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Abstract

This paper introduces a submanifold of the moduli space of unitary representations of the fundamental group of
a punctured sphere with fixed local monodromy. The submanifold is defined via products of involutions through
Lagrangian subspaces. We show that the moduli space of Lagrangian representations is a Lagrangian submanifolc
of the moduli of unitary representations.
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1. Introduction

Let specA) denote the set of eigenvalues of a unitark n matrix A. An old problem asks the
following question: what are the possible collections of eigenvalueg dpgc . . , spe¢Ay) which arise
from matrices satisfyingl1--- Ay, =1, £>3 ? (A review of related problems and recent developments
can be found irf7]). For an equivalent formulation in terms of representations] Jedenote the free
group on¢ — 1 generators with presentation
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and letU (n) denote the group of unitaryx n matrices. We shall say that a collection of conjugacy classes
C1,...,C¢in U(n) isrealizedby a unitary representation if there is a homomorphisnT, — U (n)
with p(y,) € Cs foreachs =1, ..., ¢.

A natural subclass of linear representationg’piconsists of those generated by reflections through
linear subspaces. In the case of unitary representations, one may consider Lagrangidn gohatesir
associated involutions,. Given a pair of Lagrangian subspades L, in C", the productsy oy, iS
an element ofU (n). Moreover,any unitary matrix may be obtained in this way (cf. Proposition 3.3
below). For Lagrangianky, ..., L, one can define a unitary representatiomo¥ia y; — o107, 4,
fors=1,...,¢ -1, andy, — ¢1,07,. We shall call theskagrangian representationgee Definition
3.3). There is a natural equivalence relation obtained by rotating every Lagrangian by an eletihent of
and this corresponds to conjugation of the representation. We will say that a given collection of conjugacy
classes isealizedby a Lagrangian representation if the homomorphisohthe previous paragraph may
be chosen to be Lagrangian.

At first sight, Lagrangian representations may seem very special. The main result of this paper is that
in fact they exist in abundance. We will prove

Theorem 1(cf. Section 5 and Propositions 3.5 and . ¥ there exists a unitary representationof re-
alizing a given collection of conjugacy classeg/itn), then there also exists a Lagrangian representation
realizing the same conjugacy classes

We also study the global structure of the moduli space of Lagrangian representationsleinete a
specification o conjugacy classeSy, ..., C;, and let Rely(I'¢, U (n)) denote the set of equivalence
classes of irreducible representatignsl’, — U (n) with eachp(y,) € Cy. Note that for generic choices
of a, all representations are irreducible. Then Rep,, U(n)) is a smooth manifold which carries a
symplectic structure coming from its realization as the reduction of a quasi-HamiltGasuace (cf.

[1]; for a brief description, see Section 3.3). We refer to this asndtaral symplectic structure. Let
< Red"(I'e, U(n)) C Red"(I'y, U(n)) denote the subset of irreducible Lagrangian representations.
Then we have

Theorem 2. With respect to the natural symplectic structure
2 Reff"™(I', U(n)) € Reff™(I't. U(n)

is a smoothly embedded Lagrangian submanifold

Characterizations of which conjugacy classes are realized by products of unitary matrices have been
given in[3,5,2,15] We will give a brief review in Section 2.2 below. The basic result is that the allowed
regionis given by a collection of affine inequalities on the log eigenvalues. The “outer walls” of the allowed
region correspond to spectra realized only by reducible representations. In general, there are also “inner
walls” corresponding to spectra that are realized by both reducible and irreducible representations. The
open chambers complementary to these walls correspond to spectra that are realized only by irreducible
representations. The term “generic” used above refers to spectra in the open chambers.

This structure suggests a proof of Theorem 1 via induction on the rank and deformation theory, and
this is the approach we shall take. In Section 3, we prove some elementary facts about configurations of
pairs and triples of Lagrangian subspace§’inWe define Lagrangian representations and discuss their
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relationship to unitary representations. In particular, we show that the Lagrangian representation space is
isotropic with respect to the natural symplectic structure. In Section 4, after briefly reviewing the case of
unitary representations, we develop the deformation theory of Lagrangian representations in more detail.
We introduce two methods to produce a family of Lagrangian representations from a given one. We call
these deformatiorntsvistingandbendingsee Definitions 4.1 and 4.2), and they are in part motivated by the
geometric flows studied by Kapovich and Mills|r8]. We prove that twisting and bending deformations,
applied to an irreducible Lagrangian representation, span all possible variations of the conjugacy classes
(see Proposition 4.3). As a consequence, if there is a single point interior to one of the chambers described
above that is realized by a Lagrangian representation, then all points in the chamber are also realized by
Lagrangians (see Corollary 4.1). This reduces the existence problem to ruling out the possibility of isolated
chambers realized by unitary representations, but not by Lagrangians. To achieve this we make a detailed
analysis of the wall structure in Section 5. A basic fact is that any reducible Lagrangian representation
may be perturbed to an irreducible one. Hence, inductively, any chamber having an outer wall as a face
is necessarily populated by Lagrangian representations. A topological argument that exploits an estimate
(Proposition 4.4) on the codimension of the set of reducible representations shows that inner walls may
also be “crossed” by Lagrangian representations.

It should be apparent from this description that our proof of Theorem 1 is somewhat indirect. A more
precise description of the obstructions to deformations of reducible unitary and Lagrangian representations
is desirable. In6] Lagrangians were used to give a geometrical explanation of the inequalities for
U (2) representations in terms of spherical polygons. For higher rank it is tempting to look for a similar
geometrical interpretation of the inequalities, though we have not obtained such at present. Unitary
representations of surface groups are related to stability of holomorphic vector bundles through the
famous theorem of Narasimhan and Seshd@ji and its generalization to punctured surfaces by Mehta
and SeshadfiL7]. A challenging problem s to give an analytic description of those holomorphic structures
which give rise to Lagrangian representations.

We conclude this introduction by pointing out an alternative interpretation of the result in Theorem 1.
Let us say that matrices1, ..., Ay € U(n) arepairwise symmetrizabli for eachs =1, ..., ¢, there
is g; € U(n) so that bothg, A,g1 andgs A, 11, are symmetric (wherd .1 = A1). Also, throughout
the paper, for unitary matricesandB, A ~ B indicates thaA andB are conjugate. We then have the
following reformulation of Theorem 1.

Theorem 3. Givenn xn unitary matrices{As}f:l, A1 --- Ag=I,there exists a possibly different collection
of unitary matriceSBs}fﬂ, By---By=1,A; ~ Bsfors=1,...,¢,suchthatBy, ..., By are pairwise
symmetrizable

See Section 3.2 for the proof.

2. Unitary representations
2.1. The space of conjugacy classes

We begin with some notation. Given integers 1 and¢ > 3:

e Let .#,(n) denote the set of all x n matricesa = (oc;.), 1<s <, 1< j <n, where for eacts, «* =
(o, ..., o) satisfies Goj < - - <oy <1
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e Let .«/y(n) be the quotient of#,(n) defined by the following equivalence: identify a point of the
formo' = (o, ..., 0,1 ..., 1), 00 <1, witha' = (0,...,0,%,_;,q,...,%,), wherea, , =,
i=1,... k.

e Let .«/,(n) C /,(n) be the open subset where all inequalities are strietof < --- <oy <1, for
eachs.

For eachn € .«7;(n) we define theéndexas follows: choose the representativexafhere OKoy<--- <
« <1, for eachs, and set

¢
=Y > d. 2)
s=1 j=1
We defineZ; (n) = {a € Z,(n) : 1(a) is an integet, /Z(n) = o/¢(n) N 7 (n).
Definition 2.1. For a nonnegative integérdefine theopen M-planeby
Pro(n) ={ae AL 1(a)=1).
The closure?; ¢(n) of 2/ in Ef(n) will be called theclosed M-planeFinally, let

Py n)y={a€Pro:1(a)=1}.

Observe tha#; ,(n) is a closed connected cell. Notice also that the clddgulanes are not disjoint,
whereas of cours@f’g(n) N ?”}’g(n) =@ if I # J. We therefore have disjointunion

Zim=J 7.
0<I<nt-1
For eactschoose a partitiom® of {1, ..., n},i.e. asetofintegers®mj <mj <--- < m‘;s =n.Here/,
is thelengthof the partition. Specifying, numbers &a; <--- < &; < 1 along with a partition of length
Iy uniquely determines a point in= (a;) € Ay(n), wheres; = &j for mj._l <i <m~;. Conversely, given
a pointa € .«/¢(n) with the distinct entries @3} < - - - < &;‘v < 1, a partition of lengtli, is determined by
the multiplicitieSyj = m; — m‘j‘.f1 of the&“}. We shall say that* has the multiplicity structure of:*.

Let m = (mt, ..., m") be a choice of? partitions. In addition, choose a (possibly empty subset)
z C {1, ..., £} of cardinality|z|. This data leads to the following refinement of teplane.

Pre(n,m,z)={a= (ocj-) € ?}F’e(n) : o' has multiplicity structuren® for all s,
andi; =0 ifand only ifs € z };

Z1.0(n, m, z) = the closure of?; ¢(n, m, z) in Ef(n);
ﬁ?e(n, m,z) = ﬁ[,g(n, m,z) N ﬁ?e(n).

Next, notice that there is a natural partial ordering on multiplicities: # (p?, ..., p%) andm =
(mt, ..., m", we say thap<m if for eachs = 1, ..., £ the partitionp® is a subset of:*. We then have
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a stratification by the cell®; ,(n, m, z) in the sense that

. )
Zren,m, z) = U Zre(n, p, 2).
p<m,zCzC{l,....¢}
In particular,
—k
Zrm=J  Zremmo)

There is a similar, though slightly more complicated, stratificatiowf (n, m, z) which involves

strata of lower index. To describe this, consider the linih Ef(n) of points in2; ¢(n, m, z) where
oclo — 1,forsomeg € {1, ..., ¢}, but the&‘l‘s remain bounded away from 1 for£ sg. From the defining

equwalence%z (n) — /¢(n) and the convention (2) for the index, it follows that

I=I@=1-@n-m )<l

Furthermore, we may define a new collection of partitiGng:* (I;) = m* (I,) for s # sg, and
A = mP 4 (= m) _p). 1<i<ly 1,

if so €z then lyo =l — 1,

=2
=50 _ .50
my =n mlsofl’

if so¢z then il = mso+(”_mz . I<i<iy -1,

lS() - 1507
z=2zU{so}.

With these definitions, it is clear thate P, m 7). A stratification of%; ,(n, m, z) is then obtained

by adding, in addition to sets of the forey ¢(n, p, 2), all sets?; ,(n, m, 2) derived from these strata in
the manner described above.

2.2. Inequalities for unitary representations

LetIy be asin (1), and fix an integer= 1. We will denote thd/ (n)-representation varietef I', by
Hom(I'p, U (n)) = {homomorphisms : I'y — U(n)}.

We denote the subspaces of irreducible and reducible homomorphisms b{-Hom (n)) and
Hom'd(r,, U (n)), respectively. The group/ (n) acts on Honil'y, U (n)) (say, on the left) by conju-
gation. We define thenoduli space of representatiotsbe the quotient

Reply, U(n)) = Um)\Hom(I'¢, U (n)).

Following the notation for homomorphisms, subsets of equivalence classes of irreducible and reducible
homomorphisms are denoted by e, U(n)) and Reffd(I';, U (n)), respectively. With the presen-
tation of I', given in (1), to eachip] € Rep(I'y, U(n)) we associate conjugacy clasg&s,), ..., p(y,).
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In this section, we give a brief description of which collectiond @onjugacy classes are realized by
unitary representations in this way.

Given A € U(n), we may express its eigenvalues(@gp(2ricx1), . . ., eXp2riay,)), with 0oy < - - -
<a, < 1, and this expression is unique. We will therefore write: $a¢e= o= (a1, ..., ;). The spectrum
determines and is determined uniquely by the conjugacy clasdbfi1, ..., Ap e Un), A1--- Ag=I,
and specAy) = o, then by taking determinants we see that the intieX) defined in (2) is amteger
As in the introduction, we may recast this in terms of representationss EoHom(I'y, U(n)), we set
A = p(y,), and there is a well-defined integee= 1 (p) associated t@. Clearly, I (p) depends only on
the conjugacy class of the representation, so it is actually well-defingdiferRepr,, U (n)).

Definition 2.2. Givenp € Hom(I'y, U (n)), the integet (p) is called thandexof the representation. We
define thespectral projection

n: Hom(g, Un)) — /¢ (n) = p —> [Spedp(11)). - .., SPeCp())].

Thenr factors through a map (also denotg@dn Ref ', U (n)). We denote the fibers afovera € Ef(n)
by

Hom, (I, U(n)) = n~*(a) € Hom(I'y, U (n)),
Rep,(I'e, U(n)) = n*(a) C Rep(Iy, U(n)).
The image ofz is our main focus in this section.

Definition 2.3. Let#} ,(n)=n(Hom(I', U(n)))NZ, ,(n). For each collection of multiplicities= (m*)
and subsets C {1, ..., ¢}, we set

Upe(n,m,z) = Wf,e(n) NZre(n,m,z).

Definition 2.4. Denote the interior points o#; ¢(n, m, z) in 27 ¢(n, m, z) by % ¢(n, m, z). A stratum
21.¢(n, m, z) is callednondegenerat# either

Upe(n,m,z) =0,
or
Wro(n,m, z) # 0.
The regions ¢(n, m, z) have the following simple description (¢6, Theorem 3.2, 3,2,1}]
Theorem 2.1. There is a finite collectio®; ,(n) of affine linear functions of thacji} such that
Uy y(n) ={a€ Py ,(n): p(a)<0 forall ¢ € &7 ¢(n)}.

Moreover the setsp; ((n), as | varies are compatible with the stratification described in the previous
section
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Definition 2.5. For eachp € @, ,(n) we define theuter wallassociated t¢ by
Wy ={ae Z¢(n,m, z): ¢(a) =0}.

We denote the union of all outer walls by

Wren, m,z) = U We.
PED 0(n)

It follows that % ¢(n, m, z) is the closure in?; ,(n, m, z) of a convex connected component of
Pre(n, m, 2\ 7 1¢(n, m, z). The representations witt(p) € # 1 ¢(n, m, z) are reducible (see Proposi-
tion 2.1). Indeed, the functionsdefining the walls are all of the following type. Fix an integeti < n.
Choosep) = (plk), e pfk)), where foreach =1, ..., ¢, pfk) is a subset ofl, ..., n} of cardinality
k. We define a reﬁative index by

¢
I, pp) =) Y d. 3)

s=1 ajepp,

Notice that fora € @?Z(n) the value off (a, px)) may a priori be any real number less thaBuppose e
Hom; (I'¢, U (n)) is reducible. Hence, there is a reductionl’y — U (k) x U (n — k) for some Kk < n.
The set of eigenvectors of(y;) lying in the U (k) factor gives a collection of subsets,,. Moreover,
it follows, again by taking determinants that the relative index(p), g «)) is equal to some integé,
0< K <I.We will say that the reducible representatiosasnpatiblewith (K, o)) if the pair (K, gk))
arises from some reduction pf The functionsp € @; ((n) are all of the formp(a) = I(a, p)) — K,
for various choices of partitiong) and integers.
Itis not necessarily the case, however, that every reduefiriejects viar to anouterwall. Nevertheless,

we see that there is still a hyperplane associated to any reducible. This motivates the following

Definition 2.6. Let ¥, ((n) be the finite collection of affine linear functions of the faita) =1 (a, o)) —
K, for partitionsp ) and positive integets, such that there is some reducipleompatible with K, o))
for which z(p) € ;Z)l[’e(n, m, z), for somem, z. Fory € ¥ ,(n) we define thenner wall associated tg
by

Vo ={ae 21 (n,m, 2) : y(a) =0}

We denote the union of all inner walls by

Vre(n,m,z) = U V.
el e(n)

Hence, the distinction between the two types of walls is that there are poirts,6t, m, z) on either
side of an inner wall, whereas; ((n, m, z) lies on only one side of each outer wall.

The precise determination of the functionsfif, (n) is quite involved. In Section 6, we give the result
for @;3(2) and®; 3(3). One way to view the origin of these conditions is via the notion of stable and
semistable parabolic structures on holomorphic vector bundlesdAeiWe will require very few details
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of this theory; the interested reader may consult the references cited above. The following two results are
consequences of this holomorphic description. First, we have

Proposition 2.1. Letp € Hom; (I'y, U (n)) with n(p) € 21 ¢(n, m, 2).

(1) f =(p) € #'1.¢(n, m, 2), thenp is reducible
(2) If pisreduciblethenn(p) € # 1 ¢(n,m,z) U ¥ ¢(n, m, 2).

(3) If n(p) € 0;/1’6(11, m, z), there is an irreducible representatignwith n(p) = a.

Proof. Part (1) follows from the fact that an irreducible representation corresponds to a stable parabolic
structure. And if a parabolic structure is stable for a given set of weights, it is also stable for a sufficiently
small neighborhood of weights (an alternative, purely representation theoretic proof of this follows from
the arguments in Section 4 below). Part (2) is by definition. Part (3) is immediatg3rdrheorem 3.23]

since if the strict inequalities are satisfied there exists a stable parabolic structure. Stable structures, as
mentioned, correspond to irreducible representations.

Next, we give sharp bounds on the index.

Theorem 2.2. For any representatiop : I'; — U (n) we have
n — No(p) <I(p)<n(t —1) + No(p) — N1i(p),

whereNy(p) is the number of trivial representations appearing in the decompositiomtd irreducibles
and N1(p) is the total multiplicity of the eigenvalu@amongs® = p(y,) forall s =1, ..., ¢. Moreover
these bounds are sharp

Proof. The casen = 1 is straightforward. Fon > 2, we first show thaf (p) >n — No(p). Since both

sides of this inequality are additive on reducibles, an inequalipy >n» for irreducible representations
proves the result in general by induction. Hence, suppode, — U (n) is an irreducible representation
with =(p) = (oc ) and I (p) < n. Associated to is a stable parabolic bundle anP! with Welghts(a )

whose underlylng holomorphic bundiehas degree-1(p) (cf. [17]). By the well-known theorem of
GrothendieckE — CP1is holomorphically split into a sum of line bundleB:= 0(d1) @ - - - ® 0(d,),

where ¢0(d) denotes the (unique up to isomorphism) holomorphic line bundle of degmeCPl

By assumptlonz _1dj =degE = —I(p) > — n. Hence, there is somg >0. But thenE contains a
subbundle’(d;) W|th nonnegative parabolic degree. This contradicts parabolic stability, and hence also
the assumptiord (p) < n. Thus, the inequality (p) >n for irreducibles holds. Next, notice that to any
representatiop : I'y — U(n) we may associate a dual representagdn Iy — U (n) defined by:

p*(ys) = p(y,3+1_s)‘1, s=1,...,¢.Using the convention (2) it follows thdip*) =nf — I (p) — N1(p),
whereN1(p) is defined in the statement of the theorem. Combining this with the previous Fésuitn,

we see thaf (p) <n(¢ — 1) — N1(p), for p irreducible. This argument generalizes to the case where
contains trivial factors as well. This completes the proof of the inequality. To prove that the bounds are
sharp we need only remark that both sides of the inequalities are additive on reducibles and that the
bounds are evidently sharp forthe case 1. O
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In Section 3, we will indicate a “Lagrangian” proof of this result for the case3 (see Proposition
3.2). We conclude this section with one more

Definition 2.7. A connected component of
Ure(n, m, D\ 1e(n, m, 2) U P e(n,m, 2)}

will be called achamber
Remark 2.1.

(1) From the description given above the chamberg of(n, m, z) are convex subsets and their bound-
aries are unions of convex subsets in the intersections of the inner and outer walls.
(2) By Proposition 2.1 (2), if:(p) is in a chamber thep s irreducible.

3. Lagrangian representations
3.1. Linear algebra of Lagrangians in"

We denote byd(n) the (n/2)(n + 1)-dimensional manifold of subspaces©f that are Lagrangian
with respect to the standard hermitian structure. Fixing a preferred LagrahgianR” c C", we
observe thati(n) = U (n)/ O (n), where the orthogonal group (n) C U (n) is the stabilizer ofLq for
the actionLo +— gL. Define the involutiorsg(z) — z. Thento each Lagrangidn= gLy =[g] € A(n)
one associates a canonical skew-symplectic complex anti-linear involgtianC* — C" given by
o1 = goog L, whose set of fixed points is precisely the LagrandialiVe will set O; = the stabilizer
of L, with Lie algebrao;. Note thatO, is simply the conjugate of (n) by g. Let u(n) denote the Lie
algebra ofUU (n) with the Ad-invariant inner produgtX, Y) = —Tr(XY). We have the following useful

Lemma 3.1. For a Lagrangian L Ad,, |,, =1, andAdaL|Di =—I.

Proof. ForX € u(n), Adg, (X) is by definition the derivative at=0 of the curver e'Xep € U(n). Inthe
caseL =R", g7 is just complex conjugation, and then AKX = X . Using the orthogonal decomposition
u(n) = iR" ® o(n) ® s(n), into diagonal, real orthogonal and symmetric skew-hermitian matrices, the
result follows immediately. O

Forg € U(n), let Z(g) denote the centralizer gfwith Lie algebras(g). The relationship between the
stabilizers of a pair of Lagrangians is given precisely by the following

Proposition 3.1. Let L1, Lo be two Lagrangian subspaces with stabilizérg 02, and letg = 6102 be
the composition of the corresponding Lagrangian involutions.ol.eb, denote the Lie algebras @¥;
and O,. Then

(1) 01N 02 C Z(g);
(2) there is an orthogonal decompositigfy) = (01 + 02)" @& (01 N 02);
(3) 2dim(py No2) =dim3(g) — n.
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Proof. Observe first thaj(g) = Ker(I — Ad,) = Ker(I — Adg,,,). Using Lemma 3.1, we obtaitto; +
02)T @ (01N02) C 3(g). LetP denote the orthogonal projectiondpnoy, and letP; = (1/2)(l +Ad,,) and
P>=(1/2)(I +Ad,,) denote the projections tq andoy, respectively. IfX € 3(g), then Ad,; X =Ad,, X,
which impliesP1 X = P, X. Hence,P ;) = P1l34) = P2l3e)- In particular, ifX € 3(g) N (01N o2) "+, then
P1X = PX =0, andX € (o1 4 0p)*. This proves (2). Finally, (3) follows from (2).0

Corollary 3.1. If g = a107 is regular(i.e. 3(g) is isomorphic taR"?), then

(1) 01N O02={1},
(2) 01N Z(g) = 02N Z(g) ={I}.

That is u(n) = iR" @ o1 ® o2 (Not necessarily orthogonpl
Definition 3.1. We define three maps:

11:A(n) — Un) : L — o100,

w21 A%(n) — U(n) : (L1, L2) —> 61,01L,;

w31 A%(n) — U?(n) : (L1, La, L) —> (r2(L1, L2), t2(L2, L3)).
Lemma 3.2. We have the following

1) na(lgh =85
(2) t2(L1, L2) = t1(L1)t1(L2), andta(L, L) =1;
(3) t2(L1, L3) = t2(L1, L2)t2(L2, L3).

We prove some elementary facts about each of these maps$(ibetienote the space of symmetric
n X n complex matrices.

Proposition 3.2. The mapxy : A(n) — U (n) is an embedding with imadé (n) N S(n).

Proof. The fact that the image consists of symmetric matrices is the statement Lemma 3.2 (1). We
prove thatry is injective. Ifr1([g]) = t1([A]), then:gg” = hhT: henceh=1g € U(n) N O(n, C). But

Um)N O(n, C)= 0(n), sowe conclude that € hO(n), and[g] =[h]. To prover; is an embedding we
compute its derivative. Any variation &fis determined up to first order by a variation of the involution

o1 of the formey ;) = e o e™'X, whereX € u(n). Then:é, =[X, o1, SO0, € Im(I — Ad,,). In
particular,6po;p =0 < X € oy <= L(t) = L. With this understood, we ha\iq(L)v:Il(L) =
(6L00)(c00r) =ar 0. Hence, by the discussion abovgjs an immersion. One may show that the image

is all of S(n) either by noticing that dimensions agree, or directly using the following result, whose proof
is straightforward.

Lemma 3.3. If g € U(n) N S(n) there ish € O(n) such thatigh~' is diagonal

Now takeg andh as in the lemma. Clearly, there exigtse U(n) such thatkk” = hgh™1. Then:
11(hk)y=g. O
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Proposition 3.3. 15 : A%(n) — U (n) is surjective and is equivariant with respect to the diagonal action
on the domain and the conjugation action in the target. Over the regular elemett&:df(i.e. those
whose eigenvalues have multiplicity dne is a fibration with fiber the torug™™. The general fiber is
rz_l(g) =Z(g) N S(n), whereZ(g) is the centralizer of g

Proof. Equivariance is an easy computation. As a consequence, it suffices to prove the remaining state-
ments for a diagona} € U (n). For such a we can solvez = t2([g1], [g2]), and we may even assume

g1 andg», are diagonal. Lep = h1ho with A1 = t1([g1]) andhs = t1([g2]). Sincehs is determined by

h1 andrq is an embedding, it suffices to find all possible Note that since is diagonal and 1, k- are
symmetrichi1, ho € Z(g)NS(n). Conversely, ifi1 € Z(g)NS(n), then by Proposition 3.2,1 € Im(z1).
Sincehy=hytg, we obtaimi} =g (h7hT = ghyt=hi g =hy. We conclude thai, is also symmetric,

and hencé:; € Im(z1). Thus,t; *(g) is diffeomorphic toZ(g) N S(n). O

NotethatZ(g)NS(m)=S(n1)NU (n1) x- - - x S(nx)NU (ny), wheren;, for 1<i <k, are the multiplicities
of the eigenvalues dj. Finally, we determine the image &f.

Definition 3.2. A pair k1, k2 € U(n) is said to besymmetrizablef there isg € U(n) such that both
gk1g71, gkog™t € S(n). The set of symmetrizable pairs will be denoted by Sym.

Proposition 3.4. The image of3 is precisely the set of symmetrizable paBym,(n) C U?(n).

Proof. Clearly if t3([g1], [g2], [g3]) = (h1, h2), thenta([g; Le1l, Lo, [g5 *g3]) = (85 “h1g2, g5 thag2).

But g, 'h1g2 = 12([g5 " g1l, Lo) = 11([g5 *g1]) and g; thaga = t2(Lo, [g5 "g3]) = r1([g; 3]) which
are symmetric. Therefor@: 1, hp) € Symy(n). Conversely, supposés, h2) € Symy(n), and letg be a
matrix such thagh,g~ 2, gh,g™ € S(n). We can solve

To~T) 1

w2([g1], Lo) = t1(lg1]) = gh1g™,  w2(Lo, [g2]) = t1(lg2]) = ghog ™t

Thents([g1], Lo, [g2]) = (gh1g™ 1, ghpg™1). Sincers is equivariant, acting by~ gives the result. O
3.2. The space of Lagrangian representations

We now define the main object of study in this paper. Fix an intéged. Given the presentation (1), a
representatiop € Hom(I'y, U (n)) is equivalent to a choice dfmatrices whose product is the identity.
By Lemma 3.2 (2) and (3), we therefore have a map

o : A4(n) — Hom(I'y, U (n)),
(L1,...,L¢) —> (z2(L1, L2), t2(L2, L3), ..., 12(L¢, L1)). 4)

U (n) acts diagonally on the left oi(n), and by Proposition 3.3j is equivariant with respect to this
action and the left action by conjugation@{n) on Hom(I'y, U (n)). Hence, we have an induced map

@ Um)\1°(n) — RepIy, U(n)).

Giveni= (L1,...,Ly) € A*(n), let Z(J) = Or, N---N 0L, C U(n) denote the stabilizer, and let
3(4) be its Lie algebra. Similarly, fos € Hom(I";, U (n)), let Z(p) denote its stabilizer with Lie algebra
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3(p). Because of the equivariance®fZ (1) C Z(p), wherep = ¢(4), but the two groups are not equal.
For example, the centér (1) is always inZ(p) but never inZ(1). The precise relationship is given by
the following

Lemma 3.4. Given € A%(n), thenKer(D®;) C u(n), whereu(n) — T;A%(n) via theU (n) action. If
p = ¢(4), thenz(p) = Ker(Dp;) @ 3(1).

Proof. Let g, =oL,, with o¢4+1 = o1. Then:p(1) = (y1, ..., y¢), Wherey, = a50541 (See Definitiqn 3.1
and (4)). Let) be a tangent vector ta‘(n) at .. Expressing the components of the imagé (1) =
(X1, ..., X) as elements af(n), we have X = “'/s“/s_l- Hence,

Xs = (&sas—i-l + oy é's+1)0's+10's = (.7s os + O'Sé'.H—lO'.H—lo's- (5)

Since s, is an involution, we conclude from the equation above that Ker(Dg;) if and only if
0505 = 05+105+1, fOoralls =1, ..., £. As in the proof of Proposition 3.246, € Im(I — Ad,,). If we let
O, denote the stabilizer of the Lagrangian corresponding t@nd if o, is the Lie algebra oDy, then
the kernel ofD¢; is determined by an element in

Im(I —Ad,) N---NIm(I —Ad,,) =03 N---Nop = (014 +0p)"
= (01 + 02+ 024034+ 0p1+00)T
= (01 +02)T NN (op—1 +0p) "

By Proposition 3.1 (2Joy + 0s41)" C 3(7,). Since
3(0) =30 N+ N3(pe_1) = (02N -~ Nog) @ (o1 + 02)T N+ N (0p—1 + 0) T,
and3(4) = o1 N --- N oy, the result follows. O

We take the opportunity to point out a fact about the imagB j.

Lemma 3.5. Let (X1, ..., X¢) € Im(Dg;), with 1 as above. ThenX; € (vo; N vs41)" for eachs =
1,...,¢.

Proof. From Lemma 3.1 and the proof of Lemma 3.4, we have
6505 € IM(I = Ady,) =0,  Gy110541 € IM(I — Ady,, ;) = 071
Now if Z € o N os+1, then by (5) and Lemma 3.1 again,

(Z,X5)=(Z, Adas (&s—l—las—l—l)) = (AdaSZ, 6s+10s+1> =(Z, 6's+10's+1> =0. O

image ofp. We denote the space bagrangian representationsy
& Hom(I'y, U (n)) =Im(p) C Hom(I'y, U (n)).
Similarly, the image ofy is themoduli space of Lagrangian representations

% RefI'y, U(n)) = Im(¢) C Rep(I'y, U(n)).
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We also set
¥ Homy(I'y, U(n)) = % Hom(I'y, U (n)) N HomM(I'y, U (n)),
2 Rep(I'y, U(n)) =2 ReprI'y, U(n)) NRep(I'y, U(n)).

From general considerations of group actions,®R€p;, U (n)) is a smooth (open) manifold, since the
isotropyZ (p) of anirreducible representatipris just the center of/ (n). Let: A}, (n) =& Y (Hom"™ (I,
U (n)). Then for Lagrangian representations we have the following

Proposition 3.5. (1) For 2 € At(m) and p = $(1), the fiber@‘l(p) >~ Z(p)/Z(4). In particular,
% Hom™ (', U(n)) is an embedded submanifold of dimension

(-1 l
( )n2+—n—1,

2 2

dim(Z Hom"™ (I'y, U(n))) =

and ¢ : Aﬁr.(n) — 2 Hom'™ (I, U(n)) is a circle bundle

(2) U (n) acts freely om?. (n). Moreover

Irr.
¢ Um\AL, (n) — # Rep™(I'y, U(n))  Reg™ (I'¢, U (n))
is an embedding with

-2 ¢
-2 .t

dim(z Rep™ (I'y, U(n))) = 5 5

Proof. We determine the fiber op. Supposep = ¢(1) = ¢(/), wherei = (L1, ..., Ly) and ) =
(L}, ..., L}). By Propositions 3.2 and 3.3,; = hLi and L), = hLy for h € Z(p(y1)) N S(n). Ap-
plying the result to each pait,, L1, we see that in fadi € Z(p(y1)) N--- N Z(p(y,—1)) N S(n). In
particular,h € Z(p). Conversely, by equivariancp) acts on the fiber op with Z(1). The remaining
statements follow from Lemma 3.4.0

We will denote the restriction of the spectral projection to the Lagrangian representations also by
n: ¥ Hom(I¢, U(n)) — %Ez(n). By analogy with Definition 2.3, we have

Definition 3.4. Let 7} ,(n) = n(Z Hom(I'y, U(n))) N 7 ,(n). For each collection of multiplicities
m= (m*), and subsets C {1, ..., ¢}, we set: ¥ o(n, m, z) = ?U(n) N2re(n,m,z).

From the definition we have,?’,‘,z(n) C @?Z(n). The goal of this paper is to prove that in fact
7 4(n) =7 ,(n). Assuming Theorem 1, however, we may now give the

Proofof Theorem 3. By Theorem 1, the conjugacy classeglef . .., A, may berealized by aLagrangian
representation. Hence, we may fig as in the statement of Theorem 3 such that= 67,0, , for
Lagrangiand.1, ..., Ly, whereLyy1 = L1. In particular, the paifB;, B;+1) is in the image of3 for
eachi. The result then follows from Proposition 3.40
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3.3. The symplectic structure

The purpose of this section is to show that the tangent space to the Lagrangian representations for fixed
conjugacy classes is isotropic with respect to the natural symplectic form. We begin with a brief review
of quasi-Hamiltonian reduction. For more details, §&e Let (M, w) be a manifold equipped with a
2-formw, G a Lie group with Lie algebrg andG x M — M a Lie group action preserving. In order
to define aG-valued moment map we assume the existence of an Ad-invariant inner pkgduch g.

Let0R and6" be the right and left Maurer—Cartan forms@nThat is, forV € 7,G, 05 (V) =g~V e g

andoR(V) = Vgt € g (¢-*dg and cgg ! in matrix groups). Le; be the bi-invariant closed Cartan
3-form defined by

7=3 (105, 0" 1) = 3 (0%, (67, 0F)).

Definition 3.5. A quasi-Hamiltonian G-spacéV, G, o, ) is a manifold equipped with a 2-formthat
is invariant under the action & and an equivariant moment map M — G satisfying

(1) do=—p*y
(2) 1= 3 (0 + 07, &)
(3) kero, = {&(x) | & e ker(l + Ad,x))}-

Here,&* denotes the vector field dv induced by € g and the action of. The following theorem is
proved in[1].

Theorem 3.1. Let (M, G, w, 1) be a quasi-Hamiltonian space as above. Lety~1(1) — M be the
inclusion andp : x~1(1) - M™ = ,~1(1)/G the projection on the orbit space. Then there exists a
unique symplectic form™d on the smooth stratum of the reduced sp&t&9 such thatp*»™®4=*w on

()}

This formulation of symplectic reduction is well-adapted to computations on the representation space of
the free group with fixed conjugacy classes. Let Hof, U (n)) and ReR(I'¢, U (n)) be as in Definition
2.2. Then Hom(I'¢, U (n)) is naturally contained iM,=C1 x - - - x C, Where{C,} are the conjugacy class
of U (n) prescribed by.. Moreover, Hom(I'y, U (n)) =~ 1(1), whereu(yy, . .., y) =7172 - - - 7¢ € U(n),
and Rep(I'y, U(n)) = 1~ 1(1)/U (n). To describe the formw, we require

Definition 3.6. Let (M1, w1, np) and(Ma, wz, uy) be two quasi-Hamiltoniat-spaces. TheM; x M
is also a quasi-Hamiltonia@-space, called thiision product oM/, andM>. The moment map is given
by uiup : M1 x M — G, and the 2-form is given by = w1 + w2 + (0 A 150R).

Explicitly, we have

(1508 A 0R) ((v1, v2), (w1, w2)) = 3 (08 (v1), 130R (w2)) — (K0~ (1), 150 (v2))).

To find the expression of the fusion product for a product conjugacy classes, recall that the fundamental
vector field corresponding toe g at a pointy is

&= —ye=(—-Ad)&=yAd1— e
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The 2-form on a conjugacy clagsis given by
o, (& ") = 3 (A, n) — (Ad,a, 8)).

For the product of two conjugacy classeésandCy, lety; : C; — G be the tautological embeddings.
Then

1308 (ED) = 0" (ua ) = 05 (&) = 0" (Ad 2 — ey
=71 1A 2 — D= (Ad o — Déy.

Similarly, u QR(n ) = (I — Ad,,)n,. Using these formulas, the 2-form on the proddgtx C of two
conjugacy classes is

(159 (1, E8), (1, n3)) = 3 ((Ady 1, 1) — (Ady, i1, E1))
+ 3 ((Ady,Ea, 12) — (Ad,,np, E2))
+ 240 = Ad)))ér, Ady, (I = Ady)np) — (& < 1)

where¢ <> n means that the previous terms are repeated §vthds; interchanged, keeping the indices
unchanged. In general, for the proddat x - - - x C, we obtain

Dy, .., ;vz)((if, cevs 5?), i, ..., 17?))
1 ¢ -1
=3 {Z (Ady, &g ) + > (= Ady)éq + Ady, (1 — Ad,,)
s=0 =1

+ e + Ad"yrny, 1( Ady )ét’ Adyl /,( - Adyt+1)7’/t+l> - {é <> ’7}

=
~

I\)

s=0 O0<s<tr<e-1

: [Z d, &1 kY (A, (- Ady e,

Ad?’l"'yt (I — Adyt+1)nt+1> ]

—{&<

Proposition 3.6. The product of conjugacy classes of a compact Lie grougGx - - - x Cy is a quasi-
Hamiltonian space equipped with the moment map which is the product of the embeddings in G and the
following 2-form:

# i # #
w(‘,’l ..... “/g)((f]_a L) fz)a (17]_’ ’175))

4
1
- E [ Z (Ad?sés’ '7s) + Z (Ad)ll"”,g( Ad +1)és+l= Ad/l “( - Ad"/,+1)nt+1)

s=0 O<s<r<e—-1

—{& <}
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Proposition 3.7. The moduli space of moduli of Lagrangian representations
Z Rep,(I'y, U(n)) C Rep,(I'y, U(n))
is isotropic with respect to the symplectic structure defined by Propost®and Theoren3.1.
Proof. Let
X5 = 0505 + Adg (054+105+1),  Ys = pyps + Ao, (D511P541)-
wherep, = o, (see (5)). By the assumption of fixed conjugacy classes, we have
o505 =& — Adg &, pypy =1y — Adg g,
05410541 =& — Adns+1§s, i)s+1ps+l =Ny — AdoHl’?s-
In particular,
Ad,, Xy = 65410541 — 0505,  Adg Yy = poi1pgi1 — Pypy- (6)
It follows that

(Ad“/s 55" ’17) = <Ad65+155v AdO’sns> = <5S - 6-5+1O-s+1’ s — pVPV)
= <£s’ ’7s> + <(.7s+1(7s+l, psps> - <és’ psps> - <’/’s’ 6s+10s+1>-

Notice that since, p, is in the (~1)-eigenspace of Agl,
2<és9 P;Pg) = <§v - Adas ésv bsps) = (é-SUS? paPA)

Similarly, 2, 65+105+1) = (ps110541, 0s+105s+1). Because of the symmetry upon interchangirand
p, these terms cancel, and we are left with

~

¢
Z (Ad, &, ng) — (Ady g, &) =D (65110511, psps) — (6505, pr1pst)- (7)
s=1 s=1

For the second term, notice that for a Lagrangian representgtiony, = s10511. Hence,

Z (Adyl---ys Xs-i—l, Adyl---y[ Yt+l> = Z (Adaerle-i—ls Ada,+1 Yt+l>

O<s<r<e-1 O0<s<r<e—-1

= Z (Ado-SXs,AdJ,Yt>'

1<s<r<t
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Using (6) (and recalling the convention that, ; = p;) we have
> (Ady Xor1, Ady, . Yiga)
O<s<r<e—1

= Z (054105+1 — 0505, Pry1Pi+1 — PiPy)
s<t
= <"7s+1‘7s+1 — 0505, blpl - pﬁ—lps-ﬁ—l)
= (05055 Ps+1Ps+1) — (Os+105+1, Ps41P5+1) T (05410541 — 0505, p1P1)
= (6000 — 6101, p1p0) + Y (650, Pyp1Psrt) — (Bsr105t1, PyyPysn)

1<s<e—1

= Z (&SO—Sa bs+1ps+1> - (6’5()'5, ,bsps>
1<s<t

Hence,

> (A X1, Adyy oy, Vi) — (Adyy Yog1, Adyy o, Xipa)

O<s<r<e-1
¢
= Z (0505, f)s+1ps+1> - <6S+16S+1, /.’s/’s>'
s=1
The proposition now follows by comparing this with (7)C

3.4. The Maslov index

In this section, we briefly digress to explain the relationship between the qua@tjtywhich we have
called the index of a representation, and the usual Maslov index of a triple of Lagrangians, in thescase
a Lagrangian representation. The diagonal action of the symplectic group acting on triple of Lagrangian
subspacesli, Lo, L3) in C" has a finite number of orbits. To classify the orbits, one introduces the
notion of aninertia index(or Maslov indeX of a Lagrangian triple (cf14, p. 486).

Definition 3.7. Theinertia indexz(/) of a tripleA = (L1, L2, L3) of Lagrangian subspaces ©f is the
signature of the quadratic formndefined on the i3 (real) dimensional vector spadg & L & L3 by:
q(x1, x2, x3) = w(x1, x2) + w(x2, x3) + w(x3, x1), wherew is the standard symplectic form arf.

In order to state the symplectic classification of triples of Lagrangians, we need the following data.
Forbd = (no, n12, n23, n31, 1) € N* x 7, let Cy denote the set of all= (L1, L», L3) satisfyingr(1) =1,
dim(Ly N Lz N Lg) =ng, and dim(L; N L) = n j;. For the following result, sed 4, p. 493]

Proposition 3.8. C; is non-empty if and only if = (ng, n12, n23, n31, t) satisfies the conditions

(1) O<no<ni2, no3, n31<n.
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(2) n12+ n23z+nz1<n + 2no.
(3) Itl<n + 2no — (n12 + n23 + n31).
(4) t=n— (n12+ n23+ n31) mod Z.

If 2 and /" are two triples of Lagrangian subspacesf, there exists a symplectic maps Sp(C") such
thaty(Ly) = L), y(L2) = L} andy(L3) = Ly, if and only ifng = ng, n12 = nj,, n23 = nis, n31 =nj,;
andr=1'.

Using this classification one may show

Proposition 3.9(Falbel etal.[6, Theorem 4.4). Leti= (L1, Lo, L3), p=¢(4),andn jr=dim(L; N Ly).
Then

©(A) =3n — 21 (p) — (n12 + n23+ n31).

This relationship betweenandl gives an alternative proof of Theorem 2.2 for the case 3 (and
assuming Theorem 1).

Corollary 3.2. Let . be a triple of Lagrangian subspaces@f, p = ¢(2). Then
n — No(p) <I(p)<2n + No(p) — Ni(p).

Proof. Thisfollows from Propositions 3.8 and 3.9, and the factMgp)=ng, andN1(p)=n12+n23+n31.
O

The Maslov index generalizes to multiple Lagrangians as followsLLgt. ., Ly, £> 3, be acollection
of Lagrangian subspaces(i. We define

(L1, ..., L¢)=1(L1, L2, L3) + (L1, L3, L4) +---+ (L1, Ly—1, Ly).

For the next result, sa@t(L1, ..., Ly) = I(p(L1, ..., Ly)).

Proposition 3.10. Let L1, ..., L¢, £>4, be a collection of Lagrangian subspacesah. Write ny; =
dim(Ly N L;), then
-1
I(Ly, ..., Le)=1(Ly, Lo, La) + I (L1, L3, La) + -+ + I (L1, L1, L) = Y (n — ni).
i=3
Proof. Observe that if sp&e,o1,) = (0, ..., 0, opyst1, ..., o) then
spetorzor,) =(0,...,0, 1 — o, ..., L — o541,

Summing all the angles in both spectra givesms: n13. This implies that
I(L1, L, L3, La) =1(L1, L2, L3) + I (L1, L3, La) — (n — n13).

The general case follows by induction
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A relationship betweemn and| still exists. Indeed, this follows directly from the previous result and
Proposition 3.9.

Proposition 3.11. For £>3,t(L1,...,L¢) =nt — 2I(L1, ..., Ly) — (n12+ noz+ -+ + ne1).

It is not immediately clear how to prove the analogue of Proposition 3.83ak, since the invariants
no longer necessarily classifytuples of Lagrangians. On the other hand, weuseTheorem 2.2, along
with Proposition 3.11, to prove bounds on the generalized Maslov index.

Theorem 3.2. For any ¢-tuple of Lagrangians

[t(L1, ..., Lo)|<n(f —2) + 2ng — (n12 + no3+ - - - + ne1).

4. Deformations of unitary and Lagrangian representations
4.1. The deformation space

For an algebraic group and a finitely presented grouplet Hom(I", G) be the space homomorphisms
of Ir'intoG. If I has generators, ..., 7.}, then Hom{I", G) is given the structure of an algebraic variety
as the common locus of inverse images of the identity'irior a finite number of functions : G¢ — G.
The tangent space 16¢ is identified withg’, whereg is the Lie algebra o6, by right invariant vector
fields. If p, is a path of representationsy = p, then differentiating, on a wordy;, ---; , and using

X = Ibo(yik)pal(yik), we obtain the cocycle relation

X1+ Adp, ) X2+ +Ad

Vi PQig = Vipy_1)

X =0.
This formula implies the following observation of W§20].
Proposition 4.1. The Zariski tangent spacg, Hom(I', G) is isomorphic tazl(r, g).

In order to analyze deformations fixing conjugacy classes we compute the derivative of the curve
t — Ad,xp(y) to obtain{X — Ad,)X}p(y). Identifying this withX — Ad,,)X € g, we obtain a
boundary in the group cohomology.

We apply these general considerations to the cagé&(ef representations of the free groups= Iy
with presentation as in (1). Hoff,, U (n)) is a smooth manifold of dimensiai — 1)n2, with tangent
space at a representatipigiven by

X1+Ad,H X2+ -+ Adyg,. Xe=0. (8)

We will be concerned witlz € U (n) with fixed multiplicity for the eigenvalues. As in Section 3, let
3(g) be the Lie algebra of the centralizer@fThen3(g) = u(uqg) x - - - x u(yy), whereiuq, ..., y are the
multiplicities of the eigenvalues af We defing® (g) C 3(g) =u(1) x - - - x u(1), to be the subalgebra
consisting of elements that are block diagonal with respect to this decomposition. Alternatively, it is the
maximal abelian ideal of(g). We have the following
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Lemma 4.1. Let m be a multiplicity structure as in Secti@rl. Let U (n, m) denote the set of af €

U (n) with multiplicity structure m. The& (n, m) is a smooth submanifold with tangent bun@tkentified
with a subspace of(n)) given by u(n, m) = 3**-(g) @ 3(g)*. Similarly, if U(n, m, 0) is the set of all

g € U(n, m) with 0 € specg), thenU (n, m, 0) is a smooth submanifold with tangent bundle given by
u(n, m, 0) = 3%0-9(g) @ 3(¢)*, where the superscript indicates that the firgt) factor is zero

Proof. It suffices the prove the statement concerning the tangent space. But small deformations of the
eigenvalues are obtained pyr) = ¢'X g for X € 3*”-(g). Conjugating by an arbitrary unitary matrix, we
find

u(n,m) ={X + (1 —Adp)Y : X € 3" (g), Y € u(n)}.
Sincea(g)L =Im(l — Ad,), the result follows. The reasoning fot(n, m, 0) is similar. O
Now we prove

Proposition 4.2 (cf. Mehta and Seshadfil7, Section 5]. Letp : I'y — U(n) be irreducible with
n(p) =a € U ¢(n, m, z). Then neap, Red" (I'y, U(n)) is a smooth manifold of dimension

A

dimRed" (e, Um) = (€ = 2n° +2= 3" 3 (1})?

s=1 j=1

Here 1 denotes the multiplicitm‘; — m‘;fl of the jth distinct eigenvalue aé(y,), j =1, ..., s, (see

Section2.1). Moreover the spectral projection
n: Rep™ (y, Um) Nty e(n, m, 2)) — 210(n,m, 2),
is locally surjective and is a fibration neat

Proof. We fix the conjugacy classes pf;,) for s >2 and determine the variation ji(y;). The space
Hom, ) (I'¢, U (n)) of representationg’, p’(y,) >~ g, for s >2, is clearly a manifold of dimension

14

ls
dim(Hom,a (e, Um))) =y dim(U (n)/Z(gs)) = (€ — Dn® = Y~ (u})?, 9
s=2 j=2

where we have used that: diff\(g,) = lele (uj)z. We compute the derivative of the map

7 Hom,a (e, Um)) — U ) : p = p(y0).
Note thatzM takes values in a single fiber of the determinant map. By (8), the tangent space to
Hom,a (I'¢, U(n)) atp is given by(X1, ..., X¢) € g¢ satisfying the condition& € Im(l — Ad,;))s

fors>2, and

X1 € v = Adp(}‘l)lm(l - Adﬂ(?‘z)) toeet Ad/)(“«’l”/z""/z—l)lm(l - Adﬂ(‘/z))'
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We claim thatV D = z(p)*. Indeed,
(VO = (AdypIm( = Ad ) + -+ Adygpe M = Adyg))
=Ad () (M = Ady(3))™ N Ad ) (IM(1 — Ad )
NN Ay, IMA = Adyi,)) T

Now Im(l — Ad,(;,))* = 3(y2), and therefore
(M@l — Ad,y() )" N A6, (MU = Adyi)) " = 3(2) N 3(73).

Continuing in this way, we findV(D)L:g(yz)ﬂ- --N3(y,) =3(p). We have shown that |(‘ﬂ])n§,1))=3(p)J‘.
Hence, if the representation is irreducible (i.g(if) =3(U (n)) =~ iR), then by transversality we conclude
that Homy(I'y, U (n)) is a manifold at an irreducible. Transversality applied to the product ewdr
Um,m%) (or U(n,m*,0) if s € z) also gives the statement about local surjectivity and the fibration
structure over the multiplicity space (see Lemma 4.1). For the dimension, we observe that

o dim 3(p(30) = X1 (h;
e sinceZ(p) = Z(U(n)) = U(1) by irreducibility, n2 — 1 is the dimension ot/ (n)-orbit throughp.

The dimension of~1(a) is computed by subtracting these from (9). Since this dimension depends only
on the multiplicity structure, it is constant over the fixed multiplicity space; hence, the smoothness. This
completes the proof. O

Remark 4.1. The surjectivity in Proposition 4.2 also follows from the Mehta—Seshadri Thef&m

which describes irreducible representations with fixed conjugacy classes in terms of stable parabolic
vector bundles. In the next section we will see that a similar result holds even if we restni¢che
Lagrangian representations, where we apparently have no such holomorphic description.

4.2. Twisting and bending deformations of Lagrangian representations

We approach the deformation theory of Lagrangian representations by introducing two special families:
twist deformations and real bendings. Twist deformations are rather simple and apply equally well to
unitary representations, while the bending deformations are particular to Lagrangian representations.

Definition 4.1. Let A = (L1, ..., Ly) € A%(n), andp = $(4). A twist deformatiorof the Lagrangian
representatiop is a Lagrangian representation of the fopm= ¢(4.), wherei, = (r1L1, ..., t¢Ly) for
somer = (11, ..., 1) € UY(D).

Remark 4.2. Since¢ always has the center &f(n) as a fiber, the twist deformations naturally depend
on{ — 1 parameters itV (1).

The following result is a calculation using the method in the proof of Lemma 3.4.

Lemma4.2. Lets, C T,# Hom(I';, U(n)) denote the subspace tangent to the twist deformations of
p- Thens , =[u(l) x --- x u(1)]o, whereu(l) is the Lie algebra of the centdr (1) C U(n), and the
subscript0 indicates that the sum of the entries vanishes
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Definition 4.2. Let /, p be as in Definition 4.1. Aeal bendingof the Lagrangian representatipris a
Lagrangian representation of the fopm= ¢(4;), where

/lb = (Lla ey LSa bLs-i—l’ ey bLS-i—ra LS-‘rr-l—la ey L@)

forsomes,r =1,...,¢, andb € Oy, (as usual, we reduce mddany index greater thaf). Givens, r
we shall say the bending is abali and has length.

The twist deformations considered above are special cases of the action of the group AoG))
on Hom(I', G), and they were considered[ib6]. Bending deformations are inspired by generalizations
of Fenchel-Nielsen twists defined by Thurston (Ee&2]). An important difference is that the bending
deformations defined in these referenfirghe conjugacy classes pty,), whereas those in Definition
4.2 change certain conjugacy classes in a controlled way.

Indeed, from the definition we see that a real bending of lengthoutZ has the form

e B
pb(ys,)z{p(ys,) ifs'=1,...,s =1L, s+r+1,...,¢, (10)

bp(y )bt ifs'=s,...,s+r—1

Hence, the only conjugacy class which is potentially changed is th&tof, ). One can easily show that
any deformation of a Lagrangian representation of the form (10)Av#¢hO  is necessarily Lagrangian
and coincides witlp(4p).

Lemma4.3. Let#,(s,r) C T, Hom(I'y, U (n)) denote the subspace tangent to the bending deforma-
tions ofp of length r aboutZ,. Then the(s + r)th component#, (s, r)l;, is the orthogonal projection
of o to 0.

Proof. Using (10) and the calculation in the proof of Lemma 3.4, we see that for an infinitesimal bending
b=B € vy,

0 ifs'=1,...,s =1 s+r+1,...,¢,
Xy =10 —=Ad,y)B ifs'=s,....s4+r—1,
(I =Adg, )B ifs'=s+r

Hence[%,(s, r)]s4 = Im(l — Ad,,_, )., and the result follows from Lemma 3.10

Our goal is to show that twistings and real bendings sweep out the full space of deformations of
conjugacy classes in a neighborhood of an irreducible Lagrangian representation. We now prove

Proposition 4.3(cf. Proposition 4.2 Letp : I', — U(n) be an irreducible Lagrangian representation
with n(p) = a € Z1¢(n, m, z). Then neap, & Red" (I'y, U(n)) is a smooth manifold of dimension

| (=2 5 . L~ 2
dim(# Ref (I, Um) = == n+1= 23" 3" ()"
s=1 j=1

Moreover the spectral projection
n: 2 Rep™ (I, Um) Nn (Lo, m, 2)) — 21e(n,m, 2),

is locally surjective and is a fibration neat
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Proof. As in the proof of Proposition 4.2, we will first concentrate on deformationg(ef) up to
conjugation. Thus, we consider bending deformations,cénd lengthr =¢ — s + 1, fors =2, ..., L.
We also add twist deformations. It follows from Lemmas 4.2 and 4.3 that foi&(/),

Piroz+ -+ Pirog + iR +Im(l — Ad,,) C [IMD§, 11,

wherePi- is the orthogonal projection 9. Since we are assumings irreducible, it follows as in the
proof of Lemma 3.4 that

(014 -+ 0p)T =Ker(Dj;) =iR.
Hence, denoting the traceless part with a subscript O,
{Pirop+ -+ + Pirog + iR+ Im(l — Ad )}t
= (P01 + -+ 0p) +IR+IM( — Ad ()}

=[{o1 + (014 --- + 00} N 3000
=[01N3(p(y1)]o=01N02

by Proposition 3.1 (2). Since we may do this calculation for afy), and since the variation preserves
the conjugacy classes pfy, ), s" # s up to the twist deformations, we have shown tbat; is surjective
onto

[(01 N 02)T X (02N 0z)™ X -+ x (0 No1) o C [3(p(71)) X - - x 3(p(e))]os (11)

where now the subscript indicates that the sum of the traces vanishes. By Lemma 3.5, this must be exactly
the image. Notice that

37 (p(15)) ® 3 (p()) C (05 Nog41) T,

for all s (cf. Proposition 3.1 and Lemma 4.1). Hence, by transversality we deduce the local surjectivity
and fiber structure onto the multiplicity space. We count dimensions:

e ((n/2)(n + 1) is dimension ofA* (n);
e By Proposition 3.1 (4),

dim 3(os05+1) — (dim o5 N ogy1) = (1/2) dim 3(p(y5)) + n/2.

Hence, the dimension of the subspace in (111Lj®) Zle Zlf=1 (;z})z +44(n/2) — 1.

e Finally, n? is the dimension ot/ (n)-orbit throughp (notice that the action is free; see also Lemma
3.4).

The dimension follows by subtracting the last two items from the first. This completes the proof.
Proposition 4.3 implies that, near irreducible representations, the allowed holonomies for unitary and
Lagrangian representations coincide. In particular, a chamber either has no Lagrangian representations

or is entirely populated by Lagrangians.

Corollary4.1. Letd C %y ¢(n, m, z) beachamber. ThemM 2 ¢(n,m,z) # 0 <= A C Lre(n, m, 2).
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Proof. By Remark 2.1 (2) and Proposition 4.3 it follows that % ¢(n, m, z) is open. On the other
hand this set is also clearly closed4nhence, the result. O

We also have the

Proof of Theorem 2. Assume% Red{r-(rg, U (n)) is not empty. Then by Propositions 4.2 and 4.3, itis a
smoothly embedded half-dimensional submanifold of!fRe¢p,, U (n)). By Proposition 3.7, its tangent
space is everywhere isotropic. The theorem follows.

4.3. Codimension of the reducibles

In this section, we use Proposition 4.3 to estimate the size of the set of reducible representations. Since
we will only require the result fof = 3, we restrict to this case. We begin with the following simple
observation.

Lemma 4.4. Letp : I's — U(n) be irreducible withz(p) = a € 2, 3(n, m, z). Then for at least two
values ofs = 1, 2, 3, all multiplicities uj = m; — m;‘._lgn/Z.

Proof. Suppose not. Then there are two values,adays = 1, 2, and ji, j2, such thatu}1 >n/2 and

#2~2 >n/2.If Eq1is the&}l eigenspace gi(y;) andEy is the&?2 eigenspace gi(y,), then bothp(y1) and
p(y2), and hence alsp(I'3), leave invariant the intersectidiy N E», which is positive dimensional. This
contradicts the assumption of irreducibilityC)

Proposition 4.4. Let @ C % Rep,(I'3, U(n)) be an open connected subset containing an irreducible
representation. Then the set of reducibdes & Req,ed(l"g, U (n)) has codimensiom: n.

Proof. Supposen € 2;3(n, m,z). If p € ¥ Rep,(I'3, U(n)) is reducible, then we can decompose it
into its irreducible components, i =1, ..., k, k>2. Without loss of generality, we may assume
andp; are non-isomorphic foi # j. Write: n(p;) = ;a = ;o) € 2y, 3(n;, ;m, z;). Conversely, given
a decomposition of into qa, ..., ,q, it suffices to compute tﬂe codimension of the set of all reducibles
with 7; (p) = ;a. We therefore assume this fixed decomposition, and let cod be the codimension of all
reducibles compatible with the decomposition.

For eachs let uj, j=1,...,I denote the multiplicities from the partition®, and Iet&‘;~ denote the
distinct entries of’. We define, u‘j- to be the multiplicity of&j if it appears in,o*, and we set it to zero
otherwise. The following are easy consequences of this definition:

k

w=>" (12)

i=1

Iy

ni=) i (13)

J=1
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k lg
=Y ni=y_ i (14)
i=1

j=1

Counting dimensions as in the proof of Proposition 4.3 we find

3 I
cod= (3/2)n?% — ((1/2) o> W) - 1) — n? (15)

s=1 j=1

k 3 Is k
— [Z {(3/2);11.2 — ((1/2) DD G- 1) — nf} — (n2 -y n§> } (16)
i=1 s=1 j=1 i=1
3 I k Is
=1/2) ) |n2 =Y wWHr=> (nl? = (,.uj.)z) ] +1—k. (17)
s=1 j=1 j=1

i=1

The line (15) is the dimension count for the irreducibles. In line (16), we take this dimension for each
irreducible factor, and then divide out by the part of thé:) which changes the splitting. It follows that
for eachswe need to estimate

k Iy

Cs=n —Zn?—Z(u])ZJrZZ(MJ)Z

i=1 j=1

Using (14) we have

k 2
n2:<z ni) :Zniz—l—Znini/.
i=1

i=1 i#i!

Applying (13) to the second term on the right hand side above,

n® - Z n =2 LG =20 D GG + D D G ) (18)

i# g, i#F i# jE]

On the other hand, from (12) we have

ls
D= G Z( P40 GG, (19)
j=1 ii'

£’ j
Combining (18) and (19), we find that

Co=D D GG

i#E J#E]
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We wish to estimate this quantity from below. Since there are at least two distinct eigenvalues, it follows
that:Cy > 2. By Lemma 4.4, for at least two valuesofie may assume thag. <n/2forallj=1,...,1.
We estimate”; in this case.
Casel. Assume that for each j Whereiuj‘. # O there are’ # i andj’ # j such thag/u;‘./ #0.1n
this case we have

Cy22) (i) =2n, (20)
iJ
by (13) and (14).

Case?2. If the condition in Case 1 is not satisfied, then thereigrgg such thagoui.o # 0 and for
alli #ip,n;, =1 andiujﬁ =11if j = jo and zero otherwise. This is true because; it 2, then theth
block must have at least two distinct eigenvalues; in particular, one differenti(l;;zq(mWe also have
Nig — io'“j'o =n— “j'o’ andn —n;, =k — 1. Now

ZZW“;)(H@,)—Z(Z iouii-) (n=nig)+ D (i) aty)

i jE) J#io ioski #i'#io

=2 (Z ioh} — iou‘}o) (n — nig) + (1/2)(n — nip)(n — nip — 1)
j

= 2(niy — joHjo) (1 — nig) + (1/2)(n — nijg) (n — njy — 1)

=2(n — 1)) (n — nip) + (1/2)(n = nig) (n — njy — 1),

where in the third line we have used (14). Using the assumptiomf;h@m/z, we have
Cszntk —1) + (1/2)(k — D)(k — 2). (21)

Hence, we have bounds @iy from Cases 1 and 2 at two of the three values, @hdC, > 2 at the third
value. Putting (20) and (21) into expression (17) we find three possibilities:

2n+2—k;
cod> {n+ (1/2{nk —1) + (1/2(k — D)k — 2} +2—k;
ntk—1)+ Q1/2)(k —1)(k—2)+2—k.

Itis easily verified that the quantities on the right arezall, with equality in the last case &= 2. Since
this is true for all of the finitely many possible types of reduction, the proof is compléte.

5. Proof of the main theorem

We have shown in Proposition 4.3 that Red{r-(u, U(n)), if not empty, is a smoothly embedded
submanifold of Refi-(I'y, U (n)). In this section, we prove the existence of a Lagrangian representation
with given holonomy whenever a unitary representation with the same holonomy exists. We first reduce
the problem to the case of triples.
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Proposition 5.1. Suppose Theorefinholds for¢ = 3. Then it holds for allé.

Proof. By induction. Assume Theorem 1 holds for sofite3, and also fo = 3. We show that it also
holds for¢ + 1. LetAy, ..., Ayy1 be unitary matrices satisfyings - - - A¢+1 = | with given spectra. By
induction, we may find Lagrangiais, ..., L,_1 such that spee\;,) =speco;, ,07,),i=1,...,¢£—1,
andspeCA,A¢y1)=spec€or, ,01,), WhereLgisasin Section 3.1. WriteB1 Bo B3=I, whereB; ~ A;jl,

By ~ A;l, andB3 = a1, ,01,. Using the result fod = 3 we may find Lagrangians’, L” such that

B1 ~ 01401/, Bo ~ opropr, andB3 ~ oprar,.By Lemma 3.3, botla;, 07, ando o, are conjugate

by elements in0 (n) to diagonal matrices. Since they furthermore have the same spectrum, it follows
from Proposition 3.2 that there is some O (n) with gL” =L,_1. SetL, =gL’. ThenA; ~ o1, ,01,,
andA¢41 ~ 01,014, and the result follows. O

By Proposition 5.1, it suffices to prove Theorem 1 for triples of Lagrangians. For the rest of this section,
we consider the problem of specifying three conjugacy classes. To simplify notation, we will omit the
subscript € = 3”, and writeI for I's, and#; " (n) for %} 5(n), for example.

Definition 5.1. A reducible representatiop : ' — U(n1) X --- x U(ng) < U(n), Zf;ln,- =n,
will be calledrelatively irreduciblewith respect tdJ (n1) x --- x U(ny) if the induced representations
p; : I — U(n;) are irreducible for each=1, ..., k.

Our goal is to show tha¥’; (n) = % (n), for all | andn. Using the stratification 0%} (n) described in
Section 2.1, the argument proceeds by induction on the four parameters available:

e Fix the rankn. We assume that we have showh (7, m, z) = % (11, m, z) for all # < n and all(im, z).
The result forU (1) or U (2) representations holds, as has already been mentioned.

e Next, fix a multiplicity structuren. Assume we have proven that (i, p, z) =%; (1, p, z) forall p <m
and allz. We may clearly do this, since a partition giving multiplicityor eachs corresponds t&/ (1)
representations.

e Fixasubset C {1, 2, 3} and assume that’; (n, m, z) = % (n, m, z) for all z ¢ z. We will justify this
assumption below.

e Finally, the last part of the inductive scheme is to assumedhat, , z) = %; (n, m, z) for all 1<1,
and allin andz. Notice that/ = 0 involves only the trivial representation.

If the stratumz; (n, m, z) is degenerate, then eithey (n, m, z) = @, in which case there is nothing to
prove, or each with n(p) € %;(n, m, z) is reducible by Proposition 4.2. Hence, by induction on the rank
n, Zr(n, m,z)=%r(n, m,z)if 2;(n, m, ) is degenerate. Thus, we assume g, m, z) is nondegen-
erate. IfZ;(n, m, z) # %;(n, m, z) then there is a connected compongrf %; (n, m, )\ % (n, m, z)
which by Corollary 4.1 is a union of chambers. By Remark 2.13A);onsists of a union of convex sub-
sets of affine planes. By Proposition 4.3, it follows that ary # Hom(I', U (n)) for whichr(p) € 94 is

reducible. Finally, we claim that N 5/1(11, m, z) is unbounded. To see this, chogse 04N 5/1(11, m, z)
contained in a cell of minimal dimension. Theiis relatively irreducible with respect to some reduction
U(ny) x --- x U(ng) (see Definition 5.1). Among the induced representations U (n ;) there mustbe

one, say, that is nontrivial, since the total index is positive. Heneg,) € %;;(n;, s z;j) for some
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induced multiplicity structure. Sincg; (n, M 2) is positive dimensional, the claim follows from this
fact. '

From the discussion above and the description of the stratification and wall structure in Sections 2.1
and 2.2 we see that there are four (not necessarily exclusive) possibilities:

(1) o4 intersects an outer wall i (n, m, z);

(2) o4 intersects a stratum; (n, p, z), p <m;

(3) o4 intersects a stratumt; (n, p, 2), p<m, 2 & Z;

(4) o4 intersects a stratum;(n, p, z), for somel <1,z CZ.

In each case, our inductive hypothesis assumes the result for the lower dimensional stratum, and we will
use this below to derive a contradiction. Here we remark that possibility (3) does not aceulif 2, 3}.
The derivation of a contradiction for this case therefore justifies the inductive hypothegisToe
structure of the argument deriving a contradiction is actually identical for each of the four possibilities
above mutatis mutandisVe will give a detailed account of how this works in case (1), the modifications
necessary for the other cases being straightforward.

Consider then the case whetg intersects the outer wallg’;(n, m, z) at a point in2;(n, m, z).
To simplify notation, for the following discussion we s&f = #%;(n, m,z), W1 = W (n, m, z), 1 =
P(n,m,z), andA; = A‘;’(n, m, z). Also, letl; be the lengths of the partitions®, s = 1, 2, 3. The
intersectiond =34 N " is a union of convex subsets of intersections of affine planes corresponding to
reductions of Lagrangian representations. We claim lthatust have positive codimension #1;. For
if not, we could find an outer wallvV and pointa € 04 N W such tha ¢ W’ for any outeror inner wall

W’. In particular, ifN is a sufficiently small neighborhood efthenN N Jzo/[ = N N 4. By the induction
hypothesis, we may find (a reducible #; such thatt(p) = a. Now any Lagrangian may be perturbed
slightly to give an irreducible Lagrangian representafioit follows from Proposition 2.1 (1) that for

sufficiently small perturbationg(p) € N N %; C 4; contradiction.

Hence, we may assunt€has positive codimension. To illustrate the basic idea of the proof, suppose
first thatH has codimension one inside’;, so thatH locally disconnects/’;. We choosen € H with
minimal valency with respect to the outer wall structure aléhdy this we mean that there are outer
walls Wy, ..., W, meeting at, andp > 1 is the minimal number of such intersections among all points in
H. With this choice, and using the convexity#f, we see that the numbpiof outer walls meeting atis
1or 2. Letus firstassume that= 1, and ledW denote the outer wall in question. Choose a neighborhood
U of a in the wallW such thatd N U is a cell. SincéVis the only outer wall at, we may also assume
that the neighborhood is contained in#;. Let N be a neighborhood afin #; such that the following
hold:

(L) U=NNW;

(2) N\W consists precisely of two componems', N ;
(3) N"Nu; =@ andN™* C %; is homomorphic to a ball;
(4) NT\4 has the topology of/\ H.

Choose a poinp € =~ 1(W) as follows:W corresponds to a reductidti(k) x U(n — k). We may
find a pointp, n(p) = a, such thatp is relatively irreducible with respect to'(k) x U(n — k). By
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Fig. 1. Intersectiomd of a chambert with an outer wallWV.

Proposition 4.3, we may assume thgtis a manifold neap. With this understood, leB 4y be a
ball aboutp such thatz(B) N W C U. By our choice of it follows, again by Proposition 4.3, thatB)
intersectdbothcomponents of/\ H. By Proposition 4.4B N AY"- is connected; hence, soiéB N A}").
On the other hand, by the previous rematkB N Ail”') C N1\4 must intersect both components of
NT\4. This contradicts the connectedness @8 N /1‘,”~) (seeFig. D).

The case =2 requires only a small modification of the above argumenti¥eandW, be outer walls
meeting alondd ata. We choose the sét ¢ WU W5 to consist of two piecegl1=UNW1 C W1N%(n),
andU,=UNW, Cc WoN;(n). Sincea is at the intersection of precisely two outer walls, it corresponds
to a reduction of the forn/ (n1) x U (n2) x U (n3); the wallWq corresponds to & (n1 + n2) x U(n3)
reduction, say, and the walf, corresponds to & (n1) x U (n2 + n3) reduction. Now since deformations
along the wallW; can only take values on one sideW$, and vice versa, it follows that the image bpf
a neighborhood of any, =(p) = a, intersectdothcomponents of/\ H. In the choice of the neighborhood
N we modify the first two criteria so that

1" U=NNWiUWo)N%U(n);
2. N\(W1U W>) N % (n) consists precisely of two componemls, N,

and keep items (3) and (4) as above. The rest of the argument then proceeds exactly as before.
Next, let us consider the case wheétdas higher codimensiah d > 2, in % (n). If we again choose
a € H with minimal valency with respect to the outer wall structure alehdghen we see that at most
d + 1 outer walls meet at. As before, we first consider the case where there is just one outevwWvall
Choose a neighborhodd of a in W as above. We also choobksatisfying conditions (1-4) above. Let
D C U be a cell inU of dimension equal to the codimensidrof H in W and intersectingd precisely
in a. Hence, the bounda@D is the link of H in W. We regardD as the image of a continuous map,
f: B — U.We may further assume tht=r o f foramapf : BY — A;, taking the origin top.
Indeed, choosing a relatively irreducipl@nd using Proposition 4.3,: =~ Y(W)NA; — W is a fibration
in a neighborhood of andx(p) = a. Hence, we may defing by taking a section of this fibration.

Claim. dm H> )Y I, —n — |z|.
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Proof. Assume thap is relatively irreducible with respect to a reductibi(n1) x --- x U(ng). Then
restricted to representations ngawhich are relatively irreducible of this type, the maps locally
surjective onto?y, (n1) x - - - x 2y, (nx) (cf. Proposition 4.2). Assume first thiat # 3. Then all/; > 0.
In particular,

k
dim@p(n) x -+ x ()= > (3n; —1)=3n — k.
j=1

Sincel; is the number of distinct eigenvaluesj, ), it follows that

3 3 3
dmH=3n—k—Y (n—1I)—lz2l=> ly—k—|z[>) l;—n—|zl.
s=1 s=1 s=1

Now suppose thaty = --- =1, =0 for some Kq <k, and/; # 0for j =g +1,..., k. Since we are
assumingi(p) € 2;(n, m, z), this can only happen if = {1, 2, 3}, i.e.|z| =3. Also,n1 = - - - =ny, = 1.
It follows that

dim(Zp, (n1) x -+ x 25 (n)) = diM(Zy,,; (ng41) X -+ x Py (np))
k—q
=Y Gngy; —D=3m—q)— (k—q).
j=1

Now foreachy =1, 2, 3, eitherg =m3, in which case there are precisély- 1 distinct nonzero eigenvalues
among the remaining — g, or, ¢ < m7, in which case there arg distinct eigenvalues, but one of them
is zero. In both cases, this imposes:- ¢ — (I; — 1) conditions on the eigenvalues. Hence, we have

3 3
dim H=3mn—q)—(k—q) =Y (n—q—Us—D)=Y I, —(k—q)—3.
s=1 s=1

Sincek — g <n — 1, and|z| = 3, the claim follows in this case as well[J

Nowd =dim W —dim H < Zlels —2—|z|— (Zf’zl Iy —n—|z])=n—2. Notice that this computation
is still valid even ifo:1 Iy —n —|z| <0. By Proposition 4.4/,199‘1 has codimension at leagt>n — 2 in
A;. Hence, we may find a perturbed map: B¢ — Ai,”: For sufficiently small perturbations we clearly
may assume thaf, = = o f, has image im. It follows that in factf, : BY — N*+\4. Now N*\4 has the
topology of U\ H, and under this equivalengg(@B?) is the link of N N 4. The continuous extension of
f. to B is therefore a contradiction.

When the numbep of outer walls meeting at is greater than one, the configuration of outer walls at
aforms a “corner” in¥"; (seeFig. 2). As in the case = 2 above, we want to choose the Eeto mimic
this configuration. The technical result we will require is the following:

Lemma 5.1. Suppose thap € 4; is such thatz(p) lies in the intersectioiW, N --- N W, of p dis-
tinct outer walls where p is the minimal such numband thatp is relatively irreducible with respect
to the reduction corresponding t&; N --- N W,. Then for any small neighborhoad C A; of p
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W

Fig. 2. Intersectiotd of a chamben with three outer walls.

there is a continuous map : B?~1 — Q satisfying the following

1) £(0) =p;
(2) mo f(@BP™H C W1U---UW,;
(3) no fFE@BPHNWiN---NW,=40.

Moreover f may be chosen to vary continuously witkatisfying the hypothesis

Given the lemma, the rest of the argument proceeds as in the previous paragraph. Indeed,elfdose
with minimal valency with respect to the outer wall structure aléhg- W1 N --- N W, and choose a
neighborhoodN of a such thatv\(W1 U--- U W,) N%; consists precisely of two componems’, N,
and which also satisfies items (3) and (4) above.d,et(p) = a, be relatively irreducible, and choose
a neighborhood? of p such thatr(?) ¢ N. Choose a continuous map: B¢t1-? — @ such that
nog: Bitlr > win...n W, is transverse tél ata. As before, we can do this becaysis relatively
irreducible. Now use Lemma 5.1 to extefido a continuous mapf : B¢ ~ B4+1-r x pr~1 5 . By
the construction, we can easily arrange that

f=mo f@B™P x {yhNH =9, (22)
forall y € B»~1. By Lemma 5.1 (3) we also have
flxyx B Hhnwin...nw, =4, (23)

for all x € B4+1=7_ It follows from (22) and (23) thay : S9"1 — W1 U.--U W, is alink of H in

W1U---U W,. We may now perturb the mapas above so thaf.(s¢~1) ¢ N*\4isalink of N* N 4.
The extensiory,(B?) ¢ N*\4 gives a contradiction as before.

Proof of Lemma 5.1. Supposep is of type U (n1) x --- x U(np,) x U(npy1), Where each walW;
corresponds to a reductién(n) — U(n;) x U(n —n;),i=1,..., p.Letp=(p1, ..., p,, pp+1) bE the
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irreducible factors. Notice that the assumption of minimal valenaymoplies that: , .1 =n — Z{’zl n; #
0. Letey ---e, be a(p — 1)-simplex inkP~ with the origineg as barycenter. For eachwe may find
a pathg;(r) of Lagrangian representations intt(n 1 + n;) such thatg;(0) = (p;, pp) and g;(z) is
irreducible fors # 0. Keeping the other factors fixed, these define paths

% :10,1] — £ Hom(I', U(n1) x -+~ x U(n;) X -+ x U(np) x U pp1 4 1)),

where™ means that factor is deleted. Combining these paths defines a continuogfs:m)ﬁgl epe; —

Q. Suppose inductively that we have definédn all simplices of the forne;, - --e;,, 2<k<p — 1,
1<iy <--- <ix. For each such simplex, I¢f1, ..., j,—«} be the complimentary set @y, ..., i} in
{1,..., p}. We will assumef has been defined such that the following hold:

Q) no f(eil ceee) C le N---N ij—k;

(2) Foreachy € ¢;; ---¢;, f(x) is relatively irreducible with respect to the decompositidom ;) x
Unj, ) x U — Zﬁ:l nj);

(3) no flei, e ) NWiN---NW, =0,

We now extend’ to asimplex of the forra;, - - - ¢;,,, asfollows. By assumption (1), for the complimentary

set of indiceq 1, . .., jp—k—1} We haver o f(@(e;; - - - €iyy)) C Wiy N oo NW; . Assuming@ has

been chosen sufficiently small so thah ==*(W;, N --- N W;,_,_,) is contractible, we may extenf
toamape;, -+ ey, > Wi N---NW; . Applying the same codimension argument we have used
several times already, we can further assume that this extended map satisfies conditions (2) and (3) as
well. Continuing in this way, we have defingdon the boundary of; - - - ep. Recall thaf is also defined

on the one simplicesge;, i = 1, ..., p. Again using contractibility of2, we extendf inductively and
arbitrarily to simplices of the formage;, - - - ¢;,, k =1, ..., p. This completes the definition ¢gf. O
6. Examples

In this last section, we illustrate some of the ideas in the paper by explicity giving the wall structure
for the casest = 3,n = 2, 3. For convenience, we will only consider distinct eigenvalues different from
unity. The case ot/ (2) representations was first provgti], and more generallj4]. The inequalities
were later derived from spherical triangleq&j.

Let us first introduce some useful notation. For integers<i; <n,s=1, ..., £, define the collection
of subsets as in Section %31y = (go(sl)), pfl) ={iy}. Fora= (aj.) € ./¢(n), we will use the notation (cf.

3)

14

it isla =10, o) = Y o2

s
s=1

By a permutation ofiy, ..., is],, we mean a quantity of the fornfi;y), ..., iz(s)la, for somer in the
group of permutations dfl, .. ., £}. With this understood, we may write tli&2) inequalities as
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Theorem 6.1 (cf. Biswas[4], Falbel et al.[6]). There exist representations : I's — U(2) with
a=n(p) € %;13(2), if and only if

2,and [2, 1, 1],<1, plus all permutations
3,and [2, 2, 1],<2<[2, 2, 2],, plus all permutationsor,
4,and [2, 1, 1],<2, plus all permutations

o ]
o ]
o ]

The bounds on the index come from Proposition 2.2. Notice that for each index there are no inner
walls. Indeed, any equality of the forriz, i2, i3], = K implies

I =iy, iz, i3] + [i1, iz, i3] = K + [i1, i2, i3] > K + 1,

wherei; = {1, 21\ {is}. Now if I = 2, for example, thelK = 1, and it is easy to see that the outer walls
are the only possible solutions for distinct nonzero eigenvalues.

We have used a duality in the wall structure. In generabif = (gofk)) is a collection of subsets of
{1, ..., n} of cardinalityk, then Ietpz‘k) denote the collection of subsets of cardinatity- k defined by
(pz"k))s = (pfk))c. It follows that/ (a, o)) + 1 (a, @Ekk)) =1(a). So an inequality of the form(a, px)) <K
may be written/ (a, K"Ekk )>1(a) — K. In particular, this means that far= 3 we may express all the
inequalities in terms of) thBE1, ..., i¢],'S.

Theorem 6.2. There exist representatiops I's — U (3) with a = n(p) € % 3(3), if and only if

e [ =3,and
(3,1, 1],, [2,2,1],<1<[3,3,1],, [3,2 2],
2< [31 37 2](1!
plus all permutations
e [ =4, and
[2’ 17 l]aglg [3’ 27 1](1! [29 2’ 2](11
[3’ 35 1](1’ [3’ 29 2]a<2< [35 3v 3]((1

plus all permutations
e /] =5and

[1,1,1],<1<[2,2, 1], [3,1,1],
[3.2, 1o, [2.2,2],<2<[3.3,2],,

plus all permutationsor,
e [ =6,and

l< [25 1’ 1](1
[3’ 1! 1](1’ [27 27 1]a<2< [37 37 1](1’ [3$ 27 2](1

plus all permutations

The result is proven using the procedure givesh Since this is straightforward, we will not give
the details. It turns out that there are no inner walls for this case either, though this is certainly tedious to
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check by hand. For example, take 2, 3], = 1 for thel = 3 case. This is compatible with the first set of
inequalities. However, since the total index is 3, we &/, 2], + [2, 1, 1], = 2, and this violates the
inequality[3, 3, 2], >2.

Indeed, by combining Propositions 2.1 (3) and 4.2, and using the connectivity of the moduli of parabolic
bundles, one can show that the smallést) for which inner walls can appear is= 5 (still assuming
¢=23).
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