. These are the only hermitian
symmetric examples. The space IG(n — k,2n) may be identified with a quotient
Spa, (C)/ Py of the symplectic group Sps,, (C) by a maximal parabolic subgroup P.
For instance, the subgroup Py is known as the Siegel parabolic and consists of those
matrices of the symplectic group whose lower left quadrant is an n X n zero matrix
(when we choose the standard symplectic basis for C?", as in §7.3).
Consider the infinite set of pairs

A° ={(i,j) e NxN|1<i<j}
and define a partial order on A° by agreeing that (i',j') < (i,7) if ¢/ < ¢ and
j" < j. A subset D of A° is an order ideal if (¢,j) € D implies (¢/,5') € D for
all (¢/,5") € A° with (¢,5') < (4,7). In the next figure, the pairs (4, ) in a typical
finite order ideal are displayed as positions in a matrix above the main diagonal.

O

O O

O OO0

OO0OO0O0
[ONONONONE)
OO0OO0OO0O0OO0
OO0OO0OO0O0O0O0
OO0OO0OO0OO0OO0O0O0

OO0OO0O0OO0OO0O0O0OO0
@)
@)
@)

OO0OO0OO0OO0OO0O0O0
OO0OO0O0OO0O0O0O0
OO0OO0OO0OO0O0O0
OO0OO0OO0O0O0O0
OO0OO0OO0OO0O0O0
OO0OO0O00O0
OO0OO0O0O0
[ONONONONE)

O O

O O

O O

O O

O O

A partition A is k-strict if no part A; greater than k is repeated; if k& = 0 this
means that A is a strict partition, i.e., has distinct nonzero parts. To any k-strict
partition A we associate the order ideal

CN) :={(,5) e A° | \i + Aj > 2k +j — i}
The set C(A) is an important invariant of the partition A which appears in the defi-
nitions of both the index set P()\) and the raising operator expression R* associated
to A (equations (9) and (12) below; compare also with (33)).

The Schubert varieties on IG(n — k, 2n) are indexed by k-strict partitions whose
diagrams fit in an (n — k) x (n + k) rectangle. Any such A corresponds to an index
set

PA) ={p(N) <--- <pm(N)}
given by the prescription
(9) piA) s=n+k+j =X —3#{i <j | (i,5) e CN)}-
The reader is invited to show that equation (9) gives a bijection between index sets

and k-strict partitions as claimed (a proof is provided in [BKT1, §4.1]). If F, is a
fixed isotropic flag of subspaces in V', we obtain the Schubert cell

(10) X3(F.) = {S € X | P(E) = PV}
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and the Schubert variety X (F,) is the closure of this cell. One can show that
(11) XA(F) = {2 € X |dim(ZNF, ) >j V1<j<lN},
where the length ¢(X) is the number of (nonzero) parts of \; see e.g. [BKT1, §4.2]
and [BKT4, App. A]. This variety has codimension |A| and defines, using Poincaré
duality, a Schubert class [X,] in H2M(1G, Z).
The special Schubert varieties are given by
X, (F)={S€X | XN Fuips1r#0}
for 1 <r < n+k, and their classes [X,] are the special Schubert classes. Let E'
denote the tautological rank (n — k) vector bundle over IG(n — k, 2n), E the trivial
rank 2n vector bundle, and E” = E/E’ the quotient bundle. As in the example of
the type A Grassmannian in §1, we have [X,]| = ¢, (E”) for 1 <r <n+k.
For any k-strict partition A\, we define the operator
(12) R/\ = H(l - R”) H (1 + Rm‘)il
i<j (4,5)€C(N)
where the first product is over all pairs ¢ < j and second product is over pairs i < j
such that \; +\; > 2k + j —i. Note that equation (12) is a multiplicative analogue
of equation (9). If ¢ = 1+ ¢yt + cot? + - - - is any formal power series in commuting
variables ¢,., we define the theta polynomial ©) by
(13) 0x(c) := R ¢y,
Theorem 2 (Giambelli for IG, [BKT2]). For any k-strict partition A\ whose dia-
gram fits inside an (n — k) x (n + k) rectangle, we have
(14) [X3] = Ox(c(E"))
in the cohomology ring of IG(n — k,2n).
Example 2. Let k = 1 and A be the 1-strict partition (3, 1,1), with C(A\) = {(1,2)}.
Then the following computation holds in the ring H*(IG(4, 10), Z):

1— Rio
X - = —
RACREN 14+ Rio

= ¢(3,1,1) — 2€(4,0,1) — C(a,1) + 265 — C(3,2) + 2¢(a,1) — 2¢5 = C3€] — cac1 — C3Ca.

(1-Ri3)(1-Ra3) ¢(3,1,1) = (1-2R12+2R%,) (1— Ri3—Ras) ¢(3.1,1)

Comparing (14) with (5) and (8), we see that the polynomials O, play the role
of the Schur polynomials for the Giambelli problem on IG(n—k, 2n). An important
difference with the story for the type A Grassmannian is that there are relations
among the ¢, which persist even as n — oo, namely:

1_R12c
14+ Ry (

T
(15) oy = Cp+ 22(—l)icr+icT_i =0, forall r>k.
i=1
Another difference is that the raising operator expressions R* which enter in (13)
depend on the partition A (see also Example 3 below).

We next specialize the above to the Lagrangian Grassmannian LG(n,2n), which
is the case where k = 0. The Schubert classes in H*(LG(n,2n),Z) are indexed
by strict partitions A whose diagrams fit inside a square of side n. The theta
polynomial (13) specializes to a Q-polynomial

(16) Qr(e) = [ -t

C).
oy 14+ Ry
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The Giambelli formula of Theorem 2 for LG becomes

(17) [X3] = Qa(c(E)).

Following Pragacz [P2], formula (17) may be expressed using a Schur Pfaffian, as
follows. For partitions A = (a,b) with only two parts, we have

1+ Ryo (a.b)

while for A\ with 3 or more parts,
(19) [X)\] = Pfafﬁan([X()\h)\j)])lgi<j§2¢/

where ¢ is the least positive integer such that 2¢' > £(X).

As we alluded to above, the identities (18) and (19) go back to the work of Schur
on the projective representations of symmetric groups [HH, Jo, S2, St1], where he
introduced a family of symmetric functions {Qx(X)} known as Schur @-functions.
We let X = (x1,29,...) be a list of variables, define ¢,.(X) by the equation

(18) (X)) = = CoCh — 2Cq11Ch—1 + 2Caq2Ch_o — -

[I = 0o
i=1 v r=0

and then use the same relations (18) and (19) with ¢.(X) in place of ¢, to define
Q(a,p)(X) and then Qx(X), for each strict partition A. Once more we emphasize
that there are relations among the ¢, the simplest being ¢ = 2go; hence, the
above polynomials which define @x(X) are not uniquely determined. However,
the equivalence of the raising operator and Pfaffian definitions of @ is a formal
consequence of the following Pfaffian identity from [S2]:

I 5% = Phaffian (Xﬂa)
1<icj<or KT X Xi +X5 /) 1<ij<or

which holds in the quotient field of Z[xq, ..., Xas¢].

Remark 1. Although the definition (16) is not standard, it is in direct analogy

with the usage of the term ‘Schur polynomial’ in type A. We reserve the name

‘Q-polynomial’ for the polynomial in the variables ¢, given in (16), and also for

its principal specialization, when ¢, is replaced by ¢.(X) for each integer r. This
nomenclature extends to the theta polynomials; compare (13) with (37) in §5.2.

Example 3. Let A = (A1, Ag,...) be a k-strict partition. If A; < k for each 4, then
(20) Ox(c) = H(l — Rij) ex = det(ex,+j—i)i,j
i<j

while if A\; > k for all nonzero parts \;, then

1—R;; 1—Rio
21 €] = || —=2c\ = Pfaffi s )
( ) A(C) E 1+ Rij A atan (1 + Ris C)\“/\J>i<j

We deduce that as A varies, the polynomial ©,(c¢) interpolates between the Jacobi-
Trudi determinant (20) and the Schur Pfaffian (21). In general, the inclusion of a
pair (4, 7) in the set C(A) which specifies the denominators in (12) depends not only
on the size of A\; and A;, but also on their relative position in the sequence A.
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2.2. Orthogonal Grassmannians. Consider the case where m < N/2 and the
form ( , ) is symmetric, so that X = OG(m, N) is an orthogonal Grassmannian. If
N = 2n + 1 is odd, then the Schubert varieties in OG(m,2n + 1) are indexed by
the same set of k-strict partitions that index the Schubert varieties in IG(m, 2n).
For any k-strict partition A, let £ (\) denote the number of parts A; of A which are
strictly greater than k. Let Eji, and Ef); be the universal quotient vector bundles
over IG(n — k,2n) and OG(n — k,2n + 1), respectively. One then knows (see e.g.
[BS, §3.1]) that the map which sends ¢, (Efy) to ¢, (E{¢) for all r extends to an
isomorphism of graded rings

H*(IG(n — k,2n),Q) — H*(OG(n — k,2n +1),Q),

which sends a Schubert class [X] on IG to 2/ times the corresponding Schubert
class on OG. This isomorphism shows that the Schubert calculus on symplectic and
odd orthogonal Grassmannians coincides, up to well determined powers of two. In
particular, one can easily transfer the Giambelli formula of §2.1 to OG(m,2n + 1).
We next assume that N = 2n is even, so that m =n — k with k > 0. A typed k-
strict partition is a pair consisting of a k-strict partition A together with an integer
in {0, 1,2} called the type of A\, and denoted type()\), such that type(A) > 0 if and
only if \; = k for some ¢ > 1. We usually omit the type from the notation for the
pair (A, type(A)). To any typed k-strict partition A we associate the order ideal

C’()\) ;:{(i’j)er | /\z+)\322k+]_1}

in A°. The Schubert cells in the cohomology of the even orthogonal Grassmannian
X = OG(n — k,2n) are indexed by the typed k-strict partitions A whose diagrams
are contained in an (n —k) X (n+ k — 1) rectangle. For any such \, define the index
function p; = p,(A) by

piN) =n+k+j-N—#{i<j|(i,5)€C (N}

)1 A >k or Ay =k < Aj—1 and n+j + type()) is odd,
0 otherwise.

We obtain an index set P(A) associated to any typed k-strict partition A as above,
and a Schubert cell X3, (F,) defined by (10).

The Schubert variety Xp(F,) is best defined as the closure of X2(F,), since a
geometric description of Xp(F,) analogous to (11) involves subtle parity conditions
(see [BKT4, App. A]). We say that two maximal isotropic subspaces E and F of V
are in the same family if

dim(E N F) = n(mod 2).

Fix a maximal isotropic subspace L of V, so that dim(L) = n. The cohomology
classes [Xp] of the Schubert varieties Xp(F,) in OG are are independent of the
choice of isotropic flag F, as long as F}, is in the same family as L. If P corresponds
to A, then the associated Schubert class [X,] = [Xp] in H2M (X, Z) is said to have
a type which agrees with the type of .

The special Schubert varieties in OG(m, 2n) can be defined as before by a single
Schubert condition, as the locus of ¥ € X which intersect a given isotropic subspace
or its orthogonal complement non-trivially (see [BKT1, §3.2]). The corresponding
special Schubert classes

/
(22) Tlye e 9y Th—15Tky Thes Th+15+ + -y Tn+k—1
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are indexed by the typed k-strict partitions with a single nonzero part, and generate
the cohomology ring H*(X,Z). Here type(ry) = 1, type(r},) = 2, and if

0—-E —-FE—=E" =0

denotes the universal sequence of vector bundles over X, then we have

T if r <k,
(23) er(B") =S 1 +11 ifr=k,
27, if r> k.

We set cq = [[; ca,. Given any typed k-strict partition A, we define the operator
(24) R)\ = H(l_Rij) H (1+Rij)_1
(:,4)€C’(N)

where the first product is over all pairs ¢ < j and the second product is over
pairs ¢+ < j such that A; + A; > 2k 4+ j —i. Let R be any finite monomial in the
operators R;; which appears in the expansion of the formal power series R* in (24).
If type(A) = 0, then set R*cy := cg . Suppose that type(A) > 0, let d be the least
index such that Ay = k, and set

Q= (1, ey Qg1 Odp 1y - - 5 )

for any integer sequence a of length ¢. If R involves any factors R;; with ¢ = d or
j =d, then let R*c) := %CR)\. If R has no such factors, then let

Ry T;f CEy ?f type(A) =1,
ey if type(A) = 2.
We define the eta polynomial H) by
(25) Hy(c) =27 R segy.

Note that Hy(c) is really a polynomial in the variables 7, for r > 1 and 7y, which
are related to the variables ¢, by the formal equations (23).

Theorem 3 (Giambelli for OG, [BKT4]). For every typed k-strict partition A whose
diagram fits inside an (n — k) x (n+ k — 1) rectangle, we have

(26) [Xa] = Hx(c(E"))
in the cohomology ring of OG(n — k,2n).

Example 4. Counsider the typed 1-strict partition A = (3,1,1) with type(A) = 2.
The corresponding Schubert class in H*(OG(4, 10), Z) satisfies

_ 11 -Rip 1 - Ry
214 Rz 1+ Ri3

1
= 5(1 — 2R12 + 2R},)(1 — 2Ry3 — Ros) * c(3,1,1)

[X(3,1,1)] (1 - RQB)*C(3,1,1)

/ / /
= 737'1(7'1 + 7'1) — 27’47’1 — 73Ty + T5.

In general, the Giambelli formula (26) expresses the Schubert class [X] as a poly-
nomial in the special Schubert classes (22) with integer coeflicients.
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To conclude this section, we consider the space of all maximal isotropic subspaces
of an even dimensional orthogonal vector space V. This set is a disjoint union of two
connected components, each giving one family (or SO(V')-orbit) of such subspaces.
The (irreducible) algebraic variety OG = OG(n,2n) is defined by choosing one of
these two components. If H is a hyperplane in V' on which the restriction of the
symmetric form is nondegenerate, then the map > — 3 N H gives an isomorphism
between OG(n,2n) and OG(n — 1,2n — 1). The analysis for the (type B) odd
orthogonal Grassmannian in the maximal isotropic case therefore applies to OG.
In particular, the Schubert classes X, may be indexed by strict partitions A with
A1 < n —1, and the Giambelli formula for OG reads

[Xa] = Pr(e(E"))

where E” — OG is the universal quotient bundle and the P-polynomial Py is
related to Q, by the equation Py = 2~¢NQ,.

3. COHOMOLOGY OF G/P SPACES

In this section G will denote a connected complex reductive Lie group. The main
examples we will consider are the classical groups: the general linear group GL,,(C),
the symplectic group Sp,, (C), and the (odd and even) orthogonal groups SOy (C).
A closed algebraic subgroup P of G is called a parabolic subgroup if the quotient
X = G/P is compact, or equivalently, a projective algebraic variety. We proceed
to study the topology of the complex manifold X by generalizing the constructions
found in the previous sections.

The Borel subgroups B of G are the maximal connected solvable subgroups; a
subgroup P of G is parabolic if and only if it contains a Borel subgroup. Fix a
Borel subgroup B, let T' = (C*)" be a maximal torus in B, and W = Ng(T)/T
be the Weyl group of G. The simple reflections s, which generate W are indexed
by the set A of positive simple roots «, and are also in one-to-one correspondence
with the vertices of the Dynkin diagram D associated to the root system. The
parabolic subgroups P containing B are in bijection with the subsets Ap of A, or
the subsets of the vertices of D, as shown in the figures of §6. In particular each
root a € A corresponds to a maximal parabolic subgroup, which is associated to
the subset A \ {a}. We let Wp denote the subgroup of W generated by all the
simple reflections in Ap.

The length ¢(w) of an element w in W is equal to the least number of simple
reflections whose product is w. We denote by wg the element of longest length in
W. It is known that every coset in W/Wp has a unique representative w of minimal
length; we denote the set of all minimal length Wp-coset representatives by W7,.
The manifold X has complex dimension equal to the length of the longest element in
WP, The set WF (or the coset space W/Wp) indexes the Schubert cells, varieties,
and classes on X as follows. First, the Bruhat decomposition G = [, oy, BwB of
the group G induces a cell decomposition

G/Pp= [[ BwP/P
weW P

of the homogeneous space X = G/P. The cell BwP/P is isomorphic to the affine
space CH®) Since we prefer the length of the indexing element to equal the codi-
mension of the cell in X, we define the Schubert cell X¢ to be BwowP/P. The
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Schubert variety X,, is defined as the closure of the Schubert cell X, and its coho-
mology class [X,,] lies in H*(*)(X,Z). This completes the additive description of
the cohomology of X, as a free abelian group on the basis of Schubert classes [X,,]:

H(X,Z)= P Z[X
weWwr

3.1. The Giambelli problem. We seek to generalize the classical Schubert cal-
culus of §1 to the G/P spaces in their natural cell decompositions described above.
By this we mean to understand as explicitly as possible the multiplicative struc-
ture of the cohomology ring H*(G/ P, Z), expressed in the basis of Schubert classes.
However, it is clear that the extension of the classical Pieri and Giambelli formulas
to G/ P depends on a choice of special Schubert classes which generate the cohomol-
ogy ring. For arbitrary G, it is fortunate that there is one example of a parabolic
P where the choice of generating set is clear: the case when P = B is a Borel
subgroup of G, and X = G/B is the (complete) flag variety of G. In this case,
the cohomology ring H* (X, Q) is generated by the classes of the Schubert divisors
X, one for each simple root o. Equivalently, we can form a generating set by
taking any Z-basis of H?(X,Z), which is related to the Schubert divisor basis by a
linear change of variables. In a seminal paper, Borel [Bo], using the theory of group
characters and associated characteristic classes of line bundles over G/B, gave an
invariant, group theoretic approach to this question, which we recall below.

A character of the group B is a homomorphism of algebraic groups B — C*. We
denote the abelian group of characters of B by B. Observe that any character y of
B is uniquely determined by its restriction to T, since B =T x U is the semidirect
product of T" and the unipotent subgroup U of B, and regular invertible functlons
on U are constant. It follows that the character group T of T is isomorphic to B.

If x is a character of B, then we get an induced free action of B on the product
GxCbyb-(g,2) = (gb-',x(b)z). The quotient space L, = (G x C)/B, also
denoted by G xP C, projects to the flag manifold G/B by sending the orbit of
(g9,2) to gB. This makes L, into the total space of a holomorphic line bundle
over G/B, which is the homogeneous line bundle associated to the weight y. Let
Pic(G/B) be the Picard group of isomorphism classes of line bundles on G/B, with
the group operation given by the tensor product. Then the map x — L, is a group
homomorphism B — Pic(G/B). Composing this with the first Chern class map
¢1 : Pic(G/B) — H?(G/B,Z) gives a group homomorphism

B — H*(G/B,Z)
X — c1(Ly).
If S (E) denotes the symmetric algebra of the Z-module E, then the above map
extends to a homomorphism of graded rings
¢:S(B) - H*(G/B,Z)
called the characteristic homomorphism.

Let S := S(E) ®z Q. Borel [Bo] proved that the morphism ¢ is surjective,

after tensoring with Q, and that the kernel of ¢ is the ideal generated by the W-

invariants of positive degree in S, denoted (S"). We thus obtain the classical Borel
presentation of the cohomology ring of G/B,

(27) H'(G/B,Q) = §/(SY).
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Furthermore, for any parabolic subgroup P D B, the projection map G/B — G/P
induces an injection H*(G/P) — H"(G/B), and this inclusion is realized in the
presentation (27) by taking Wp invariants on the right hand side:

(28) H*(G/P,Q) = 8" /(SY).

One knows that if the algebraic group G is special in the sense of [SeC], then the
isomorphisms (27) and (28) hold with Z-coefficients. For the classical groups, this
is the case if G is the general linear group GL,, or the symplectic group Sp,,,.

Example 5. Suppose that G = GL,,(C), and choose the Borel subgroup B of upper
triangular matrices, as in §1. The flag manifold G/B then parametrizes complete
flags of subspaces

0CEICE,C---CE,=C"
in C™. The maximal torus T' C B is the group of invertible diagonal matrices, and
the characters of T are the maps

diag(ty, ..., tn) = 190 -2,

where a4, ..., a, are integers. In this way, the multiplicative group of characters T
(and B) is identified with the additive group Z", and we have

S(T) = S(B) = Z[x1,. .., %)

The Weyl group W is the symmetric group Sy, and (27) implies that H*(G/B,Z)
is isomorphic to Z[xy, ..., x,]/I, where I is the ideal generated by the non-constant
elementary symmetric polynomials in x1,...,X,.

In the case of the Grassmannian G(m,n) = GL,,(C)/P, the associated parabolic
subgroup of W = 5, is Wp = S,,, X S,,_m, embedded in S, in the obvious way.
The Wp-coset representatives of minimal length are the permutations w € S,, such
that w; < -+ < @y and w1 < o0 < @y A = (Ag,..., \p) is a partition
which indexes a Schubert variety X, in G(m,n), then the minimal length coset
representative w corresponding to A is determined by the equations

W = Amy1—; +5, for 1 <j<m.
The ring presentation (28) assumes the form
H(G(m,n), Z) 2 (Zfx1,- - Xm]*" @ Zxmy, -, %a] 57 /1

and the two groups of variables x1,...,%X,, and X;,41,...,X, are the Chern roots
of the vector bundles E’ and E” in the universal exact sequence (2), respectively.
The relations generating the ideal I translate into the Whitney sum formula

c(E"e(E") = c(E) = 1.

Although the presentation (28) is very natural from a Lie-theoretic point of view,
in general there will be more than one way to identify special Schubert classes which
generate the cohomology ring of G/P among the Wp-invariants in S. However,
when G is a classical group, there is a good uniform choice of special Schubert
class generators of H*(G/P), as explained in the introduction. Initially, the special
Schubert classes on any Grassmannian are defined exactly as in §1 and §2. If P
is arbitrary, then the partial flag variety G/P admits projection maps to various
Grassmannians G/ P,, defined by omitting all but one of the subspaces in the flags
parametrized by G/P. The special Schubert classes on G/P are defined to be
the pullbacks of the special Schubert classes from the Grassmannians G/P,. The
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Giambelli problem then asks for an explicit combinatorial formula which writes a
general Schubert class in H*(G/P) as a polynomial in these special classes.

3.2. Equivariant cohomology and degeneracy loci. The definition of equivari-
ant cohomology begins with the construction of a contractible space EG on which
G acts freely. If BG = EG/G denotes the quotient space, which is a classifying
space for the group G, then the map EG — B( is a universal principal G-bundle.
In the topological category, this means that if &/ — M is any principal G-bundle,
then there is a morphism f : M — BG, which is unique up to homotopy, such that
U= f*EG. If X is any topological space endowed with a G-action, then G acts
diagonally on EG x X (that is, g(e, z) := (ge, gx)) and the quotient

EG x% X := (EG x X)/G
exists. The G-equivariant cohomology ring H¢,(X) of X is then defined by
HL(X) := H*(EG x9 X)

where we usually take cohomology with Q-coefficients. Note that any subgroup of G
also acts freely on EG, therefore we can similarly define classifying spaces BB :=
EG/B, BT := EG/T, etc., and equivariant cohomology rings Hp(X), H}(X),
respectively. The natural map FG xT X — EG x? X induces an isomorphism

(29) H7(X) = Hp(X).

For more on equivariant cohomology, see e.g. [Hs, Br2].

A flag bundle is a fibration with fibers isomorphic to the flag variety X = G/B.
Motivated by the theory of degeneracy loci of vector bundles, Fulton, Pragacz, and
Ratajski [F2, F3, PR2| studied the question of obtaining explicit Chern class for-
mulas for the classes of universal Schubert varieties in flag bundles for the classical
Lie groups. In effect, this is the Giambelli problem of §3.1 when the homogeneous
space X wvaries in a family. We give a description of the problem here assuming
that we are in Lie type A, B, or C for simplicity. Suppose that E — M is a vector
bundle over a variety M, which in type B or C comes equipped with a nondegener-
ate symmetric or skew-symmetric bilinear form E ® E — C, respectively. Assume
that E, and F, are two complete flags of subbundles of E, taken to be isotropic in
types B and C. For any w in the Weyl group, we have the degeneracy locus

(30) Xy :={be M| dim(E,(b) N Fs(b)) > dyw(r,s) Vr,s}

where d,(r, s) is a function taking values in the nonnegative integers. The inequal-
ities in (30) are exactly those which define the Schubert variety X,,(F,) in the flag
variety X (they are given explicitly in §6). Assuming that M is smooth and that
the locus X,, has pure codimension ¢(w) in M (hypotheses which can both be re-
laxed), one seeks a formula for the cohomology class [X,,] € H* (M) in terms of the
Chern classes of the vector bundles which appear in (30).

Graham [Gr| studied the above problem by placing it in a more general Lie-
theoretic framework, as follows. The morphism BB — B(G is a flag bundle, and
he showed that the fiber product space BB Xpg BB is a classifying space for
the question posed by Fulton et. al., because any other example will pull back
from it. Therefore, all the desired formulas for [%X,] occur in H*(BB X pg BB).
Furthermore, it is known (see e.g. [Br2, §1]) that H*(BB) = S, H*(BG) = SW,
and the Leray-Hirsch theorem implies that there is a natural isomorphism

(31) H*(BB XBaG BB) gS®$W S.
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This point of view on degeneracy loci and the polynomials which represent their
cohomology classes will be used in §7.3, and we refer there for more details.

Another key observation in [Gr] is that the degeneracy locus problem is equiv-
alent to the question of obtaining an equivariant Giambelli formula in H;(G/B).
Indeed, there is a (B x B)-equivariant isomorphism

EGXG—)EGXBGEG

sending (e, g) to (e, ge), and passing to the quotient spaces gives a natural isomor-
phism

(32) EG xP (G/B) =~ BB xp¢ BB

which maps EG x? X, to X,. In view of the isomorphism (32), we will call
BB x g BB the Borel mizing space associated to G/B. Taking the cohomology of
both sides of (32) and using (29), we obtain an isomorphism

H;(G/B) = H*(EG x® (G/B)) = H*(BB x g BB)

which sends the equivariant Schubert class [X,,)7 := [EG xP X,,] to [X,]. Finally,
we remark that an equivariant Giambelli formula for [X,,]7 in H}(G/B) specializes
to a Giambelli formula for [X,,] in H*(G/B) when we set all the variables coming
from the linear T-action equal to zero.

Remark 2. The interpretation of the Giambelli problem for the cohomology of
G/ P given here is our own; compare with the discussion in [Hi, Chp. III §3]. We note
that there are other kinds of ‘Giambelli formulas’ which appear in the literature.
The subject of degeneracy loci also has a long history (see e.g. [FP]) and includes
varieties such as those discussed in the introduction, defined by imposing rank
conditions on generic morphisms between vector bundles. The degeneracy loci
considered here, which are defined by intersecting subbundles of a fixed vector
bundle as in (30), were introduced and studied in [F3, PR2].

4. WEYL GROUPS, GRASSMANNIAN ELEMENTS, AND TRANSITION TREES

In this section we explain the combinatorial objects which enter into the algebraic
and geometric formulas of later sections. We begin with a discussion of the Weyl
groups for the classical root systems of type A, B, C, and D.

4.1. Weyl groups. Let W,, denote the hyperoctahedral group of signed permuta-
tions on the set {1,...,n}, which is the semidirect product S,, X Z3 of the symmetric
group S, with Z37. We adopt the notation where a bar is written over an entry
with a negative sign; thus w = (3,1,2) maps (1,2,3) to (3,—1,2). The group W,
is the Weyl group for the root system B, or C,,, and is generated by the simple
transpositions s; = (4,4 + 1) for 1 <7 < n — 1 and the sign change so(1) = 1. The
symmetric group Sy, is the subgroup of W, generated by the s; for 1 <i <n —1,
and is the Weyl group for the root system A,,_;. The Weyl group W,, for the root
system Dy, is the subgroup of W, consisting of all signed permutations with an
even number of sign changes. The group W,, is an extension of S, by the element
So = 808180, which acts on the right by

(w1, wa, ..., wy)$0 = (W2, W1, W3, ..., Wy).

There are natural embeddings W,, — W, 11 and Wn — Wn+1 dgfmed by ailioining
the fixed point n + 1. We let Sy := U, Sy, Wa := U, W,,, and W, := U, W,.
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Consider the two sets Ny := {0,1,...} and Ng := {0O,1,...} whose members
index the simple reflections. A reduced word of an element w in W, (respectively

W) is a sequence aj ---ag of elements of Ny (respectively Np) such that w =
Say ** - Sa, and £ is minimal, so (by definition) equal to the length £(w) of w. We say
that w has descent at position r if £(ws,) < ¢(w), where s, is the simple reflection
indexed by r. For r € Ny, this is equivalent to the condition w, > w;,41, where we
set wo = 0 (so w has a descent at position 0 if and only if wy < 0).

4.2. Grassmannian elements. A permutation @ € S is Grassmannian if there
exists an m > 1 such that w; < w;41 for all i # m. The shape of such a Grass-
mannian permutation w is the partition A = (A,..., A\p) with A\pj1—; = w; —j
for 1 < j < m. Notice that there are infinitely many permutations of a given shape
A. However, for each fixed m and n > m, we obtain a bijection between the set of
permutations in S,, with at most one descent at position m and the set of partitions
A whose diagram fits inside an m x (n — m) rectangle.

Fix a nonnegative integer k. An element w = (wy,ws,...) in W, is called
k-Grassmannian if and only if we have {(ws;) = ¢(w) + 1 for all ¢ # k. When
k = 0, this says that w is increasing: w; < ws < ---, while when k& > 0, then w is

k-Grassmannian if and only if
O<w < - <w, and Wiy < Wipo < -+ .

There is an explicit bijection between k-Grassmannian elements w of W, and
k-strict partitions A, under which the elements in W,, correspond to those partitions
whose diagram fits inside an (n — k) x (n + k) rectangle. This bijection is obtained
as follows. The absolute value of the negative entries in w form a (