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Abstract

Let E be a symplectic vector space of dimension 2n (with the
standard antidiagonal symplectic form) and let G be the Lagrangian
Grassmannian over SpecZ, parametrizing Lagrangian subspaces in E
over any base field. Equip E(C) with a hermitian metric compatible
with the symplectic form and G(C) with the Kähler metric induced
from the natural invariant metric on the Grassmannian of n-planes in
E. We give a presentation of the Arakelov Chow ring CH(G) and de-
velop an arithmetic Schubert calculus in this setting. The theory uses
the Q̃-polynomials of Pragacz and Ratajski [PR] and involves ‘shifted
hook operations’ on Young diagrams. As an application, we compute
the Faltings height of G with respect to its Plücker embedding in
projective space.

Mathematics Subject Classification (1991): 14G40, 14M15, 05E05

1 Introduction

The extension of Arakelov theory to higher dimensions by Gillet and Soulé
[GS1] is an intriguing combination of arithmetic, algebraic geometry and
complex differential geometry. One of the challenges of the theory is to make
explicit computations in cases where the geometric picture is well understood.
The difficulties lie mainly over the infinite places, where analysis provides
inequalities much more often than equalities.

The pairing constructed by Arakelov [A] for arithmetic surfaces does not
give a ring structure in higher dimensions unless the harmonic forms at the
archimedean places are closed under wedge products. Thus there are few

1



examples of arithmetic varieties X where an Arakelov Chow ring CH(X)
is available. In order to get a ring structure in general (with rational co-
efficients), Gillet and Soulé [GS1] enlarge the group of cycles to define an

arithmetic Chow ring ĈH(X), but lose much of the finite dimensionality in
the construction.

For arithmetic varieties whose fiber at infinity is a homogeneous space, the
presence of a group gives reason to hope for explicit formulas. This has proven
to be true in the SL(n) case (see [Ma] [T3] for the Grassmannian and [T2]
for general flag varieties), where interesting combinatorial difficulties come
into play. The goal of this paper is to analyze the analogous situation for the
Lagrangian Grassmannian; this falls into the general program of extending
results from classical intersection theory and enumerative geometry to the
arithmetic setting (cf. [S]).

Let E be a symplectic vector space of dimension 2n, equipped with the
standard antidiagonal symplectic form (cf. §2). The Lagrangian Grassman-
nian over SpecZ is an arithmetic scheme G that parametrizes Lagrangian
(i.e. maximal isotropic) subspaces in E over any base field. If we equip G(C)
with the natural invariant Kähler metric (induced from the U(2n)-invariant
metric on the Grassmannian of n-planes in E), it aquires the structure of a
hermitian symmetric space. Thus we have an Arakelov Chow ring CH(G);
we give a presentation of this ring along the lines of [T1].

Before studying the arithmetic Schubert calculus in CH(G), one must
first ask how well the geometric picture for the ordinary Chow ring CH(G)
is known. Fortunately this has been combinatorially understood in recent
years in work of Hiller and Boe [HB], Pragacz [P] and Stembridge [St]. The
theory is based on Schur’s Q-polynomials [Sh], which were used by him to
study projective representations of the symmetric and alternating groups.

In order to describe the combinatorial nuance we encounter when work-
ing in the arithmetic setting, let us recall (from [Bor], [BGG] and [D]) the
presentation

CH(G) =
Λn

In
:=

Z[X1, . . . ,Xn]Sn

〈ei(X2
1 , . . . ,X2

n), 1 6 i 6 n〉 (1)

where ei(X1, . . . ,Xn) denotes the i-th elementary symmetric polynomial, and
the Xi correspond to the Chern roots of the tautological quotient bundle over
G. The Arakelov Chow ring CH(G) sits in a short exact sequence

0 −→ Harm(G � ) −→ CH(G) −→ CH(G) −→ 0 (2)
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where Harm(G � ) is the group of harmonic real differential forms on G(C).
By choosing a Z-basis for CH(G) we can split (2), arriving at an isomorphism
of abelian groups:

CH(G) ∼= CH(G)⊕Harm(G� ).

The subgroup Harm(G � ) is a square zero CH(G)-ideal, which as a group is
isomorphic to CH(G) ⊗ � R.

For f(X1, . . . ,Xn) a polynomial in Λn, let f̂(X̂1, . . . , X̂n) denote its image
in CH(G) under the above splitting. If f belongs to the ideal In in (1), then

f = 0 in CH(G), but its counterpart f̂ does not vanish in the Arakelov Chow
ring; rather, it lives as the class of a differential form in Harm(G � ). Thus
we arrive at the combinatorial difficulty alluded to above: a presentation of
the arithmetic Schubert calculus requires a lifting of the Schubert calculus in
Λn/In to the ring Λn of symmetric polynomials.

In the SL(n) case the analogous problems (cf. [Ma] [T2] [T3]) are solved
using Schur’s S-polynomials and more generally the Schubert polynomials
of Lascoux and Schützenberger [LS]. The theory that seems most suitable in

our setting is that of Q̃-polynomials, a modification of Schur’s Q-polynomials
developed by Pragacz and Ratajski [PR] for studying Lagrangian and orthog-
onal degeneracy loci. The author was not surprised that an understanding
of the relative Schubert calculus in geometry is formally analogous to the
situation in Arakelov theory; this principle was also used in [T2] [T3].

The picture of the arithmetic Schubert calculus is a type C version of
that in [T3], which dealt with the SL(n) Grassmannian. In geometry the
passage from type A to type C is combinatorially facilitated by the use of
strict partitions and shifted Young diagrams. In Arakelov theory we need
to extend slightly the class of diagrams considered (see §4.2) and use shifted
hook operations, a type C analogue of the hook operations of [T3]. We arrive
at a complete description of the multiplicative structure of CH(G), which
includes explicit formulas for the ‘arithmetic structure constants’ appearing
in the formula for multiplying two arithmetic Schubert cycles. For instance
there is an arithmetic version of the Pieri rule of [HB]. The height of G with
respect to the canonical very ample line bundle with the induced hermitian
metric is computed by applying our analysis to this particular arithmetic
intersection.

This paper is organized as follows. In §2 we introduce the Arakelov Chow
ring and arrive at a presentation of CH(G) suitable for our purposes. Sec-
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tion 3 recalls some material on Young diagrams and the Q̃-polynomials of
Pragacz and Ratajski. We give a combinatorial ‘degree formula’ for these
polynomials. The arithmetic Schubert calculus in CH(G) is worked out in
§4; there are formulas for the arithmetic structure constants involving their
geometric counterparts and ‘shifted hook operations’. In particular we for-
mulate an ‘arithmetic Pieri rule’. In §5 we compute the Faltings height [F]
of G with respect to its Plücker embedding as an application of the theory
developed. The arguments in this article are mostly algebraic and combina-
torial, although some Arakelov theory and hermitian differential geometry is
needed for the results of §2.

I wish to thank Bernard Leclerc, Piotr Pragacz and Jean-Yves Thibon
for useful discussions and providing references to their work. I have also
benefitted from conversations and email exchanges with Kai Köhler, Damian
Rössler and Christian Kaiser, who have a different method for computing the
height in section §5. This work was supported in part by a National Science
Foundation post-doctoral research fellowship.

2 The Arakelov Chow ring

In this section we will introduce the Arakelov Chow ring CH(G). We refer to
the foundational works of Gillet and Soulé [GS1] [GS2] and the expositions
[SABK] [S] for general background.

Let k be a field, E a 2n-dimensional vector space over k, and let {ei}2n
i=1 be

a basis of unit coordinate vectors. Define a nondegenerate skew-symmetric
bilinear form [ , ] on E with matrix

{[ei, ej]}i,j =

(
0 Idn
−Idn 0

)
.

We let G = LG(n, 2n) denote the arithmetic scheme which parametrizes
Lagrangian subspaces in E over any field k.

The variety G is smooth over SpecZ. E will also denote the trivial rank
2n vector bundle over G and S the tautological subbundle of E. Using the
symplectic form, we can identify the quotient bundle E/S with S∗; thus there
is an exact sequence

E : 0 −→ S −→ E −→ S∗ −→ 0

of vector bundles over G.
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Endow the trivial bundle E(C) over G(C) with a (trivial) hermitian metric
compatible with the symplectic form. This metric induces metrics on the
bundles S, S∗ and E becomes a sequence of hermitian vector bundles

E : 0 −→ S −→ E −→ S
∗ −→ 0.

The Kähler form ωG = c1(S
∗
) turns G(C) into a hermitian symmetric space

with compact presentation

G(C) ∼= Sp(n)/U(n).

Let G = (G,ωG) denote the corresponding Arakelov variety.
There are three rings attached to G: the Chow ring CH(G), the ring

Harm(G � ) of real ωG-harmonic differential forms on G(C), and the Arakelov
Chow ring CH(G). We have natural isomorphisms

CH(G) ⊗ � R ∼= Harm(G � ) ∼= H∗(G(C),R), (3)

where the third ring H∗(G(C),R) is cohomology with real coefficients. El-
ements in the Arakelov Chow group CHp(G) are represented by arithmetic
cycles (Z, gZ), where Z is a codimension p cycle on G and gZ is a Green cur-
rent for Z(C). More precisely, gZ is a current of type (p− 1, p− 1) such that
the current ddcgZ + δZ(

�
) is represented by a harmonic form in Harmp,p(G � ).

It follows from the general theory and the fact that G has a cellular decom-
position that for each p there is an exact sequence

0 −→ Harmp−1,p−1(G� )
a−→ CHp(G)

ζ−→ CHp(G) −→ 0, (4)

where the maps a and ζ are defined by

a(η) = (0, η) and ζ(Z, gZ) = Z.

Summing (4) over all p gives the sequence

0 −→ Harm(G � )
a−→ CH(G)

ζ−→ CH(G) −→ 0. (5)

For each symmetric polynomial φ we have characteristic classes and forms
associated to the vector bundles in E. There are three different kinds: the
usual classes φ(S) in CH(G), the differential forms φ(S) in Harm(G � ) given
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by Chern-Weil theory, and the arithmetic classes φ̂(S) in CH(G). The Chern
forms and arithmetic Chern classes satisfy

ci(S
∗
) = (−1)ici(S), ĉi(S

∗
) = (−1)iĉi(S).

Let x = {x1, . . . , xn} denote the Chern roots of S∗. We adopt the convention
that symmetric functions φ in the formal root variables x̂ = {x̂1, . . . , x̂n} and

x = {x1, . . . , xn} denote arithmetic classes φ̂(S
∗
) and characteristic forms

φ(S
∗
), respectively. The latter are identified, via the inclusion a, with ele-

ments in CH(G).
The Chow ring of G has the presentation

CH(G) =
Z[c1(S∗), . . . , cn(S∗)]

〈c(S)c(S∗) = 1〉 =
Z[x1, . . . , xn]Sn

〈∏i(1− x2
i ) = 1〉 . (6)

The relation
∏

i(1− x2
i ) = 1 says that all non-constant elementary symmet-

ric polynomials ek(x2) := ek(x2
1, . . . , x

2
n) in the squares of the root variables

vanish. We will give an analogous presentation for the Arakelov Chow ring
CH(G), following the methods of [Ma] and [T1].

Consider the abelian group

A = Z[x̂1, . . . , x̂n]
Sn ⊕ R[x1, . . . , xn]

Sn.

We adopt the convention that α̂ denotes α̂ ⊕ 0, β denotes 0 ⊕ β and any
product

∏
αiβj denotes 0 ⊕∏αiβj. With this in mind we define a product

· in A by imposing the relations α̂ · β = αβ and β1 · β2 = 0. Consider the
following two sets of relations in A:

R1 : ek(x
2) = 0, k > 1,

R2 : ek(x̂
2) = (−1)k−1H2k−1p2k−1(x), k > 1.

Here the harmonic numbers Hr are defined by

Hr = 1 +
1

2
+ · · ·+ 1

r

and pr(x) =
∑

xri is the r-th power sum. Let A denote the quotient of the
graded ring A by the relations R1 and R2. Then we have
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Theorem 1 There is a unique ring isomorphism

Φ : A → CH(G)

such that
Φ(ek(x̂)) = ĉk(S

∗
), Φ(ek(x)) = ck(S

∗
).

Proof. The proof of the theorem is similar to that in [Ma], Theorem 4.0.5
and [T1], Theorem 6, so we will give a sketch of the essential points. The
inclusion and projection morphisms

R[x1, . . . , xn]
Sn i−→ A

π−→ Z[x̂1, . . . , x̂n]
Sn

induce an exact sequence of abelian groups:

0 −→ R[x1, . . . , xn]
Sn/(R1)

i−→ A π−→ Z[x̂1, . . . , x̂n]
Sn/(R̂2) −→ 0 (7)

where the relations R̂2 are defined by

R̂2 : ek(x̂
2) = 0, k > 1.

To show that Φ is an isomorphism one uses the isomorphisms (3) and (6)
and the five lemma to identify the short exact sequences (5) and (7) (as in
loc. cit.). The multiplication · reflects the CH(G)-module structure of the
square zero ideal Harm(G � ) ↪→ CH(G) (cf. loc. cit. or [GS1]). The new
relation R2 comes from the equation

ĉ(S) · ĉ(S∗) = 1 + c̃(E). (8)

Here c̃(E) is the image in CH(G) of the Bott-Chern form of the exact sequence
E for the total Chern class (cf. [BC] [GS2]). This differential form is the
‘natural’ solution η to the equation

c(S)c(S
∗
)− 1 = ddcη.

Proposition 3 of [T1] provides the calculation

c̃i(E) = (−1)i−1Hi−1pi−1(S
∗
)

for all i (of course this vanishes when i is odd). If we express the two previous
equations using root notation we obtain

ek(x̂
2
1, . . . , x̂

2
n) = (−1)k−1H2k−1p2k−1(x)
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for all k > 1, which is relation R2. This completes the argument.
�

Remark. As in [T1] §8, the relations R1 and R2 may be expressed in the
form

R′1 :
n∏

i=1

(1 − x2
i t

2) = 1,

R′2 :
n∏

i=1

(1 − x̂2
i t

2) · (1 + qa(x, t)) = 1,

where t is a formal variable (note that R′2 uses the multiplication in A). Here
qa(x, t) is the even part of the function pa(t) in loc. cit., namely

qa(x, t) =
t

2

n∑

i=1

(
log(1 + xit)

1 + xit
− log(1− xit)

1 − xit

)

= p1(x)t2 +
11

6
p3(x)t4 +

137

60
p5(x)t6 + · · ·

In the next section we discuss the algebraic and combinatorial tool of Q̃-
polynomials. They allow one to express symmetric functions in the variables
x̂i in a canonical form, which facilitates computations modulo the relations
R1 and R2. We will use them to give a complete description of the ring
structure of CH(G) in Theorem 2 of §4.

3 Young diagrams and Q̃-polynomials

We begin by recalling some basic facts about partitions and their Young
diagrams; our main reference is [M]. A partition is a sequence

λ = (λ1, λ2, . . . , λr) (9)

of nonnegative integers in decreasing order. The number of nonzero λi’s in
(9) is called the length of λ, denoted l(λ); the partitioned number (i.e. the
sum of the parts of λ) is the weight |λ| of λ. We identify a partition with
its associated Young diagram of boxes; the relation λ ⊃ µ is defined by the
containment of diagrams. If this is the case then the set-theoretic difference
λ r µ is the skew diagram λ/µ. For any box x ∈ λ the hook Hx consists of
x together with all boxes directly to the right and below x. The rim hook
Rx is the skew diagram obtained by projecting Hx along diagonals onto the
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boundary of λ (an example is shown in Figure 4). The height ht(Rx) of
Rx is one less than the number of rows it occupies. A skew diagram γ is a
horizontal strip if it has at most one box in each column. Two boxes in γ
are connected if they share a vertex or an edge; this defines the connected
components of γ.

Figure 1: The partition ρ(5) = (5, 4, 3, 2, 1)

A partition is strict if all its (nonzero) parts are different. We define
ρ(n) = (n, n− 1, . . . , 1) and let Dn denote the set of strict partitions λ with
λ ⊂ ρ(n). The shifted diagram S(λ) of a strict partition λ is obtained from
the usual diagram of λ by shifting the i-th row i− 1 squares to the right, for
each i > 1 (see Figure 2). For skew diagrams S(λ/µ) = S(λ) r S(µ).

Figure 2: λ = (6, 4, 3, 1) and the shifted diagram S(λ)

Throughout this paper we use multiindex notation for sets of commuting
variables; in particular X = {X1, . . . ,Xn} and X2 = {X2

1 , . . . ,X2
n}. Let

Λn(X) = Z[X]Sn be the ring of symmetric polynomials in n variables; Λ
will denote the ring of symmetric functions in countably many independent
variables. We will need a family of symmetric functions modelled on Schur’s
Q-polynomials (see [Sh]). These Q̃-polynomials were introduced by Pragacz
and Ratajski [PR] in their study of Lagrangian and orthogonal degeneracy
loci.
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For each i between 1 and n, let Q̃i = ei(X) be the i-th elementary sym-
metric function. For i, j nonnegative integers define

Q̃i,j := Q̃iQ̃j + 2

j∑

k=1

(−1)kQ̃i+kQ̃j−k.

If λ = (λ1 > λ2 > · · · > λr > 0) is a partition with r even (by putting λr = 0
if necessary), define

Q̃λ = Pfaffian[Q̃λi,λj]1
�
i<j

�
r.

These polynomials have the following properties ([PR], §4):
(1) If λ1 > n, then Q̃λ = 0.

(2) Q̃i,i = ei(X2
1 , . . . ,X2

n).

(3) If λ = (λ1, . . . , λr) and λ+ = λ ∪ (i, i) = (λ1, . . . , i, i, . . . , λr) then

Q̃λ+ = Q̃i,iQ̃λ.

(4) The set {Q̃λ | λ1 6 n} is an additive Z-basis of Λn(X).

(5) The set {Q̃λ | λ ∈ Dn} is a basis for Λn(X) as a Λn(X2)-module.

The Q̃-polynomials can be realized as the duals of certain modified Hall-
Littlewood polynomials. More precisely, let Pλ(X; t) be the usual Hall-
Littlewood polynomials (cf. [M], III.2) and let Q′λ(X; t) be the adjoint basis
for the standard scalar product on Λ[t]; we have Q′λ(X; t) = Qλ(X/(1− t); t)
in the sense of λ-rings (see [LLT]). Then ([PR] Prop. 4.9):

Q̃λ(X) = ω(Q′λ(X;−1)),

where ω : Λ→ Λ is the duality involution of [M], I.2.

Since the {Q̃λ} with λ1 6 n form a basis of Λn, there exist integers eνλµ
so that

Q̃λQ̃µ =
∑

ν

eνλµQ̃ν. (10)

There are explicit combinatorial rules for generating the coefficients eνλµ,
which follow by specializing corresponding formulas for the multiplication
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of Hall-Littlewood polynomials (see [PR] §4 and [M], III.3.(3.8)). In partic-
ular one has the following Pieri type formula for λ strict ([PR], Prop. 4.9):

Q̃λQ̃k =
∑

2m(λ,µ)Q̃µ, (11)

where the sum is over all partitions µ ⊃ λ with |µ| = |λ| + k such that µ/λ
is a horizontal strip, and m(λ, µ) is the number of connected components of
µ/λ not meeting the first column.

For the height calculations in §5 it is useful to have a combinatorial for-
mula for the product Q̃N

1 . Recall that a standard tableau on the Young
diagram λ is a numbering of the boxes of λ with the integers 1, 2, . . . , |λ|
such that the entries are strictly increasing along each row and column. Call
a standard tableau T on λ proper if in each hook H(i,j) of λ, the number of
entries of T less than the (i, j + 1) entry is odd (the condition being vacuous
if λ has no box in the (i, j+1) position). Let gλ denote the number of proper
standard tableaux on λ.

Proposition 1

Q̃N
1 =

∑

|λ|=N
2N−l(λ)gλQ̃λ.

Proof. This follows from an analysis of the Pieri type formula for the poly-
nomials Q′λ(X; t) given in [M], III.5, Example 7. By specializing t = −1 and
applying ω we deduce that

Q̃µ(X)Q̃1(X) =
∑

λ

ψλ/µ(−1)Q̃λ(X) (12)

where the sum is over all λ ⊃ µ with |λ| = |µ| + 1 and ψλ/µ(t) is defined as
in [M], III.5.(5.8′). Call a non-empty row of µ odd if it contains k boxes and
the part k occurs in µ an odd number of times. Then (12) says that

Q̃µQ̃1 = 2
∑

λ

Q̃λ + Q̃µ∪1, (13)

where the sum is over all λ obtained from µ by adding a box in an odd row
and µ ∪ 1 = (µ1, . . . , µl(µ), 1). The equality in the proposition is obtained by
repeated application of (13).

�

Example 1. Take n = 2 and N = 4. Clearly λ1 = (2, 2), λ2 = (2, 1, 1) and

λ3 = (1, 1, 1, 1) are the only partitions λ with |λ| = 4 and Q̃λ(X1,X2) 6= 0.

11



There are 1, 2 and 1 proper standard tableaux on λ1, λ2 and λ3 respectively
(Figure 3). This leads to the equation

Q̃1(X1,X2)
4 = 4Q̃2,2 + 4Q̃2,1,1 + Q̃1,1,1,1 (14)

which corresponds to the identity

(X1 + X2)
4 = 4X2

1X2
2 + 4X1X2(X

2
1 + X2

2 ) + (X2
1 + X2

2 )2.

1 1 1 12 2

2 23 3

3 3

4

4

4

4

Figure 3: The proper standard tableaux on (2, 2), (2, 1, 1) and (1, 1, 1, 1)

4 Arithmetic Schubert calculus

4.1 Classical case

We review here the classical Schubert calculus, which describes the multi-
plication in CH(G), following [P] §6. To avoid notational confusion we will

use σλ(x) in place of Q̃λ(x) when referring to polynomials in the Chern roots
x = {x1, . . . , xn} of the vector bundle S∗, and also when using the other two
kinds of root variables discussed in §2.

The abelian group CH(G) is freely generated by the classes σλ(x) =
σλ(S∗), for strict partitions λ contained in the ‘triangle’ partition ρ(n).
σλ(x) is the class of the codimension |λ| Schubert variety Xλ, defined as
follows: if {e1, . . . , en} spans a fixed Lagrangian subspace of E and Fi =
Span 〈e1, . . . , ei〉 then Xλ parametrizes the set

{L ∈ G(k) | dim(L ∩ Fn+1−λi) > i for 1 6 i 6 l(λ)}

over any base field k.
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The product formula (10) gives the following multiplication rule in CH(G):
for any two partitions λ, µ ∈ Dn,

σλ(x)σµ(x) =
∑

ν∈Dn
eνλµσν(x); (15)

the non-negative integers eνλµ are the structure constants in CH(G). When
µ = k is a single integer then σµ(x) = σk(x) is the class of a special Schubert
variety, and (15) specializes to the Pieri rule (due to Hiller and Boe [HB]):

σλ(x)σk(x) =
∑

2m(λ,µ)σµ(x) (16)

the sum over all (strict) partitions µ ⊃ λ with |µ| = |λ|+ k such that µ/λ is
a horizontal strip, with m(λ, µ) defined as in §3. Note that since G(C) is a
hermitian symmetric space, (15) and (16) are valid on the level of harmonic
differential forms.

4.2 Schubert calculus in CH(G)

We now turn to an analogous description of the multiplicative structure of
CH(G), which we refer to as ‘arithmetic Schubert calculus’. Due to the the
power sums in the relations R2 of §2 we expect to encounter operations on
Young diagrams involving rim hooks, as in the SL(n) case (see [T3]). We
proceed to give the relevant definitions.

Recall that Dn denotes the set of strict partitions λ with λ ⊂ ρ(n). Let
En be the set of non-strict partitions λ with λ1 6 n such that exactly one
non-zero part rλ of λ occurs more than once, and further, rλ occurs at most
3 times. There is a map

En −→ Dn : λ 7−→ λ

defined as follows: λ is obtained from λ by deleting two of the parts rλ. For
example if λ = (6, 4, 4, 4, 2, 1) then λ = (6, 4, 2, 1).

The next definition makes sense in the context of shifted diagrams and
follows Macdonald [M], Example III.8.11. Define a double rim to be a skew
diagram formed by the union of two rim hooks which both end on the main
diagonal {(i, i) | i > 0}. A double rim δ can be cut into two non-empty
connected pieces: one piece α consisting of the diagonals in δ of length 2
(parallel to the main diagonal), and the other piece being the rim hook
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Figure 4: A rim hook and a double rim

β := δ r α. In this case we say that the double rim is of type ( 1
2
|α|, |β|).

Figure 4 shows a single rim hook and a double rim of type (3, 3).
Each double rim δ = α ∪ β of type (a, b) has an associated integer ε(δ) :=
(−1)a+ht(β) 2. To a single rim hook γ we associate the sign ε(γ) := (−1)ht(γ).

Suppose that λ ∈ En and µ ∈ Dn are two Young diagrams with |µ| =
|λ|−1. We say that there is a shifted hook operation from λ to µ if the shifted
skew diagram S(µ/λ) is a rim hook or double rim (of weight 2rλ − 1).

Figure 5: A shifted hook operation from λ = (4, 4, 4, 2) to µ = (6, 4, 2, 1)

It is clear that there is at most one such operation from λ to µ; it determines
an integer ελµ ∈ {±1,±2} defined by

ελµ = (−1)rλ−1ε(S(µ/λ))

and a rational number ψµ
λ by

ψµ
λ = ελµ2

l(λ)−l(µ)−1H2rλ−1.

If there is no shifted hook operation from λ to µ then set ψµ
λ = 0. Figure

5 shows a shifted hook operation involving a double rim of type (1, 5) with
ελµ = 2 and ψµ

λ = H7.
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Next we define the arithmetic structure constants ẽνλµ: for any ν ∈ En

and λ, µ strict such that |ν| = |λ| + |µ| − 1 let

ẽνλµ =
∑

ρ∈En
ψν
ρe
ρ
λµ (17)

where the eρλµ are defined by (10). Note that only partitions ρ such that there
is a shifted hook operation from ρ to ν contribute to the sum (17). We can
now state our main result:

Theorem 2 (a) Let p be an integer between 0 and
(
n+1

2

)
+ 1. Each element

z ∈ CHp(G) has a unique expression

z =
∑

λ∈Dn
|λ|=p

cλσλ(x̂) +
∑

λ∈Dn
|λ|=p−1

γλσλ(x),

where cλ ∈ Z and γλ ∈ R.

(b) For λ and µ in Dn we have the multiplication rules

σλ(x̂) · σµ(x̂) =
∑

ν∈Dn
|ν|=|λ|+|µ|

eνλµσν(x̂) +
∑

ν∈Dn
|ν|=|λ|+|µ|−1

ẽνλµσν(x),

σλ(x̂) · σµ(x) =
∑

ν∈Dn
|ν|=|λ|+|µ|

eνλµσν(x),

σλ(x) · σµ(x) = 0.

Proof. The morphism ε : CH(G) → CH(G) defined by ε(σλ(x)) = σλ(x̂)
for each λ ∈ Dn splits the exact sequence (5). We thus have an isomorphism
of abelian groups

CH(G) ∼= CH(G)⊕Harm(G � )

and the statement (a) follows.
The second and third equalities in (b) follow immediately from the def-

inition of multiplication in CH(G) and the algebra isomorphism (3). For
instance we have

σλ(x̂) · σµ(x) = σλ(x)σµ(x) =
∑

ν∈Dn
|ν|=|λ|+|µ|

eνλµσν(x)
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because the last equality holds in CH(G).

To prove the first equality, note that properties (2) and (3) of Q̃-polynomials
from §3 imply that for λ ∈ En,

σλ(x̂) = σλ(x̂) · erλ(x̂2) = (−1)rλ−1H2rλ−1p2rλ−1(x)σλ(x), (18)

where we have used relation R2 of §2. If a partition λ with λ1 6 n is not
in Dn ∪ En then σλ(x̂) = 0. Indeed, Q̃λ for such λ has at least 2 non-trivial
factors of the form ej(X2), which correspond to differential form terms in the
arithmetic setting. But all such products vanish in CH(G).

We now need a rule for multiplying a Q̃µ-polynomial by an odd power

sum in the polynomial ring Z[X] modulo the ideal generated by the Q̃λ for

non-strict λ. The calculus of Q̃-polynomials in this quotient coincides with
that in the ring of Schur’s Q-polynomials modulo the ideal generated by
the Qλ with λ not contained in ρ(n). This follows because both rings are
naturally isomorphic to CH(G) ([P] §6, [PR]).

Note that under the above isomorphism a power sum pr is mapped to
2pr; this follows by considering the image of Newton’s identity

pk − e1pk−1 + e2pk−2 − · · ·+ (−1)kkek = 0

in both rings. We can now use the analysis in [M], Example III.8.11 to obtain
the required multiplication rule. The reader is warned that there is a missing
factor of 2 in formula (8) of loc. cit. (in the double rim case). Using the
correct version of the formula and the previous remarks gives, for µ ∈ Dn

and r odd,

pr(x)σµ(x) =
∑

ν

ε(S(ν/µ))2l(µ)−l(ν)+1σν(x), (19)

the sum over all strict ν ⊃ µ with |ν| = |µ| + r such that S(ν/µ) is a rim
hook or a double rim. Now combine (18) with (19) to get

Proposition 2 For partitions λ ∈ En we have

σλ(x̂) =
∑

ν

ψν
λσν(x), (20)

the sum over all ν ∈ Dn that can be obtained from λ by a shifted hook
operation. If λ /∈ Dn ∪ En then σλ(x̂) = 0.

16



The proof is completed by writing the identity

σλ(x̂) · σµ(x̂) =
∑

ν∈Dn
|ν|=|λ|+|µ|

eνλµσν(x̂) +
∑

ρ∈En
|ρ|=|λ|+|µ|

eρλµσρ(x̂),

using (20) to replace the classes in the second sum, and comparing with (17).
�

Using the Pieri type formula (11) we obtain the following special case of
Theorem 2:

Corollary 1 (Arithmetic Pieri rule): Let C(λ, k) be the set of partitions
µ ⊃ λ with |µ| = |λ|+k such that µ/λ is a horizontal strip. Then for λ ∈ Dn

we have

σλ(x̂) · σk(x̂) =
∑

µ

2m(λ,µ)σµ(x̂) +
∑

ν

(∑

ρ

ψν
ρ

)
2m(λ,ρ)σν(x).

where the first (classical) sum is over µ ∈ Dn ∩ C(λ, k) and the second sum
is over ν and ρ with ρ ∈ En ∩ C(λ, k).

5 Height calculation

The Lagrangian Grassmannian G has a natural embedding in projective
space given by the very ample line bundle O(1) := detS∗. The metric on S
induces a metric on O(1) which is the restriction of the Fubini-Study metric
under the composition

LG(n, 2n) ↪−→ G(n, 2n)
i

↪−→ P(2n
n )−1

where i is the Plücker embedding of the usual SL(n)-Grassmannian G(n, 2n)
in projective space (compare [LaSe] §4). This metric coincides with the one
induced from the Plücker (i.e. the minimal) embedding of LG(n, 2n) itself
in projective space.

In geometry the degree of G(k) (for any field k) with respect to O(1) is
given by

deg(G(k)) = 2n(n−1)/2gρ(n) (21)

where the partition ρ(n) and gρ(n) were defined in §3; this follows from Propo-
sition 1. The Faltings height [F] of G under its Plücker embedding (which
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equals its height with respect to O(1)) is an arithmetic analogue of the ge-
ometric degree. In this section we will use the results of §4 to compute this
number; our formula will be an ‘arithmetic perturbation’ of (21).

The height of G with respect to O(1) is the number

htO(1)(G) = d̂eg(ĉ1(O(1))d |G) = d̂eg(σd1(x̂)). (22)

Here the arithmetic degree map d̂eg is defined as in [BoGS] and d =
(
n+1

2

)
+1

is the absolute dimension of G. In CH(G) we have

σd1(x̂) = rdσρ(n)(x) = rdσρ(n)(S
∗
)

for some rational number rd; the height (22) is then given by

htO(1)(G) =
1

2

∫

G(
�

)

rdσρ(n)(S
∗
) =

rd
2

as σρ(n)(S
∗
) is dual to the class of a point in G(C).

A single rim hook β which ends on the main diagonal of a shifted diagram
will be referred to as a double rim of type (0, |β|). Define the following set
of diagrams:

E(n) = {λ ∈ En : |λ| = d} = {[a, b]n | 0 6 a + 2b < n}

where [a, b]n denotes the unique diagram λ ∈ En of weight d such that
S(ρ(n)/λ) is a double rim of type (a, 2b+1). There are exactly 1

4
(n2+2n+[n]2)

diagrams in E(n), where [n]2 = 0 or 1 depending on whether n is even or
odd. For instance one has

E(3) = {[0, 0]3, [0, 1]3, [1, 0]3, [2, 0]3}
= {(3, 2, 1, 1), (2, 2, 2, 1), (3, 2, 2), (3, 3, 1)}.

These correspond to the diagrams in Figure 6.

Theorem 3 The height of the Lagrangian Grassmannian G with respect to
O(1) is

htO(1)(G) = 2n(n−1)/2
∑

0
�
a+2b<n

(−1)b2−δa0H2a+2b+1g
[a,b]n

where δij is the Kronecker delta.
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Figure 6: The four diagrams in E(3) and their operations to ρ(3)

Proof. Use Propositions 1 and 2 to obtain

σ1(x̂)d =
∑

λ∈E(n)

2d−l(λ)gλσλ(x̂) =
∑

λ∈E(n)

2d−l(λ)gλψ
ρ(n)
λ σρ(n)(x).

For λ = [a, b]n we have rλ = a + b + 1 and ε(S(ρ(n)/λ)) = (−1)a21−δa0, so

ψ
ρ(n)
λ = (−1)b2l(λ)−n−δa0H2a+2b+1.

Therefore

htO(1)(G) =
1

2

∑

0
�
a+2b<n

(−1)b2d−n−δa0H2a+2b+1g
[a,b]n

and the result follows.
�

Note that for n > 1, htO(1)(G) is a number in
∑n

k=1
1

2k−1
Z; the presence

of only odd denominators is in harmony with the fact that the odd power
sums form a Q-basis of the ring of Q-polynomials (cf. [M], III.8).
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Example 2. When n = 1, G = P1 is projective space and the formula gives
htO(1)(G) = 1

2
. For n = 2 we have

E(2) = {[0, 0]2, [1, 0]2} = {(2, 1, 1), (2, 2)}

and their g numbers g(2,1,1) = 2 and g(2,2) = 1 were calculated in Example 1.
Theorem 3 now gives

htO(1)(LG(2, 4)) = 2(1 +H3) =
17

3
.

Finally one can check that for the diagrams in Figure 6,

g[0,0]3 = 8, g[0,1]3 = 1, g[1,0]3 = 3, g[2,0]3 = 4,

which leads to
htO(1)(LG(3, 6)) = 32 + 20H3 + 32H5.
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[SABK] C. Soulé, D. Abramovich, J.-F. Burnol and J. Kramer : Lectures on
Arakelov Geometry, Cambridge Studies in Advanced Mathematics
33 (1992).
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