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Abstract

This paper introduces a submanifold of the moduli space of unitary representations of the fundamental group of
a punctured sphere with fixed local monodromy. The submanifold is defined via products of involutions through
Lagrangian subspaces. We show that the moduli space of Lagrangian representations is a Lagrangian submanifold
of the moduli of unitary representations.
� 2005 Published by Elsevier Ltd.
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1. Introduction

Let spec(A) denote the set of eigenvalues of a unitaryn × n matrix A. An old problem asks the
following question: what are the possible collections of eigenvalues spec(A1), . . . , spec(A�) which arise
from matrices satisfyingA1 · · ·A� = I , ��3 ? (A review of related problems and recent developments
can be found in[7]). For an equivalent formulation in terms of representations, let�� denote the free
group on�− 1 generators with presentation

�� = 〈�1, . . . , �� : �1 · · · �� = 1〉 (1)
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and letU(n) denote the group of unitaryn×nmatrices.We shall say that a collection of conjugacy classes
C1, . . . , C� in U(n) is realizedby a unitary representation if there is a homomorphism� : �� → U(n)

with �(�s) ∈ Cs for eachs = 1, . . . , �.
A natural subclass of linear representations of�� consists of those generated by reflections through

linear subspaces. In the case of unitary representations, one may consider Lagrangian planesL and their
associated involutions�L. Given a pair of Lagrangian subspacesL1, L2 in Cn, the product�L1�L2 is
an element ofU(n). Moreover,any unitary matrix may be obtained in this way (cf. Proposition 3.3
below). For LagrangiansL1, . . . , L�, one can define a unitary representation of�� via �s �→ �Ls�Ls+1,
for s = 1, . . . , � − 1, and�� �→ �L�

�L1. We shall call theseLagrangian representations(see Definition
3.3). There is a natural equivalence relation obtained by rotating every Lagrangian by an element ofU(n),
and this corresponds to conjugation of the representation.Wewill say that a given collection of conjugacy
classes isrealizedby a Lagrangian representation if the homomorphism� of the previous paragraph may
be chosen to be Lagrangian.
At first sight, Lagrangian representations may seem very special. The main result of this paper is that

in fact they exist in abundance. We will prove

Theorem 1(cf. Section 5 and Propositions 3.5 and 4.3). If there exists a unitary representation of�� re-
alizing a given collection of conjugacy classes inU(n), then there also exists a Lagrangian representation
realizing the same conjugacy classes.

We also study the global structure of the moduli space of Lagrangian representations. Leta denote a
specification of� conjugacy classesC1, . . . , C�, and let Repirr .a (��, U(n)) denote the set of equivalence
classes of irreducible representations� : �� → U(n) with each�(�s) ∈ Cs . Note that for generic choices
of a, all representations are irreducible. Then Repirr .

a (��, U(n)) is a smooth manifold which carries a
symplectic structure coming from its realization as the reduction of a quasi-HamiltonianG-space (cf.
[1]; for a brief description, see Section 3.3). We refer to this as thenatural symplectic structure. Let
L Repirr .a (��, U(n)) ⊂ Repirr .a (��, U(n)) denote the subset of irreducible Lagrangian representations.
Then we have

Theorem 2.With respect to the natural symplectic structure

L Repirr .a (��, U(n)) ⊂ Repirr .a (��, U(n))

is a smoothly embedded Lagrangian submanifold.

Characterizations of which conjugacy classes are realized by products of unitary matrices have been
given in[3,5,2,15]. We will give a brief review in Section 2.2 below. The basic result is that the allowed
region is givenbyacollectionof affine inequalities on the logeigenvalues.The “outerwalls” of theallowed
region correspond to spectra realized only by reducible representations. In general, there are also “inner
walls” corresponding to spectra that are realized by both reducible and irreducible representations. The
open chambers complementary to these walls correspond to spectra that are realized only by irreducible
representations. The term “generic” used above refers to spectra in the open chambers.
This structure suggests a proof of Theorem 1 via induction on the rank and deformation theory, and

this is the approach we shall take. In Section 3, we prove some elementary facts about configurations of
pairs and triples of Lagrangian subspaces inCn. We define Lagrangian representations and discuss their
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relationship to unitary representations. In particular, we show that the Lagrangian representation space is
isotropic with respect to the natural symplectic structure. In Section 4, after briefly reviewing the case of
unitary representations, we develop the deformation theory of Lagrangian representations in more detail.
We introduce two methods to produce a family of Lagrangian representations from a given one. We call
these deformationstwistingandbending(seeDefinitions 4.1 and 4.2), and they are in partmotivated by the
geometric flows studied by Kapovich andMillson[13].We prove that twisting and bending deformations,
applied to an irreducible Lagrangian representation, span all possible variations of the conjugacy classes
(see Proposition 4.3).As a consequence, if there is a single point interior to one of the chambers described
above that is realized by a Lagrangian representation, then all points in the chamber are also realized by
Lagrangians (seeCorollary 4.1).This reduces theexistenceproblem to ruling out thepossibility of isolated
chambers realized by unitary representations, but not by Lagrangians. To achieve this we make a detailed
analysis of the wall structure in Section 5. A basic fact is that any reducible Lagrangian representation
may be perturbed to an irreducible one. Hence, inductively, any chamber having an outer wall as a face
is necessarily populated by Lagrangian representations. A topological argument that exploits an estimate
(Proposition 4.4) on the codimension of the set of reducible representations shows that inner walls may
also be “crossed” by Lagrangian representations.
It should be apparent from this description that our proof of Theorem 1 is somewhat indirect. A more

precisedescriptionof theobstructions todeformationsof reducibleunitaryandLagrangian representations
is desirable. In[6] Lagrangians were used to give a geometrical explanation of the inequalities for
U(2) representations in terms of spherical polygons. For higher rank it is tempting to look for a similar
geometrical interpretation of the inequalities, though we have not obtained such at present. Unitary
representations of surface groups are related to stability of holomorphic vector bundles through the
famous theorem of Narasimhan and Seshadri[18] and its generalization to punctured surfaces by Mehta
andSeshadri[17].A challengingproblem is to giveananalytic description of thoseholomorphic structures
which give rise to Lagrangian representations.
We conclude this introduction by pointing out an alternative interpretation of the result in Theorem 1.

Let us say that matricesA1, . . . , A� ∈ U(n) arepairwise symmetrizableif for eachs = 1, . . . , �, there
is gs ∈ U(n) so that bothgsAsg

−1
s andgsAs+1g−1s are symmetric (whereA�+1=A1). Also, throughout

the paper, for unitary matricesA andB, A ∼ B indicates thatA andB are conjugate. We then have the
following reformulation of Theorem 1.

Theorem3. Givenn×nunitarymatrices{As}�s=1,A1 · · ·A�=I , thereexistsapossiblydifferent collection
of unitary matrices{Bs}�s=1, B1 · · ·B� = I ,As ∼ Bs for s = 1, . . . , �, such thatB1, . . . , B� are pairwise
symmetrizable.

See Section 3.2 for the proof.

2. Unitary representations

2.1. The space of conjugacy classes

We begin with some notation. Given integersn�1 and��3:

• Let M�(n) denote the set of all� × n matricesa = (�sj ), 1�s��, 1�j �n, where for eachs, �s =
(�s1, . . . , �

s
n) satisfies 0��s1� · · · ��sn�1.
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• Let A�(n) be the quotient ofM�(n) defined by the following equivalence: identify a point of the
form �s = (�s1, . . . , �

s
k,1, . . . ,1), �sk <1, with �̃s = (0, . . . ,0, �̃sn−k+1, . . . , �̃

s
n), where�̃sn−k+i = �si ,

i = 1, . . . , k.
• Let A�(n) ⊂ A�(n) be the open subset where all inequalities are strict: 0< �s1< · · ·< �sn <1, for
eachs.

For eacha ∈ A�(n) we define theindexas follows: choose the representative ofa where 0��s1� · · · �
�sn <1, for eachs, and set

I (a)=
�∑

s=1

n∑
j=1

�sj . (2)

We defineA
Z
� (n)= {a ∈ A�(n) : I (a) is an integer},AZ

� (n)=A�(n) ∩A
Z
� (n).

Definition 2.1. For a nonnegative integerI, define theopen M-planeby

PI,�(n)= {a ∈ AZ
� (n) : I (a)= I }.

The closurePI,�(n) of PI,� inA
Z
� (n) will be called theclosed M-plane. Finally, let

P
∗
I,�(n)= {a ∈ PI,� : I (a)= I }.

Observe thatPI,�(n) is a closed connected cell. Notice also that the closedM-planes are not disjoint,
whereas of courseP

∗
I,�(n) ∩P

∗
J,�(n)= ∅ if I �= J . We therefore have adisjointunion

A
Z
� (n)=

⋃
0�I �n�−1

P
∗
I,�(n).

For eachschoose a partitionms of {1, . . . , n}, i.e. a set of integers 0=ms
0<ms

1< · · ·<ms
ls
=n. Here,ls

is thelengthof the partition. Specifyingls numbers 0� �̂s1< · · ·< �̂sls <1 along with a partition of length
ls uniquely determines a point ina= (�sj ) ∈ A�(n), where�si = �̂sj for m

s
j−1< i�ms

j . Conversely, given

a pointa ∈ A�(n) with the distinct entries 0� �̂s1< · · ·< �̂sls <1, a partition of lengthls is determined by
the multiplicities�sj =ms

j −ms
j−1 of the �̂sj . We shall say that�s has the multiplicity structure ofms .

Let m = (m1, . . . , m�) be a choice of� partitions. In addition, choose a (possibly empty subset)
z ⊂ {1, . . . , �} of cardinality|z|. This data leads to the following refinement of theM-plane.

PI,�(n,m, z)= {a= (�sj ) ∈ P
∗
I,�(n) : �s has multiplicity structurems for all s,

and �̂s1= 0 if and only if s ∈ z };
PI,�(n,m, z)= the closure ofPI,�(n,m, z) in A

Z
� (n);

P
∗
I,�(n,m, z)=PI,�(n,m, z) ∩P

∗
I,�(n).

Next, notice that there is a natural partial ordering on multiplicities: ifp = (p1, . . . , p�) andm =
(m1, . . . , m�), we say thatp�m if for eachs = 1, . . . , � the partitionps is a subset ofms . We then have
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a stratification by the cellsPI,�(n,m, z) in the sense that

P
∗
I,�(n,m, z)=

⋃
p�m,z⊂z̃⊂{1,...,�}

PI,�(n, p, z̃).

In particular,

P
∗
I,�(n)=

⋃
m,z⊂{1,...,�}

PI,�(n,m, z)

There is a similar, though slightly more complicated, stratification ofPI,�(n,m, z) which involves

strata of lower index. To describe this, consider the limitā in A
Z
� (n) of points inPI,�(n,m, z) where

�̂s0ls0
→ 1, for somes0 ∈ {1, . . . , �}, but the�̂sls remain bounded away from 1 fors �= s0. From the defining

equivalenceM�(n)→ A�(n) and the convention (2) for the index, it follows that

I = I (ā)= I − (n−m
s0
ls0−1)< I .

Furthermore, we may define a new collection of partitionsm̄, m̄s(l̄s)=ms(ls) for s �= s0, and

if s0 ∈ z then


m̄

s0
i =m

s0
i + (n−m

s0
ls0−1), 1�i� ls0 − 1,

l̄s0 = ls0 − 1,
z̄= z;

if s0 /∈ z then


m̄

s0
1 = n−m

s0
ls0−1,

m̄
s0
i+1=m

s0
i + (n−m

s0
ls0−1), 1�i� ls0 − 1,

l̄s0 = ls0,

z̄= z ∪ {s0}.
With these definitions, it is clear thatā ∈ PI ,�(n, m̄, z̄). A stratification ofPI,�(n,m, z) is then obtained
by adding, in addition to sets of the formPI,�(n, p, z̃), all setsPI ,�(n, m̄, z̄) derived from these strata in
the manner described above.

2.2. Inequalities for unitary representations

Let �� be as in (1), and fix an integern�1. We will denote theU(n)-representation varietyof �� by

Hom(��, U(n))= {homomorphisms� : �� → U(n)}.
We denote the subspaces of irreducible and reducible homomorphisms by Homirr .(��, U(n)) and
Homred.(��, U(n)), respectively. The groupU(n) acts on Hom(��, U(n)) (say, on the left) by conju-
gation. We define themoduli space of representationsto be the quotient

Rep(��, U(n))= U(n)\Hom(��, U(n)).

Following the notation for homomorphisms, subsets of equivalence classes of irreducible and reducible
homomorphisms are denoted by Repirr .(��, U(n)) and Repred.(��, U(n)), respectively. With the presen-
tation of�� given in (1), to each[�] ∈ Rep(��, U(n)) we associate conjugacy classes�(�1), . . . , �(��).
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In this section, we give a brief description of which collections of� conjugacy classes are realized by
unitary representations in this way.
GivenA ∈ U(n), we may express its eigenvalues as(exp(2�i�1), . . . ,exp(2�i�n)), with 0��1� · · ·

��n <1, and this expression is unique.Wewill therefore write: spec(A)=�=(�1, . . . , �n). The spectrum
determines and is determined uniquely by the conjugacy class ofA. If A1, . . . , A� ∈ U(n),A1 · · ·A�= I ,
and spec(As)= �s , then by taking determinants we see that the indexI (�sj ) defined in (2) is aninteger.
As in the introduction, we may recast this in terms of representations. For� ∈ Hom(��, U(n)), we set
As = �(�s), and there is a well-defined integerI = I (�) associated to�. Clearly,I (�) depends only on
the conjugacy class of the representation, so it is actually well-defined for[�] ∈ Rep(��, U(n)).

Definition 2.2. Given� ∈ Hom(��, U(n)), the integerI (�) is called theindexof the representation. We
define thespectral projection

� : Hom(��, U(n)) −→ A
Z
� (n) : � �−→ [spec(�(�1)), . . . , spec(�(��))].

Then� factors throughamap (also denoted�) onRep(��, U(n)).Wedenote the fibers of�overa ∈ A
Z
� (n)

by

Homa(��, U(n))= �−1(a) ⊂ Hom(��, U(n)),

Repa(��, U(n))= �−1(a) ⊂ Rep(��, U(n)).

The image of� is our main focus in this section.

Definition 2.3. LetU∗I,�(n)=�(Hom(��, U(n)))∩P∗I,�(n). For each collection ofmultiplicitiesm=(ms)

and subsetsz ⊂ {1, . . . , �}, we set
UI,�(n,m, z)=U

∗
I,�(n) ∩PI,�(n,m, z).

Definition 2.4. Denote the interior points ofUI,�(n,m, z) in PI,�(n,m, z) by
◦
UI,�(n,m, z). A stratum

PI,�(n,m, z) is callednondegenerateif either

UI,�(n,m, z)= ∅,
or

◦
UI,�(n,m, z) �= ∅.

The regionsUI,�(n,m, z) have the following simple description (cf.[5, Theorem 3.2, 3,2,15]).

Theorem 2.1. There is a finite collection�I,�(n) of affine linear functions of the{�sj } such that

U
∗
I,�(n)= {a ∈ P

∗
I,�(n) : 	(a)�0 for all 	 ∈ �I,�(n)}.

Moreover, the sets�I,�(n), as I varies, are compatible with the stratification described in the previous
section.
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Definition 2.5. For each	 ∈ �I,�(n) we define theouter wallassociated to	 by

W	 = {a ∈ PI,�(n,m, z) : 	(a)= 0}.
We denote the union of all outer walls by

WI,�(n,m, z)=
⋃

	∈�I,�(n)

W	.

It follows that UI,�(n,m, z) is the closure inPI,�(n,m, z) of a convex connected component of
PI,�(n,m, z)\WI,�(n,m, z). The representations with�(�) ∈WI,�(n,m, z) are reducible (see Proposi-
tion 2.1). Indeed, the functions	 defining the walls are all of the following type. Fix an integer 1�k <n.
Choose℘(k)= (℘1

(k), . . . , ℘
�
(k)), where for eachs = 1, . . . , �, ℘s

(k) is a subset of{1, . . . , n} of cardinality
k. We define a relative index by

I (a, ℘(k))=
�∑

s=1

∑
�sj∈℘s

(k)

�sj . (3)

Notice that fora ∈ U
∗
I,�(n) the value ofI (a, ℘(k))may a priori be any real number less thanI. Suppose� ∈

HomI (��, U(n)) is reducible. Hence, there is a reduction� : �� → U(k)×U(n− k) for some 1�k <n.
The set of eigenvectors of�(�s) lying in theU(k) factor gives a collection of subsets℘s

(k). Moreover,
it follows, again by taking determinants that the relative indexI (�(�), ℘(k)) is equal to some integerK,
0�K�I . We will say that the reducible representation iscompatiblewith (K,℘(k)) if the pair(K,℘(k))

arises from some reduction of�. The functions	 ∈ �I,�(n) are all of the form	(a) = I (a, ℘(k)) − K,
for various choices of partitions℘(k) and integersK.
It is not necessarily the case, however, that every reducible�projects via� to anouterwall.Nevertheless,

we see that there is still a hyperplane associated to any reducible. This motivates the following

Definition2.6. Let
I,�(n)be the finite collectionof affine linear functionsof the form�(a)=I (a, ℘(k))−
K, for partitions℘(k) andpositive integersK, such that there is some reducible� compatiblewith(K,℘(k))

for which�(�) ∈ ◦
UI,�(n,m, z), for somem, z. For� ∈ 
I,�(n) we define theinner wallassociated to�

by

V� = {a ∈ PI,�(n,m, z) : �(a)= 0}.
We denote the union of all inner walls by

VI,�(n,m, z)=
⋃

�∈
I,�(n)

V�.

Hence, the distinction between the two types of walls is that there are points ofUI,�(n,m, z) on either
side of an inner wall, whereasUI,�(n,m, z) lies on only one side of each outer wall.
The precise determination of the functions in�I,�(n) is quite involved. In Section 6, we give the result

for �I,3(2) and�I,3(3). One way to view the origin of these conditions is via the notion of stable and
semistable parabolic structures on holomorphic vector bundles overCP 1.Wewill require very few details
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of this theory; the interested reader may consult the references cited above. The following two results are
consequences of this holomorphic description. First, we have

Proposition 2.1. Let� ∈ HomI (��, U(n)) with �(�) ∈ PI,�(n,m, z).

(1) If �(�) ∈WI,�(n,m, z), then� is reducible.
(2) If � is reducible, then�(�) ∈WI,�(n,m, z) ∪VI,�(n,m, z).

(3) If �(�) ∈ ◦
UI,�(n,m, z), there is an irreducible representatioñ� with �(�̃)= a.

Proof. Part (1) follows from the fact that an irreducible representation corresponds to a stable parabolic
structure. And if a parabolic structure is stable for a given set of weights, it is also stable for a sufficiently
small neighborhood of weights (an alternative, purely representation theoretic proof of this follows from
the arguments in Section 4 below). Part (2) is by definition. Part (3) is immediate from[5, Theorem 3.23],
since if the strict inequalities are satisfied there exists a stable parabolic structure. Stable structures, as
mentioned, correspond to irreducible representations.�

Next, we give sharp bounds on the index.

Theorem 2.2. For any representation� : �� → U(n) we have

n−N0(�)�I (�)�n(�− 1)+N0(�)−N1(�),

whereN0(�) is the number of trivial representations appearing in the decomposition of� into irreducibles,
andN1(�) is the total multiplicity of the eigenvalue0 among�s = �(�s) for all s = 1, . . . , �.Moreover,
these bounds are sharp.

Proof. The casen = 1 is straightforward. Forn�2, we first show thatI (�)�n − N0(�). Since both
sides of this inequality are additive on reducibles, an inequalityI (�)�n for irreducible representations
proves the result in general by induction. Hence, suppose� : �� → U(n) is an irreducible representation
with �(�) = (�sj ) andI (�)<n. Associated to� is a stable parabolic bundle onCP 1 with weights(�̂sj )
whose underlying holomorphic bundleE has degree−I (�) (cf. [17]). By the well-known theorem of
Grothendieck,E → CP 1 is holomorphically split into a sum of line bundles:E = O(d1)⊕ · · · ⊕ O(dn),
whereO(d) denotes the (unique up to isomorphism) holomorphic line bundle of degreed on CP 1.
By assumption

∑n
j=1 dj = degE = −I (�)> − n. Hence, there is somedj �0. But thenE contains a

subbundleO(dj ) with nonnegative parabolic degree. This contradicts parabolic stability, and hence also
the assumptionI (�)<n. Thus, the inequalityI (�)�n for irreducibles holds. Next, notice that to any
representation� : �� → U(n) we may associate a dual representation�∗ : �� → U(n) defined by:
�∗(�s)= �(��+1−s)−1, s = 1, . . . , �. Using the convention (2) it follows thatI (�∗)= n�− I (�)−N1(�),
whereN1(�) is defined in the statement of the theorem. Combining this with the previous resultI (�)�n,
we see thatI (�)�n(� − 1) − N1(�), for � irreducible. This argument generalizes to the case where�
contains trivial factors as well. This completes the proof of the inequality. To prove that the bounds are
sharp we need only remark that both sides of the inequalities are additive on reducibles and that the
bounds are evidently sharp for the casen= 1. �
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In Section 3, we will indicate a “Lagrangian” proof of this result for the case� = 3 (see Proposition
3.2). We conclude this section with one more

Definition 2.7. A connected component of

UI,�(n,m, z)\{WI,�(n,m, z) ∪VI,�(n,m, z)}
will be called achamber.

Remark 2.1.

(1) From the description given above the chambers ofPI,�(n,m, z) are convex subsets and their bound-
aries are unions of convex subsets in the intersections of the inner and outer walls.

(2) By Proposition 2.1 (2), if�(�) is in a chamber then� is irreducible.

3. Lagrangian representations

3.1. Linear algebra of Lagrangians inCn

We denote by�(n) the (n/2)(n + 1)-dimensional manifold of subspaces ofCn that are Lagrangian
with respect to the standard hermitian structure. Fixing a preferred LagrangianL0 = Rn ⊂ Cn, we
observe that�(n) = U(n)/O(n), where the orthogonal groupO(n) ⊂ U(n) is the stabilizer ofL0 for
the actionL0 �→ gL0. Define the involution�0(z)→ z̄. Then to each LagrangianL= gL0= [g] ∈ �(n)
one associates a canonical skew-symplectic complex anti-linear involution�L : Cn → Cn given by
�L = g�0g

−1, whose set of fixed points is precisely the LagrangianL. We will setOL= the stabilizer
of L, with Lie algebraoL. Note thatOL is simply the conjugate ofO(n) by g. Let u(n) denote the Lie
algebra ofU(n) with the Ad-invariant inner product〈X, Y 〉 = −Tr(XY). We have the following useful

Lemma 3.1. For a Lagrangian L: Ad�L |oL = I , andAd�L |o⊥L =−I .

Proof. ForX ∈ u(n), Ad�L(X) is by definition the derivative att=0 of the curve�LetX�L ∈ U(n). In the
caseL=Rn, �L is just complex conjugation, and then Ad�LX= X̄. Using the orthogonal decomposition
u(n) = iRn ⊕ o(n) ⊕ s(n), into diagonal, real orthogonal and symmetric skew-hermitian matrices, the
result follows immediately. �

Forg ∈ U(n), letZ(g) denote the centralizer ofgwith Lie algebraz(g). The relationship between the
stabilizers of a pair of Lagrangians is given precisely by the following

Proposition 3.1. LetL1, L2 be two Lagrangian subspaces with stabilizersO1,O2, and letg = �1�2 be
the composition of the corresponding Lagrangian involutions. Leto1, o2 denote the Lie algebras ofO1
andO2. Then

(1) O1 ∩O2 ⊂ Z(g);
(2) there is an orthogonal decompositionz(g)= (o1+ o2)⊥ ⊕ (o1 ∩ o2);
(3) 2 dim(o1 ∩ o2)= dim z(g)− n.
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Proof. Observe first thatz(g)= Ker(I − Adg)= Ker(I − Ad�1�2). Using Lemma 3.1, we obtain:(o1+
o2)

⊥⊕(o1∩o2) ⊂ z(g). LetPdenote the orthogonal projection too1∩o2, and letP1=(1/2)(I+Ad�1) and
P2=(1/2)(I+Ad�2) denote the projections too1 ando2, respectively. IfX ∈ z(g), then Ad�1X=Ad�2X,
which impliesP1X=P2X. Hence,P |z(g)=P1|z(g)=P2|z(g). In particular, ifX ∈ z(g)∩ (o1∩ o2)⊥, then
P1X = P2X = 0, andX ∈ (o1+ o2)⊥. This proves (2). Finally, (3) follows from (2).�

Corollary 3.1. If g = �1�2 is regular(i.e. z(g) is isomorphic toiRn), then

(1) O1 ∩O2= {I },
(2) O1 ∩ Z(g)=O2 ∩ Z(g)= {I }.
That is: u(n)= iRn ⊕ o1⊕ o2 (not necessarily orthogonal).
Definition 3.1. We define three maps:


1 : �(n) −→ U(n) : L �−→ �L�0;


2 : �2(n) −→ U(n) : (L1, L2) �−→ �L1�L2;


3 : �3(n) −→ U2(n) : (L1, L2, L3) �−→ (
2(L1, L2), 
2(L2, L3)).

Lemma 3.2.We have the following:

(1) 
1([g])= ggT ;
(2) 
2(L1, L2)= 
1(L1)
1(L2), and
2(L,L)= I ;
(3) 
2(L1, L3)= 
2(L1, L2)
2(L2, L3).

We prove some elementary facts about each of these maps. LetS(n) denote the space of symmetric
n× n complex matrices.

Proposition 3.2. The map
1 : �(n)→ U(n) is an embedding with imageU(n) ∩ S(n).

Proof. The fact that the image consists of symmetric matrices is the statement Lemma 3.2 (1). We
prove that
1 is injective. If 
1([g]) = 
1([h]), then:ggT = hhT ; henceh−1g ∈ U(n) ∩ O(n,C). But
U(n)∩O(n,C)=O(n), so we conclude thatg ∈ hO(n), and[g]= [h]. To prove
1 is an embedding we
compute its derivative. Any variation ofL is determined up to first order by a variation of the involution
�L of the form�L(t) = etX�Le

−tX, whereX ∈ u(n). Then:�̇L = [X, �L], so �̇L�L ∈ Im(I − Ad�L). In
particular,�̇L�L = 0 ⇐⇒ X ∈ oL ⇐⇒ L(t) ≡ L. With this understood, we havė
1(L)


−1
1 (L) =

(�̇L�0)(�0�L)= �̇L�L. Hence, by the discussion above,
1 is an immersion. Onemay show that the image
is all of S(n) either by noticing that dimensions agree, or directly using the following result, whose proof
is straightforward.

Lemma 3.3. If g ∈ U(n) ∩ S(n) there ish ∈ O(n) such thathgh−1 is diagonal.

Now takeg andh as in the lemma. Clearly, there existsk ∈ U(n) such thatkkT = hgh−1. Then:

1(hk)= g. �
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Proposition 3.3. 
2 : �2(n)→ U(n) is surjective and is equivariant with respect to the diagonal action
on the domain and the conjugation action in the target. Over the regular elements ofU(n) (i.e. those
whose eigenvalues have multiplicity one) 
2 is a fibration with fiber the torusT n. The general fiber is:

−12 (g)= Z(g) ∩ S(n), whereZ(g) is the centralizer of g.

Proof. Equivariance is an easy computation. As a consequence, it suffices to prove the remaining state-
ments for a diagonalg ∈ U(n). For such agwe can solveg = 
2([g1], [g2]), and we may even assume
g1 andg2 are diagonal. Letg = h1h2 with h1 = 
1([g1]) andh2 = 
1([g2]). Sinceh2 is determined by
h1 and
1 is an embedding, it suffices to find all possibleh1. Note that sinceg is diagonal andh1, h2 are
symmetric,h1, h2 ∈ Z(g)∩S(n). Conversely, ifh1 ∈ Z(g)∩S(n), then by Proposition 3.2,h1 ∈ Im(
1).
Sinceh2=h−11 g, we obtainhT2 =gT (h−11 )T =gh−11 =h−11 g=h2.We conclude thath2 is also symmetric,
and henceh2 ∈ Im(
1). Thus,


−1
2 (g) is diffeomorphic toZ(g) ∩ S(n). �

Note thatZ(g)∩S(n)=S(n1)∩U(n1)×· · ·×S(nk)∩U(nk), whereni , for 1�i�k, are themultiplicities
of the eigenvalues ofg. Finally, we determine the image of
3.

Definition 3.2. A pair k1, k2 ∈ U(n) is said to besymmetrizableif there isg ∈ U(n) such that both
gk1g

−1, gk2g−1 ∈ S(n). The set of symmetrizable pairs will be denoted by Sym2(n).

Proposition 3.4. The image of
3 is precisely the set of symmetrizable pairs: Sym2(n) ⊂ U2(n).

Proof. Clearly if 
3([g1], [g2], [g3]) = (h1, h2), then
3([g−12 g1], L0, [g−12 g3]) = (g−12 h1g2, g
−1
2 h2g2).

But g−12 h1g2 = 
2([g−12 g1], L0) = 
1([g−12 g1]) andg−12 h2g2 = 
2(L0, [g−12 g3]) = 
1([g−12 g3]) which
are symmetric. Therefore(h1, h2) ∈ Sym2(n). Conversely, suppose(h1, h2) ∈ Sym2(n), and letg be a
matrix such thatgh1g

−1, gh2g−1 ∈ S(n). We can solve


2([g1], L0)= 
1([g1])= gh1g
−1, 
2(L0, [g2])= 
1([g2])= gh2g

−1.

Then
3([g1], L0, [g2])= (gh1g
−1, gh2g−1). Since
3 is equivariant, acting byg−1 gives the result. �

3.2. The space of Lagrangian representations

We now define the main object of study in this paper. Fix an integer��3. Given the presentation (1), a
representation� ∈ Hom(��, U(n)) is equivalent to a choice of� matrices whose product is the identity.
By Lemma 3.2 (2) and (3), we therefore have a map

�̃ : ��(n) −→ Hom(��, U(n)),

(L1, . . . , L�) �−→ (
2(L1, L2), 
2(L2, L3), . . . , 
2(L�, L1)). (4)

U(n) acts diagonally on the left of��(n), and by Proposition 3.3,̃� is equivariant with respect to this
action and the left action by conjugation ofU(n) on Hom(��, U(n)). Hence, we have an induced map

� : U(n)\��(n) −→ Rep(��, U(n)).

Given� = (L1, . . . , L�) ∈ ��(n), letZ(�) = OL1 ∩ · · · ∩ OLs ⊂ U(n) denote the stabilizer, and let
z(�) be its Lie algebra. Similarly, for� ∈ Hom(��, U(n)), letZ(�) denote its stabilizer with Lie algebra
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z(�). Because of the equivariance of�̃, Z(�) ⊂ Z(�), where�= �̃(�), but the two groups are not equal.
For example, the centerU(1) is always inZ(�) but never inZ(�). The precise relationship is given by
the following

Lemma 3.4. Given� ∈ ��(n), thenKer(D�̃�) ⊂ u(n), whereu(n) → T��
�(n) via theU(n) action. If

�= �̃(�), thenz(�)= Ker(D�̃�)⊕ z(�).
Proof. Let �s = �Ls , with ��+1 = �1. Then:�̃(�) = (�1, . . . , ��), where�s = �s�s+1 (see Definition 3.1
and (4)). Let�̇ be a tangent vector to��(n) at �. Expressing the components of the imageD�̃�(�̇) =
(X1, . . . , Xs) as elements ofu(n), we have:Xs = �̇s�

−1
s . Hence,

Xs = (�̇s�s+1+ �s �̇s+1)�s+1�s = �̇s�s + �s �̇s+1�s+1�s . (5)

Since�s is an involution, we conclude from the equation above that�̇ ∈ Ker(D�̃�) if and only if
�s �̇s = �s+1�̇s+1, for all s = 1, . . . , �. As in the proof of Proposition 3.2,�s �̇s ∈ Im(I − Ad�s ). If we let
Os denote the stabilizer of the Lagrangian corresponding to�s , and if os is the Lie algebra ofOs , then
the kernel ofD�̃� is determined by an element in

Im(I − Ad�1) ∩ · · · ∩ Im(I − Ad��)= o⊥1 ∩ · · · ∩ o⊥� = (o1+ · · · + o�)⊥
= (o1+ o2+ o2+ o3+ · · · + o�−1+ o�)⊥
= (o1+ o2)⊥ ∩ · · · ∩ (o�−1+ o�)⊥.

By Proposition 3.1 (2)(os + os+1)⊥ ⊂ z(�s). Since

z(�)= z(�1) ∩ · · · ∩ z(��−1)= (o1 ∩ · · · ∩ o�)⊕ (o1+ o2)⊥ ∩ · · · ∩ (o�−1+ o�)⊥,
andz(�)= o1 ∩ · · · ∩ o�, the result follows. �

We take the opportunity to point out a fact about the image ofD�̃�.

Lemma 3.5. Let (X1, . . . , X�) ∈ Im(D�̃�), with � as above. Then: Xs ∈ (os ∩ os+1)⊥ for eachs =
1, . . . , �.

Proof. From Lemma 3.1 and the proof of Lemma 3.4, we have

�̇s�s ∈ Im(I − Ad�s )= o⊥s , �̇s+1�s+1 ∈ Im(I − Ad�s+1)= o⊥s+1.
Now if Z ∈ os ∩ os+1, then by (5) and Lemma 3.1 again,

〈Z,Xs〉 = 〈Z,Ad�s (�̇s+1�s+1)〉 = 〈Ad�sZ, �̇s+1�s+1〉 = 〈Z, �̇s+1�s+1〉 = 0. �

Definition 3.3. A representation� ∈ Hom(��, U(n)) is called aLagrangian representationif it is in the
image of�̃. We denote the space ofLagrangian representationsby

L Hom(��, U(n))= Im(�̃) ⊂ Hom(��, U(n)).

Similarly, the image of� is themoduli space of Lagrangian representations.

L Rep(��, U(n))= Im(�) ⊂ Rep(��, U(n)).
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We also set

L Homa(��, U(n))=L Hom(��, U(n)) ∩ Homa(��, U(n)),

L Repa(��, U(n))=L Rep(��, U(n)) ∩ Repa(��, U(n)).

From general considerations of group actions, Repirr .(��, U(n)) is a smooth (open) manifold, since the
isotropyZ(�) of an irreducible representation� is just the center ofU(n). Let:�n

irr .(n)= �̃−1(Homirr .(��,

U(n)). Then for Lagrangian representations we have the following

Proposition 3.5. (1) For � ∈ ��(n) and � = �̃(�), the fiber �̃−1(�) % Z(�)/Z(�). In particular,
L Homirr .(��, U(n)) is an embedded submanifold of dimension

dim(L Homirr .(��, U(n)))= (�− 1)

2
n2+ �

2
n− 1,

and: �̃ : ��
irr .(n)→ L Homirr .(��, U(n)) is a circle bundle.

(2)U(n) acts freely on�n
irr .(n).Moreover,

� : U(n)\��
irr .(n) −→ L Repirr .(��, U(n)) ⊂ Repirr .(��, U(n))

is an embedding with

dim(L Repirr .(��, U(n)))= (�− 2)

2
n2+ �

2
n.

Proof. We determine the fiber of̃�. Suppose� = �̃(�) = �̃(�′), where� = (L1, . . . , L�) and �′ =
(L′1, . . . , L′�). By Propositions 3.2 and 3.3,L′1 = hL1 andL′2 = hL2 for h ∈ Z(�(�1)) ∩ S(n). Ap-
plying the result to each pairLs , Ls+1, we see that in facth ∈ Z(�(�1)) ∩ · · · ∩ Z(�(��−1)) ∩ S(n). In
particular,h ∈ Z(�). Conversely, by equivariance,Z(�) acts on the fiber of̃� with Z(�). The remaining
statements follow from Lemma 3.4.�

We will denote the restriction of the spectral projection to the Lagrangian representations also by
� : L Hom(��, U(n))→ AZ

� (n). By analogy with Definition 2.3, we have

Definition 3.4. Let L∗
I,�(n) = �(L Hom(��, U(n))) ∩ P

∗
I,�(n). For each collection of multiplicities

m= (ms), and subsetsz ⊂ {1, . . . , �}, we set:LI,�(n,m, z)=L
∗
I,�(n) ∩PI,�(n,m, z).

From the definition we have:L
∗
I,�(n) ⊂ U

∗
I,�(n). The goal of this paper is to prove that in fact

L
∗
I,�(n)=U

∗
I,�(n). Assuming Theorem 1, however, we may now give the

ProofofTheorem3. ByTheorem1, theconjugacyclassesofA1, . . . , A�maybe realizedbyaLagrangian
representation. Hence, we may findBi as in the statement of Theorem 3 such thatBi = �Li

�Li+1 for
LagrangiansL1, . . . , L�, whereL�+1 = L1. In particular, the pair(Bi, Bi+1) is in the image of
3 for
eachi. The result then follows from Proposition 3.4.�
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3.3. The symplectic structure

The purpose of this section is to show that the tangent space to the Lagrangian representations for fixed
conjugacy classes is isotropic with respect to the natural symplectic form. We begin with a brief review
of quasi-Hamiltonian reduction. For more details, see[1]. Let (M,�) be a manifold equipped with a
2-form�,G a Lie group with Lie algebrag andG×M → M a Lie group action preserving�. In order
to define aG-valued moment map we assume the existence of an Ad-invariant inner product〈 , 〉 on g.
Let �R and�L be the right and left Maurer–Cartan forms onG. That is, forV ∈ TgG, �Lg (V )= g−1V ∈ g
and�Rg (V ) = Vg−1 ∈ g (g−1 dg and dgg−1 in matrix groups). Let� be the bi-invariant closed Cartan
3-form defined by

�= 1
2 〈�L , [�L , �L ]〉 = 1

2 〈�R, [�R, �R]〉.
Definition 3.5. A quasi-Hamiltonian G-space(M,G,�, �) is a manifold equipped with a 2-form� that
is invariant under the action ofG and an equivariant moment map� : M → G satisfying

(1) d�=−�∗�
(2) ™�#�= 1

2〈�∗(�L + �R), �〉
(3) ker�x = {�#(x) | � ∈ ker(I + Ad�(x))}.
Here,�# denotes the vector field onM induced by� ∈ g and the action ofG. The following theorem is

proved in[1].

Theorem 3.1. Let (M,G,�, �) be a quasi-Hamiltonian space as above. Let™ : �−1(I ) → M be the
inclusion andp : �−1(I ) → M red. = �−1(I )/G the projection on the orbit space. Then there exists a
unique symplectic form�redon the smooth stratum of the reduced spaceM red such thatp∗�red= ™∗� on
�−1(I ).

This formulation of symplectic reduction iswell-adapted to computations on the representation spaceof
the free group with fixed conjugacy classes. Let Homa(��, U(n)) and Repa(��, U(n)) be as in Definition
2.2.ThenHoma(��, U(n)) is naturally contained inMa=C1×· · ·×C�where{Cs}are the conjugacy class
ofU(n) prescribed bya. Moreover, Homa(��, U(n))=�−1(I ), where�(�1, . . . , ��)= �1�2 · · · �� ∈ U(n),
and Repa(��, U(n))= �−1(I )/U(n). To describe the form�, we require

Definition 3.6. Let (M1,�1, �1) and(M2,�2, �2) be two quasi-HamiltonianG-spaces. ThenM1×M2
is also a quasi-HamiltonianG-space, called thefusion product ofM1 andM2. The moment map is given
by �1�2 : M1×M2→ G, and the 2-form is given by�= �1+ �2+ 〈�∗1�L ∧ �∗2�R〉.
Explicitly, we have

〈�∗1�L ∧ �∗1�R〉((v1, v2), (w1, w2))= 1
2 (〈�∗1�L(v1), �∗2�R(w2)〉 − 〈�∗1�L(w1), �

∗
2�

R(v2)〉).
To find the expression of the fusion product for a product conjugacy classes, recall that the fundamental
vector field corresponding to� ∈ g at a point� is

�# = ��− ��= (I − Ad�)��= �(Ad�−1 − I )�.
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The 2-form on a conjugacy classC is given by

��(�
#, �#)= 1

2 (〈Ad��, �〉 − 〈Ad��, �〉).
For the product of two conjugacy classesC1 andC2, let �i : Ci → G be the tautological embeddings.
Then

�∗1�L(�#1)= �L(�1∗�#1)= �L(�#1)= �L(�1(Ad�−11
− I )�1)

= �−11 �1(Ad�−11
− I )�1= (Ad�−11

− I )�1.

Similarly, �∗2�R(�#2) = (I − Ad�2)�2. Using these formulas, the 2-form on the productC1 × C2 of two
conjugacy classes is

�(�1,�2)((�
#
1, �

#
2), (�

#
1, �

#
2))= 1

2 (〈Ad�1�1, �1〉 − 〈Ad�1�1, �1〉)
+ 1

2 (〈Ad�2�2, �2〉 − 〈Ad�2�2, �2〉)
+ 1

2 〈(I − Ad�1)�1,Ad�1(I − Ad�2)�2〉 − {� ↔ �}
where� ↔ � means that the previous terms are repeated with� and� interchanged, keeping the indices
unchanged. In general, for the productC1× · · · × C� we obtain

�(�1,...,��)((�
#
1, . . . , �

#
�), (�

#
1, . . . , �

#
�))

= 1

2

{
�∑

s=0
〈Ad�s�s, �s〉 +

�−1∑
t=1
〈(I − Ad�1)�1+ Ad�1(I − Ad�2)�2

+ · · · + Ad�1···�t−1(I − Ad�t )�t ,Ad�1···�t (I − Ad�t+1)�t+1〉
}
− {� ↔ �}

= 1

2


�∑

s=0
〈Ad�s�s, �s〉 + · · · +

∑
0� s<t ��−1

〈Ad�1···�s (I − Ad�s+1)�s+1,

Ad�1···�t (I − Ad�t+1)�t+1〉


− {� ↔ �}.
Proposition 3.6. The product of conjugacy classes of a compact Lie group G, C1× · · · ×C� is a quasi-
Hamiltonian space equipped with the moment map which is the product of the embeddings in G and the
following2-form:

�(�1,...,��)((�
#
1, . . . , �

#
�), (�

#
1, . . . , �

#
�))

= 1

2


�∑

s=0
(Ad�s�s, �s)+

∑
0� s<t ��−1

(Ad�1···�s (I − Ad�s+1)�s+1,Ad�1···�t (I − Ad�t+1)�t+1)


− {� ↔ �}.
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Proposition 3.7. The moduli space of moduli of Lagrangian representations

L Repa(��, U(n)) ⊂ Repa(��, U(n))

is isotropic with respect to the symplectic structure defined by Proposition3.6and Theorem3.1.

Proof. Let

Xs = �̇s�s + Ad�s (�̇s+1�s+1), Ys = �̇s�s + Ad�s (�̇s+1�s+1).

where�s = �s (see (5)). By the assumption of fixed conjugacy classes, we have

�̇s�s = �s − Ad�s�s, �̇s�s = �s − Ad�s�s ,

�̇s+1�s+1= �s − Ad�s+1�s, �̇s+1�s+1= �s − Ad�s+1�s .

In particular,

Ad�sXs = �̇s+1�s+1− �̇s�s, Ad�s Ys = �̇s+1�s+1− �̇s�s . (6)

It follows that

〈Ad�s�s, �s〉 = 〈Ad�s+1�s,Ad�s�s〉 = 〈�s − �̇s+1�s+1, �s − �̇s�s〉
= 〈�s, �s〉 + 〈�̇s+1�s+1, �̇s�s〉 − 〈�s, �̇s�s〉 − 〈�s, �̇s+1�s+1〉.

Notice that sincė�s�s is in the (−1)-eigenspace of Ad�s ,

2〈�s, �̇s�s〉 = 〈�s − Ad�s�s, �̇s�s〉 = 〈�̇s�s, �̇s�s〉.

Similarly, 2〈�s, �̇s+1�s+1〉 = 〈�̇s+1�s+1, �̇s+1�s+1〉. Because of the symmetry upon interchanging� and
�, these terms cancel, and we are left with

�∑
s=1
〈Ad�s�s, �s〉 − 〈Ad�s�s, �s〉 =

�∑
s=1
〈�̇s+1�s+1, �̇s�s〉 − 〈�̇s�s, �̇s+1�s+1〉. (7)

For the second term, notice that for a Lagrangian representation�1 · · · �s = �1�s+1. Hence,∑
0� s<t ��−1

〈Ad�1···�sXs+1,Ad�1···�t Yt+1〉 =
∑

0� s<t ��−1
〈Ad�s+1Xs+1,Ad�t+1Yt+1〉

=
∑

1� s<t ��

〈Ad�sXs,Ad�t Yt 〉.
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Using (6) (and recalling the convention that��+1= �1) we have∑
0� s<t ��−1

〈Ad�1···�sXs+1,Ad�1···�t Yt+1〉

=
∑

1� s<t ��

〈�̇s+1�s+1− �̇s�s, �̇t+1�t+1− �̇t�t 〉

=
∑

1� s��−1
〈�̇s+1�s+1− �̇s�s, �̇1�1− �̇s+1�s+1〉

=
∑

1� s��−1
〈�̇s�s, �̇s+1�s+1〉 − 〈�̇s+1�s+1, �̇s+1�s+1〉 + 〈�̇s+1�s+1− �̇s�s, �̇1�1〉

= 〈�̇��� − �̇1�1, �̇1�1〉 +
∑

1� s��−1
〈�̇s�s, �̇s+1�s+1〉 − 〈�̇s+1�s+1, �̇s+1�s+1〉

=
∑

1� s��

〈�̇s�s, �̇s+1�s+1〉 − 〈�̇s�s, �̇s�s〉

Hence, ∑
0� s<t ��−1

〈Ad�1···�sXs+1,Ad�1···�t Yt+1〉 − 〈Ad�1···�s Ys+1,Ad�1···�t Xt+1〉

=
�∑

s=1
〈�̇s�s, �̇s+1�s+1〉 − 〈�̇s+1�s+1, �̇s�s〉.

The proposition now follows by comparing this with (7).�

3.4. The Maslov index

In this section, we briefly digress to explain the relationship between the quantityI (�), which we have
called the index of a representation, and the usual Maslov index of a triple of Lagrangians, in the case� is
a Lagrangian representation. The diagonal action of the symplectic group acting on triple of Lagrangian
subspaces(L1, L2, L3) in Cn has a finite number of orbits. To classify the orbits, one introduces the
notion of aninertia index(orMaslov index) of a Lagrangian triple (cf.[14, p. 486]).

Definition 3.7. The inertia index
(�) of a triple�= (L1, L2, L3) of Lagrangian subspaces ofCn is the
signature of the quadratic formq defined on the 3n (real) dimensional vector spaceL1 ⊕ L2 ⊕ L3 by:
q(x1, x2, x3)= �(x1, x2)+ �(x2, x3)+ �(x3, x1), where� is the standard symplectic form onCn.

In order to state the symplectic classification of triples of Lagrangians, we need the following data.
For d= (n0, n12, n23, n31, 
) ∈ N4× Z, letCd denote the set of all�= (L1, L2, L3) satisfying
(�)= 
,
dim(L1 ∩ L2 ∩ L3)= n0, and dim(Lj ∩ Lk)= njk. For the following result, see[14, p. 493].

Proposition 3.8. Cd is non-empty if and only ifd= (n0, n12, n23, n31, 
) satisfies the conditions

(1) 0�n0�n12, n23, n31�n.
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(2) n12+ n23+ n31�n+ 2n0.
(3) |
|�n+ 2n0− (n12+ n23+ n31).
(4) 
 ≡ n− (n12+ n23+ n31)mod 2Z.

If � and�′ are two triples of Lagrangian subspaces ofCn, there exists a symplectic map� ∈ Sp(Cn) such
that�(L1) = L′1, �(L2) = L′2 and�(L3) = L′3, if and only ifn0 = n′0, n12= n′12, n23= n′23, n31= n′31
and
= 
′.

Using this classification one may show

Proposition 3.9(Falbel et al.[6, Theorem 4.4]). Let�=(L1, L2, L3), �= �̃(�),andnjk=dim(Lj ∩Lk).
Then


(�)= 3n− 2I (�)− (n12+ n23+ n31).

This relationship between
 and I gives an alternative proof of Theorem 2.2 for the case� = 3 (and
assuming Theorem 1).

Corollary 3.2. Let � be a triple of Lagrangian subspaces ofCn, �= �̃(�). Then

n−N0(�)�I (�)�2n+N0(�)−N1(�).

Proof. This follows fromPropositions3.8and3.9, and the fact thatN0(�)=n0, andN1(�)=n12+n23+n31.
�

TheMaslov index generalizes tomultiple Lagrangians as follows. LetL1, . . . , L�, ��3, be a collection
of Lagrangian subspaces inCn. We define


(L1, . . . , L�)= 
(L1, L2, L3)+ 
(L1, L3, L4)+ · · · + 
(L1, L�−1, L�).

For the next result, setI (L1, . . . , L�)= I (�̃(L1, . . . , L�)).

Proposition 3.10. Let L1, . . . , L�, ��4, be a collection of Lagrangian subspaces inCn.Write n1i =
dim(L1 ∩ Li), then

I (L1, . . . , L�)= I (L1, L2, L3)+ I (L1, L3, L4)+ · · · + I (L1, L�−1, L�)−
�−1∑
i=3

(n− n1i).

Proof. Observe that if spec(�L1�L3)= (0, . . . ,0, �n13+1, . . . , �n) then

spec(�L3�L1)= (0, . . . ,0,1− �n, . . . ,1− �n13+1).

Summing all the angles in both spectra gives us:n− n13. This implies that

I (L1, L2, L3, L4)= I (L1, L2, L3)+ I (L1, L3, L4)− (n− n13).

The general case follows by induction.�



E. Falbel, R.A. Wentworth / Topology 45 (2006) 65–99 83

A relationship between
 andI still exists. Indeed, this follows directly from the previous result and
Proposition 3.9.

Proposition 3.11. For ��3, 
(L1, . . . , L�)= n�− 2I (L1, . . . , L�)− (n12+ n23+ · · · + n�1).

It is not immediately clear how to prove the analogue of Proposition 3.8 for��4, since the invariants
no longer necessarily classify�-tuples of Lagrangians. On the other hand, we canuseTheorem 2.2, along
with Proposition 3.11, to prove bounds on the generalized Maslov index.

Theorem 3.2. For any�-tuple of Lagrangians,

|
(L1, . . . , L�)|�n(�− 2)+ 2n0− (n12+ n23+ · · · + n�1).

4. Deformations of unitary and Lagrangian representations

4.1. The deformation space

For an algebraic groupGand a finitely presented group�, let Hom(�,G) be the space homomorphisms
of � intoG. If � has generators{�1, . . . , ��}, then Hom(�,G) is given the structure of an algebraic variety
as the common locus of inverse images of the identity inG� for a finite number of functionsri : G� → G.
The tangent space toG� is identified withg�, whereg is the Lie algebra ofG, by right invariant vector
fields. If �t is a path of representations,�0 = �, then differentiating�t on a word�i1 · · · �im , and using
Xk = �̇0(�ik )�

−1
0 (�ik ), we obtain the cocycle relation

X1+ Ad�(�i1)
X2+ · · · + Ad�(�i1···�im−1)Xm = 0.

This formula implies the following observation of Weil[20].

Proposition 4.1. The Zariski tangent spaceT� Hom(�,G) is isomorphic toZ1(�, g).

In order to analyze deformations fixing conjugacy classes we compute the derivative of the curve
t → AdetX�(�) to obtain{X − Ad�(�)X}�(�). Identifying this withX − Ad�(�)X ∈ g, we obtain a
boundary in the group cohomology.
We apply these general considerations to the case ofU(n) representations of the free groups� = ��

with presentation as in (1). Hom(��, U(n)) is a smooth manifold of dimension(� − 1)n2, with tangent
space at a representation� given by

X1+ Ad�(�1)X2+ · · · + Ad�(�1···��−1)X� = 0. (8)

We will be concerned withg ∈ U(n) with fixed multiplicity for the eigenvalues. As in Section 3, let
z(g) be the Lie algebra of the centralizer ofg. Thenz(g)= u(�1)× · · · × u(�l), where:�1, . . . , �l are the
multiplicities of the eigenvalues ofg. We definezab.(g) ⊂ z(g)= u(1)× · · · × u(1), to be the subalgebra
consisting of elements that are block diagonal with respect to this decomposition. Alternatively, it is the
maximal abelian ideal ofz(g). We have the following
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Lemma 4.1. Let m be a multiplicity structure as in Section2.1.LetU(n,m) denote the set of allg ∈
U(n)withmultiplicity structurem. ThenU(n,m) is a smooth submanifold with tangent bundle(identified
with a subspace ofu(n)) given by: u(n,m) = zab.(g) ⊕ z(g)⊥. Similarly, if U(n,m,0) is the set of all
g ∈ U(n,m) with 0 ∈ spec(g), thenU(n,m,0) is a smooth submanifold with tangent bundle given by
u(n,m,0)= zab.,0(g)⊕ z(g)⊥, where the superscript indicates that the firstu(1) factor is zero.
Proof. It suffices the prove the statement concerning the tangent space. But small deformations of the
eigenvalues are obtained byg(t)= etXg for X ∈ zab.(g). Conjugating by an arbitrary unitary matrix, we
find

u(n,m)= {X + (I − Adg)Y : X ∈ zab.(g), Y ∈ u(n)}.
Sincez(g)⊥ = Im(I − Adg), the result follows. The reasoning forU(n,m,0) is similar. �

Now we prove

Proposition 4.2 (cf. Mehta and Seshadri[17, Section 5]). Let � : �� → U(n) be irreducible with
�(�)= a ∈ UI,�(n,m, z). Then near�, Repirr .a (��, U(n)) is a smooth manifold of dimension

dim(Repirr .a (��, U(n)))= (�− 2)n2+ 2−
�∑

s=1

ls∑
j=1

(�sj )
2

Here, �sj denotes the multiplicityms
j − ms

j−1 of thej th distinct eigenvalue of�(�s), j = 1, . . . , ls , (see
Section2.1).Moreover, the spectral projection

� : Repirr .(��, U(n)) ∩ �−1(UI,�(n,m, z)) −→ PI,�(n,m, z),

is locally surjective and is a fibration near�.

Proof. We fix the conjugacy classes of�(�s) for s�2 and determine the variation in�(�1). The space
Homa(1) (��, U(n)) of representations�′, �′(�s) % gs for s�2, is clearly a manifold of dimension

dim(Homa(1) (��, U(n)))=
�∑

s=2
dim(U(n)/Z(gs))= (�− 1)n2−

ls∑
j=2

(�sj )
2, (9)

where we have used that: dimZ(gs)=∑ls
j=1 (�

s
j )
2. We compute the derivative of the map

�(1) : Homa(1) (��, U(n)) −→ U(n) : � �→ �(�1).

Note that�(1) takes values in a single fiber of the determinant map. By (8), the tangent space to
Homa(1) (��, U(n)) at � is given by(X1, . . . , X�) ∈ g� satisfying the conditionsXs ∈ Im(I − Ad�(�s )),
for s�2, and

X1 ∈ V (1) = Ad�(�1)Im(I − Ad�(�2))+ · · · + Ad�(�1�2···��−1)Im(I − Ad�(��)).
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We claim thatV (1) = z(�)⊥. Indeed,

(V (1))⊥ = {Ad�(�1)Im(I − Ad�(�2))+ · · · + Ad�(�2···��−1)Im(I − Ad�(��))}⊥
=Ad�(�1){(Im(I − Ad�(�2)))

⊥ ∩ Ad�(�2)(Im(I − Ad�(�3)))
⊥

∩ · · · ∩ Ad�(�2···��−1)(Im(I − Ad�(��)))
⊥}.

Now Im(I − Ad�(�2))
⊥ = z(�2), and therefore

(Im(I − Ad�(�2)))
⊥ ∩ Ad�(�2)(Im(I − Ad�(�3)))

⊥ = z(�2) ∩ z(�3).
Continuing in this way, we find(V (1))⊥=z(�2)∩· · ·∩z(��)=z(�).We have shown that Im(D�(1)� )=z(�)⊥.
Hence, if the representation is irreducible (i.e. ifz(�)=z(U(n)) % iR), then by transversality we conclude
that Homa(��, U(n)) is a manifold at an irreducible. Transversality applied to the product overs of
U(n,ms) (or U(n,ms,0) if s ∈ z) also gives the statement about local surjectivity and the fibration
structure over the multiplicity space (see Lemma 4.1). For the dimension, we observe that

• dim z(�(�1))=
∑l1

j=1 (�1j )
2;

• sinceZ(�)= Z(U(n))= U(1) by irreducibility,n2− 1 is the dimension ofU(n)-orbit through�.

The dimension of�−1(a) is computed by subtracting these from (9). Since this dimension depends only
on the multiplicity structure, it is constant over the fixed multiplicity space; hence, the smoothness. This
completes the proof.�

Remark 4.1. The surjectivity in Proposition 4.2 also follows from the Mehta–Seshadri Theorem[17]
which describes irreducible representations with fixed conjugacy classes in terms of stable parabolic
vector bundles. In the next section we will see that a similar result holds even if we restrict� to the
Lagrangian representations, where we apparently have no such holomorphic description.

4.2. Twisting and bending deformations of Lagrangian representations

Weapproach the deformation theory of Lagrangian representations by introducing two special families:
twist deformations and real bendings. Twist deformations are rather simple and apply equally well to
unitary representations, while the bending deformations are particular to Lagrangian representations.

Definition 4.1. Let � = (L1, . . . , L�) ∈ ��(n), and� = �̃(�). A twist deformationof the Lagrangian
representation� is a Lagrangian representation of the form:�
= �̃(�
), where�
= (
1L1, . . . , 
�L�) for
some
= (
1, . . . , 
�) ∈ U�(1).

Remark 4.2. Since�̃ always has the center ofU(n) as a fiber, the twist deformations naturally depend
on�− 1 parameters inU(1).

The following result is a calculation using the method in the proof of Lemma 3.4.

Lemma 4.2. LetT� ⊂ T�L Hom(��, U(n)) denote the subspace tangent to the twist deformations of
�. ThenT� = [u(1) × · · · × u(1)]0, whereu(1) is the Lie algebra of the centerU(1) ⊂ U(n), and the
subscript0 indicates that the sum of the entries vanishes.
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Definition 4.2. Let �, � be as in Definition 4.1. Areal bendingof the Lagrangian representation� is a
Lagrangian representation of the form�b = �̃(�b), where

�b = (L1, . . . , Ls, bLs+1, . . . , bLs+r , Ls+r+1, . . . , L�)

for somes, r = 1, . . . , �, andb ∈ OLs (as usual, we reduce mod� any index greater than�). Givens, r
we shall say the bending is aboutLs and has lengthr.

The twist deformations considered above are special cases of the action of the group Hom(�, Z(G))

on Hom(�,G), and they were considered in[16]. Bending deformations are inspired by generalizations
of Fenchel–Nielsen twists defined by Thurston (see[9,12]). An important difference is that the bending
deformations defined in these referencesfix the conjugacy classes of�(�s), whereas those in Definition
4.2 change certain conjugacy classes in a controlled way.
Indeed, from the definition we see that a real bending of lengthr aboutLs has the form

�b(�s′)=
{

�(�s′) if s′ = 1, . . . , s − 1, s + r + 1, . . . , �,
b�(�s′)b

−1 if s′ = s, . . . , s + r − 1.
(10)

Hence, the only conjugacy class which is potentially changed is that of�(�s+r ). One can easily show that
any deformation of a Lagrangian representation of the form (10) withb ∈ OLs is necessarily Lagrangian
and coincides with̃�(�b).

Lemma 4.3. LetB�(s, r) ⊂ T�L Hom(��, U(n)) denote the subspace tangent to the bending deforma-
tions of� of length r aboutLs . Then the(s + r)th component[B�(s, r)]s+r is the orthogonal projection
of os to o⊥s+r .

Proof. Using (10) and the calculation in the proof of Lemma 3.4, we see that for an infinitesimal bending
ḃ = B ∈ os ,

Xs′ =
{0 if s′ = 1, . . . , s − 1, s + r + 1, . . . , �,
(I − Ad�(�s′ ))B if s′ = s, . . . , s + r − 1,
(I − Ad�s+r )B if s′ = s + r.

Hence,[B�(s, r)]s+r = Im(I − Ad�s+r )|os , and the result follows from Lemma 3.1.�

Our goal is to show that twistings and real bendings sweep out the full space of deformations of
conjugacy classes in a neighborhood of an irreducible Lagrangian representation. We now prove

Proposition 4.3(cf. Proposition 4.2). Let � : �� → U(n) be an irreducible Lagrangian representation
with �(�)= a ∈ LI,�(n,m, z). Then near�,L Repirr .a (��, U(n)) is a smooth manifold of dimension

dim(L Repirr .a (��, U(n)))= (�− 2)

2
n2+ 1− 1

2

�∑
s=1

ls∑
j=1

(�sj )
2.

Moreover, the spectral projection

� : L Repirr .(��, U(n)) ∩ �−1(LI,�(n,m, z)) −→ PI,�(n,m, z),

is locally surjective and is a fibration near�.
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Proof. As in the proof of Proposition 4.2, we will first concentrate on deformations of�(�1) up to
conjugation. Thus, we consider bending deformations ofLs and lengthr = �− s + 1, for s = 2, . . . , �.
We also add twist deformations. It follows from Lemmas 4.2 and 4.3 that for�= �̃(�),

P⊥1 o2+ · · · + P⊥1 o� + iR+ Im(I − Ad�(�1)) ⊂ [ImD�̃�]1,
whereP⊥1 is the orthogonal projection too⊥1 . Since we are assuming� is irreducible, it follows as in the
proof of Lemma 3.4 that

(o1+ · · · + o�)⊥ = Ker(D�̃�)= iR.

Hence, denoting the traceless part with a subscript 0,

{P⊥1 o2+ · · · + P⊥1 o� + iR+ Im(I − Ad�(�1))}⊥
= {P⊥1 (o1+ · · · + o�)+ iR+ Im(I − Ad�(�1))}⊥
= [{o1+ (o1+ · · · + o�)⊥} ∩ z(�(�1))]0
= [o1 ∩ z(�(�1))]0= o1 ∩ o2

by Proposition 3.1 (2). Since we may do this calculation for any�(�s), and since the variation preserves
the conjugacy classes of�(�s′), s

′ �= s up to the twist deformations, we have shown thatD�̃� is surjective
onto

[(o1 ∩ o2)⊥ × (o2 ∩ o3)⊥ × · · · × (o� ∩ o1)⊥]0 ⊂ [z(�(�1))× · · · × z(�(��))]0, (11)

where now the subscript indicates that the sum of the traces vanishes. By Lemma 3.5, this must be exactly
the image. Notice that

zab.(�(�s))⊕ z⊥(�(�s)) ⊂ (os ∩ os+1)⊥,
for all s (cf. Proposition 3.1 and Lemma 4.1). Hence, by transversality we deduce the local surjectivity
and fiber structure onto the multiplicity space. We count dimensions:

• �(n/2)(n+ 1) is dimension of��(n);
• By Proposition 3.1 (4),

dim z(�s�s+1)− (dim os ∩ os+1)= (1/2)dim z(�(�s))+ n/2.

Hence, the dimension of the subspace in (11) is(1/2)
∑�

s=1
∑ls

j=1 (�
s
j )
2+ �(n/2)− 1.

• Finally, n2 is the dimension ofU(n)-orbit through� (notice that the action is free; see also Lemma
3.4).

The dimension follows by subtracting the last two items from the first. This completes the proof.�

Proposition 4.3 implies that, near irreducible representations, the allowed holonomies for unitary and
Lagrangian representations coincide. In particular, a chamber either has no Lagrangian representations
or is entirely populated by Lagrangians.

Corollary4.1. Let� ⊂ UI,�(n,m, z)beachamber.Then�∩LI,�(n,m, z) �= ∅ ⇐⇒ � ⊂ LI,�(n,m, z).
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Proof. By Remark 2.1 (2) and Proposition 4.3 it follows that� ∩LI,�(n,m, z) is open. On the other
hand this set is also clearly closed in�; hence, the result.�

We also have the

Proof of Theorem 2. AssumeL Repirr .a (��, U(n)) is not empty. Then by Propositions 4.2 and 4.3, it is a
smoothly embedded half-dimensional submanifold of Repirr .

a (��, U(n)). By Proposition 3.7, its tangent
space is everywhere isotropic. The theorem follows.�

4.3. Codimension of the reducibles

In this section, we use Proposition 4.3 to estimate the size of the set of reducible representations. Since
we will only require the result for� = 3, we restrict to this case. We begin with the following simple
observation.

Lemma 4.4. Let � : �3 → U(n) be irreducible with�(�) = a ∈ PI,3(n,m, z). Then for at least two
values ofs = 1,2,3,all multiplicities�sj =ms

j −ms
j−1�n/2.

Proof. Suppose not. Then there are two values ofs, says = 1,2, andj1, j2, such that�1j1 >n/2 and

�2j2 >n/2. If E1 is the�̂1j1 eigenspace of�(�1) andE2 is the�̂2j2 eigenspace of�(�2), then both�(�1) and
�(�2), and hence also�(�3), leave invariant the intersectionE1∩E2, which is positive dimensional. This
contradicts the assumption of irreducibility.�

Proposition 4.4. Let � ⊂ L Repa(�3, U(n)) be an open connected subset containing an irreducible
representation. Then the set of reducibles� ∩L Repred.a (�3, U(n)) has codimension�n.

Proof. Supposea ∈ PI,3(n,m, z). If �̃ ∈ L Repa(�3, U(n)) is reducible, then we can decompose it
into its irreducible components�i , i = 1, . . . , k, k�2. Without loss of generality, we may assume�i
and�j are non-isomorphic fori �= j . Write: �(�i) = ia = (i�

s
j ) ∈ PIi ,3(ni, im, zi). Conversely, given

a decomposition ofa into 1a, . . . , ka, it suffices to compute the codimension of the set of all reducibles
with �i(�) = ia. We therefore assume this fixed decomposition, and let cod be the codimension of all
reducibles compatible with the decomposition.
For eachs let �sj , j = 1, . . . , ls denote the multiplicities from the partitionms , and let�̂sj denote the

distinct entries of�s . We definei�
s
j to be the multiplicity of�̂

s
j if it appears ini�

s , and we set it to zero
otherwise. The following are easy consequences of this definition:

�sj =
k∑

i=1
i�

s
j , (12)

ni =
ls∑

j=1
i�

s
j , (13)
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n=
k∑

i=1
ni =

ls∑
j=1

�sj . (14)

Counting dimensions as in the proof of Proposition 4.3 we find

cod= (3/2)n2−
(1/2)

3∑
s=1

ls∑
j=1

(�sj )
2− 1

− n2 (15)

−


k∑
i=1

(3/2)n2i −
(1/2)

3∑
s=1

ls∑
j=1

(i�
s
j )
2− 1

− n2i

− (n2− k∑
i=1

n2i

) (16)

= (1/2)
3∑

s=1

n2−
ls∑

j=1
(�sj )

2−
k∑

i=1

n2i −
ls∑

j=1
(i�

s
j )
2

+ 1− k. (17)

The line (15) is the dimension count for the irreducibles. In line (16), we take this dimension for each
irreducible factor, and then divide out by the part of theU(n) which changes the splitting. It follows that
for eachswe need to estimate

Cs = n2−
k∑

i=1
n2i −

ls∑
j=1

(�sj )
2+

k∑
i=1

ls∑
j=1

(i�
s
j )
2.

Using (14) we have

n2=
(

k∑
i=1

ni

)2
=

k∑
i=1

n2i +
∑
i �=i′

nini′ .

Applying (13) to the second term on the right hand side above,

n2−
k∑

i=1
n2i =

∑
i �=i′

∑
j,j ′

(i�
s
j )(i′�

s
j ′)=

∑
i �=i′

∑
j

(i�
s
j )(i′�

s
j )+

∑
i �=i′

∑
j �=j ′

(i�
s
j )(i′�

s
j ′). (18)

On the other hand, from (12) we have

ls∑
j=1

(�sj )
2=

∑
i,i′

∑
j

(i�
s
j )(i′�

s
j )=

∑
i,j

(i�
s
j )
2+

∑
i �=i′

∑
j

(i�
s
j )(i′�

s
j ). (19)

Combining (18) and (19), we find that

Cs =
∑
i �=i′

∑
j �=j ′

(i�
s
j )(i′�

s
j ′).
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We wish to estimate this quantity from below. Since there are at least two distinct eigenvalues, it follows
that:Cs �2. By Lemma 4.4, for at least two values ofswemay assume that�sj �n/2 for all j =1, . . . , ls .
We estimateCs in this case.
Case1. Assume that for eachi, j wherei�

s
j �= 0 there arei′ �= i andj ′ �= j such that

i′�
s
j ′ �= 0. In

this case we have

Cs �2
∑
i,j

(i�
s
j )�2n, (20)

by (13) and (14).
Case2. If the condition in Case 1 is not satisfied, then there arei0, j0 such thati0�

s
j0
�= 0 and for

all i �= i0, ni = 1 andi�
s
j = 1 if j = j0 and zero otherwise. This is true because ifni �2, then theith

block must have at least two distinct eigenvalues; in particular, one different fromi0
�sj0. We also have

ni0 − i0
�sj0 = n− �sj0, andn− ni0 = k − 1. Now

∑
i �=i′

∑
j �=j ′

(i�
s
j )(i′�

s
j ′)= 2

∑
j �=j0

i0
�sj

 (n− ni0)+
∑

i0 �=i �=i′ �=i0
(i�

s
j0
)(i′�

s
j0
)

= 2

∑
j

i0
�sj − i0

�sj0

 (n− ni0)+ (1/2)(n− ni0)(n− ni0 − 1)

= 2(ni0 − i0
�sj0)(n− ni0)+ (1/2)(n− ni0)(n− ni0 − 1)

= 2(n− �sj0)(n− ni0)+ (1/2)(n− ni0)(n− ni0 − 1),

where in the third line we have used (14). Using the assumption that�sj �n/2, we have

Cs �n(k − 1)+ (1/2)(k − 1)(k − 2). (21)

Hence, we have bounds onCs from Cases 1 and 2 at two of the three values ofs, andCs �2 at the third
value. Putting (20) and (21) into expression (17) we find three possibilities:

cod�

{2n+ 2− k;
n+ (1/2){n(k − 1)+ (1/2)(k − 1)(k − 2)} + 2− k;
n(k − 1)+ (1/2)(k − 1)(k − 2)+ 2− k.

It is easily verified that the quantities on the right are all�n, with equality in the last case atk= 2. Since
this is true for all of the finitely many possible types of reduction, the proof is complete.�

5. Proof of the main theorem

We have shown in Proposition 4.3 thatL Repirr .a (��, U(n)), if not empty, is a smoothly embedded
submanifold of Repirr .a (��, U(n)). In this section, we prove the existence of a Lagrangian representation
with given holonomy whenever a unitary representation with the same holonomy exists. We first reduce
the problem to the case of triples.
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Proposition 5.1. Suppose Theorem1 holds for�= 3.Then it holds for all�.

Proof. By induction. Assume Theorem 1 holds for some��3, and also for� = 3. We show that it also
holds for�+ 1. LetA1, . . . , A�+1 be unitary matrices satisfyingA1 · · ·A�+1= I with given spectra. By
induction, wemay find LagrangiansL1, . . . , L�−1 such that spec(Ai)=spec(�Li−1�Li

), i=1, . . . , �−1,
and spec(A�A�+1)=spec(�L�−1�L0), whereL0 is as in Section 3.1.Write:B1B2B3=I , whereB1 ∼ A−1�+1,
B2 ∼ A−1� , andB3 = �L�−1�L0. Using the result for� = 3 we may find LagrangiansL′, L′′ such that
B1 ∼ �L0�L′ , B2 ∼ �L′�L′′ , andB3 ∼ �L′′�L0.By Lemma 3.3, both�L�−1�L0 and�L′′�L0 are conjugate
by elements inO(n) to diagonal matrices. Since they furthermore have the same spectrum, it follows
from Proposition 3.2 that there is someg ∈ O(n) with gL′′ =L�−1. SetL�= gL′. ThenA� ∼ �L�−1�L�

,
andA�+1 ∼ �L�

�L0, and the result follows. �

By Proposition 5.1, it suffices to proveTheorem 1 for triples of Lagrangians. For the rest of this section,
we consider the problem of specifying three conjugacy classes. To simplify notation, we will omit the
subscript “�= 3”, and write� for �3, andUI

∗
(n) for U

∗
I,3(n), for example.

Definition 5.1. A reducible representation� : � → U(n1) × · · · × U(nk) ↪→ U(n),
∑k

i=1ni = n,
will be calledrelatively irreduciblewith respect toU(n1) × · · · × U(nk) if the induced representations
�i : � → U(ni) are irreducible for eachi = 1, . . . , k.

Our goal is to show thatL
∗
I (n)=U

∗
I (n), for all I andn. Using the stratification ofP

∗
I (n) described in

Section 2.1, the argument proceeds by induction on the four parameters available:

• Fix the rankn. We assume that we have shownLI (ñ,m, z)=UI (ñ,m, z) for all ñ < n and all(m, z).
The result forU(1) orU(2) representations holds, as has already been mentioned.

• Next, fix amultiplicity structurem.Assumewe have proven thatLI (ñ, p, z)=UI (ñ, p, z) for all p<m
and allz. We may clearly do this, since a partition giving multiplicityn for eachscorresponds toU(1)
representations.

• Fix a subsetz ⊂ {1,2,3} and assume thatLI (n,m, z̃)=UI (n,m, z̃) for all z� z̃. We will justify this
assumption below.

• Finally, the last part of the inductive scheme is to assume thatLI (n, m̄, z̄)=UI (n, m̄, z̄) for all I < I ,
and allm̄ andz̄. Notice thatI = 0 involves only the trivial representation.

If the stratumPI (n,m, z) is degenerate, then eitherUI (n,m, z) = ∅, in which case there is nothing to
prove, or each�with �(�) ∈ UI (n,m, z) is reducible by Proposition 4.2. Hence, by induction on the rank
n,LI (n,m, z)=UI (n,m, z) if PI (n,m, z) is degenerate. Thus, we assume thatPI (n,m, z) is nondegen-
erate. IfLI (n,m, z) �= UI (n,m, z) then there is a connected component� of UI (n,m, z)\LI (n,m, z)

which by Corollary 4.1 is a union of chambers. By Remark 2.1 (1),�� consists of a union of convex sub-
sets of affine planes. By Proposition 4.3, it follows that any� ∈ L Hom(�, U(n)) for which�(�) ∈ �� is

reducible. Finally, we claim that��∩ ◦
UI (n,m, z) is unbounded. To see this, choose� ∈ ��∩ ◦

UI (n,m, z)

contained in a cell of minimal dimension. Then� is relatively irreducible with respect to some reduction
U(n1)× · · · ×U(nk) (see Definition 5.1). Among the induced representations� → U(nj ) there mustbe

one, say�j , that is nontrivial, since the total index is positive. Hence,�(�j ) ∈
◦
UIj (nj , jm, zj ) for some
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induced multiplicity structure. Since
◦
UIj (nj , jm, zj ) is positive dimensional, the claim follows from this

fact.
From the discussion above and the description of the stratification and wall structure in Sections 2.1

and 2.2 we see that there are four (not necessarily exclusive) possibilities:

(1) �� intersects an outer wall inPI (n,m, z);
(2) �� intersects a stratumPI (n, p, z), p<m;
(3) �� intersects a stratumPI (n, p, z̃), p�m, z� z̃;
(4) �� intersects a stratumPI (n, p̄, z̄), for someI < I , z ⊂ z̄.

In each case, our inductive hypothesis assumes the result for the lower dimensional stratum, and we will
use this below to derive a contradiction. Here we remark that possibility (3) does not occur ifz={1,2,3}.
The derivation of a contradiction for this case therefore justifies the inductive hypothesis onz. The
structure of the argument deriving a contradiction is actually identical for each of the four possibilities
above,mutatis mutandis. We will give a detailed account of how this works in case (1), the modifications
necessary for the other cases being straightforward.
Consider then the case where�� intersects the outer wallsWI (n,m, z) at a point inPI (n,m, z).

To simplify notation, for the following discussion we setUI = UI (n,m, z), WI =WI (n,m, z), PI =
PI (n,m, z), and�I = �3

I (n,m, z). Also, let ls be the lengths of the partitionsms , s = 1,2,3. The
intersectionH = ��∩WI is a union of convex subsets of intersections of affine planes corresponding to
reductions of Lagrangian representations. We claim thatH must have positive codimension inWI . For
if not, we could find an outer wallWand pointa ∈ �� ∩W such thata /∈W ′ for any outeror innerwall
W ′. In particular, ifN is a sufficiently small neighborhood ofa, thenN ∩ ◦

UI =N ∩ �. By the induction
hypothesis, we may find (a reducible)� ∈ LI such that�(�)= a. Now any Lagrangian may be perturbed
slightly to give an irreducible Lagrangian representation�̃. It follows from Proposition 2.1 (1) that for

sufficiently small perturbations,�(�̃) ∈ N ∩ ◦
UI ⊂ �; contradiction.

Hence, we may assumeH has positive codimension. To illustrate the basic idea of the proof, suppose
first thatH has codimension one insideWI , so thatH locally disconnectsWI . We choosea ∈ H with
minimal valency with respect to the outer wall structure alongH. By this we mean that there are outer
wallsW1, . . . ,Wp meeting ata, andp�1 is theminimal number of such intersections among all points in
H.With this choice, and using the convexity ofUI , we see that the numberpof outer walls meeting ata is
1 or 2. Let us first assume thatp=1, and letWdenote the outer wall in question. Choose a neighborhood
U of a in the wallW such thatH ∩ U is a cell. SinceW is the only outer wall ata, we may also assume
that the neighborhoodU is contained inUI . LetN be a neighborhood ofa in PI such that the following
hold:

(1) U =N ∩W ;
(2) N\W consists precisely of two componentsN+,N−;
(3) N− ∩UI = ∅ andN+ ⊂ UI is homomorphic to a ball;
(4) N+\� has the topology ofU\H .

Choose a point� ∈ �−1(W) as follows:W corresponds to a reductionU(k) × U(n − k). We may
find a point�, �(�) = a, such that� is relatively irreducible with respect toU(k) × U(n − k). By
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W

H

∆

Fig. 1. IntersectionH of a chamber� with an outer wallW.

Proposition 4.3, we may assume that�I is a manifold near�. With this understood, let̃B ⊂ �I be a
ball about� such that�(B̃) ∩W ⊂ U . By our choice of� it follows, again by Proposition 4.3, that�(B̃)

intersectsbothcomponents ofU\H . By Proposition 4.4,̃B ∩�irr .
I is connected; hence, so is�(B̃ ∩�irr .

I ).
On the other hand, by the previous remark,�(B̃ ∩ �irr .

I ) ⊂ N+\� must intersect both components of
N+\�. This contradicts the connectedness of�(B̃ ∩ �irr .

I ) (seeFig. 1).
The casep=2 requires only a small modification of the above argument: LetW1 andW2 be outer walls

meeting alongHata.Wechoose the setU ⊂ W1∪W2 to consist of twopieces:U1=U∩W1 ⊂ W1∩UI (n),
andU2=U ∩W2 ⊂ W2∩UI (n). Sincea is at the intersection of precisely two outer walls, it corresponds
to a reduction of the formU(n1)× U(n2)× U(n3); the wallW1 corresponds to aU(n1+ n2)× U(n3)

reduction, say, and the wallW1 corresponds to aU(n1)×U(n2+n3) reduction. Now since deformations
along the wallW1 can only take values on one side ofW2, and vice versa, it follows that the image by� of
a neighborhood of any�, �(�)=a, intersectsbothcomponents ofU\H . In the choice of the neighborhood
Nwe modify the first two criteria so that

1’. U =N ∩ (W1 ∪W2) ∩UI (n);
2’. N\(W1 ∪W2) ∩UI (n) consists precisely of two componentsN+,N−,

and keep items (3) and (4) as above. The rest of the argument then proceeds exactly as before.
Next, let us consider the case whereH has higher codimensiond, d�2, inWI (n). If we again choose

a ∈ H with minimal valency with respect to the outer wall structure alongH, then we see that at most
d + 1 outer walls meet ata. As before, we first consider the case where there is just one outer wallW.
Choose a neighborhoodU of a inWas above. We also chooseN satisfying conditions (1–4) above. Let
D ⊂ U be a cell inU of dimension equal to the codimensiond of H inW and intersectingH precisely
in a. Hence, the boundary�D is the link ofH in W. We regardD as the image of a continuous map,
f : Bd −→ U . We may further assume thatf = � ◦ f̃ for a mapf̃ : Bd −→ �I , taking the origin to�.
Indeed, choosing a relatively irreducible� and using Proposition 4.3,� : �−1(W)∩�I → W is a fibration
in a neighborhood of� and�(�)= a. Hence, we may definẽf by taking a section of this fibration.

Claim. dim H �
∑

ls − n− |z|.
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Proof. Assume that� is relatively irreducible with respect to a reductionU(n1) × · · · × U(nk). Then
restricted to representations near� which are relatively irreducible of this type, the map� is locally
surjective ontoPI1(n1)× · · · ×PIk (nk) (cf. Proposition 4.2). Assume first that|z| �= 3. Then allIj >0.
In particular,

dim(PI1(n1)× · · · ×PIk (nk))=
k∑

j=1
(3nj − 1)= 3n− k.

Sincels is the number of distinct eigenvalues of�(�s), it follows that

dim H = 3n− k −
3∑

s=1
(n− ls)− |z| =

3∑
s=1

ls − k − |z|�
3∑

s=1
ls − n− |z|.

Now suppose thatI1= · · · = Iq = 0 for some 1�q < k, andIj �= 0 for j = q + 1, . . . , k. Since we are
assuming�(�) ∈ PI (n,m, z), this can only happen ifz= {1,2,3}, i.e. |z| = 3. Also,n1= · · · = nq = 1.
It follows that

dim(PI1(n1)× · · · ×PIk (nk))= dim(PIq+1(nq+1)× · · · ×PIk (nk))

=
k−q∑
j=1

(3nq+j − 1)= 3(n− q)− (k − q).

Now for eachs=1,2,3, eitherq=ms
1, inwhich case there are preciselyls−1 distinct nonzero eigenvalues

among the remainingn− q; or, q <ms
1, in which case there arels distinct eigenvalues, but one of them

is zero. In both cases, this imposes:n− q − (ls − 1) conditions on the eigenvalues. Hence, we have

dim H = 3(n− q)− (k − q)−
3∑

s=1
(n− q − (ls − 1))=

3∑
s=1

ls − (k − q)− 3.

Sincek − q�n− 1, and|z| = 3, the claim follows in this case as well.�

Nowd=dimW−dimH �
∑3

s=1 ls−2−|z|−(
∑3

s=1 ls−n−|z|)=n−2. Notice that this computation
is still valid even if

∑3
s=1 ls −n−|z|�0. By Proposition 4.4,�red.

I has codimension at least:n>n−2 in
�I . Hence, we may find a perturbed mapf̃� : Bd → �irr .

I . For sufficiently small perturbations we clearly
may assume thatf�= � ◦ f̃� has image inN. It follows that in factf� : Bd → N+\�. NowN+\� has the
topology ofU\H , and under this equivalencef�(�B

d) is the link ofN ∩ �. The continuous extension of
f� toBd is therefore a contradiction.
When the numberp of outer walls meeting ata is greater than one, the configuration of outer walls at

a forms a “corner” inWI (seeFig. 2). As in the casep= 2 above, we want to choose the setU to mimic
this configuration. The technical result we will require is the following:

Lemma 5.1. Suppose that� ∈ �I is such that�(�) lies in the intersectionW1 ∩ · · · ∩ Wp of p dis-
tinct outer walls, where p is the minimal such number, and that� is relatively irreducible with respect
to the reduction corresponding toW1 ∩ · · · ∩ Wp. Then for any small neighborhood� ⊂ �I of �
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Fig. 2. IntersectionH of a chamber� with three outer walls.

there is a continuous map̃f : Bp−1→ � satisfying the following:

(1) f̃ (0)= �;
(2) � ◦ f̃ (�Bp−1) ⊂ W1 ∪ · · · ∪Wp;
(3) � ◦ f̃ (�Bp−1) ∩W1 ∩ · · · ∩Wp = ∅.
Moreover, f̃ may be chosen to vary continuously with� satisfying the hypothesis.

Given the lemma, the rest of the argument proceeds as in the previous paragraph. Indeed, choosea ∈ H

with minimal valency with respect to the outer wall structure alongH ⊂ W1 ∩ · · · ∩Wp, and choose a
neighborhoodN of a such thatN\(W1∪ · · · ∪Wp)∩UI consists precisely of two componentsN+,N−,
and which also satisfies items (3) and (4) above. Let�, �(�) = a, be relatively irreducible, and choose
a neighborhood� of � such that�(�) ⊂ N . Choose a continuous map̃g : Bd+1−p → � such that
� ◦ g̃ : Bd+1−p → W1∩ · · · ∩Wp is transverse toH ata. As before, we can do this because� is relatively
irreducible. Now use Lemma 5.1 to extendg̃ to a continuous map:̃f : Bd % Bd+1−p × Bp−1→ �. By
the construction, we can easily arrange that

f = � ◦ f̃ (�Bd+1−p × {y}) ∩H = ∅, (22)

for all y ∈ Bp−1. By Lemma 5.1 (3) we also have

f ({x} × �Bp−1) ∩W1 ∩ · · · ∩Wp = ∅, (23)

for all x ∈ Bd+1−p. It follows from (22) and (23) thatf : Sd−1 → W1 ∪ · · · ∪ Wp is a link ofH in
W1∪ · · · ∪Wp. We may now perturb the map̃f as above so thatf�(S

d−1) ⊂ N+\� is a link ofN+ ∩ �.
The extensionf�(B

d) ⊂ N+\� gives a contradiction as before.

Proof of Lemma 5.1. Suppose� is of typeU(n1) × · · · × U(np) × U(np+1), where each wallWi

corresponds to a reductionU(n)→ U(ni)×U(n− ni), i = 1, . . . , p. Let�= (�1, . . . , �p, �p+1) be the
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irreducible factors. Notice that the assumption ofminimal valency ofa implies thatnp+1=n−∑p
i=1ni �=

0. Let e1 · · · ep be a(p − 1)-simplex inRp−1 with the origine0 as barycenter. For eachi, we may find
a pathg̃′i(t) of Lagrangian representations intoU(np+1 + ni) such thatg̃′i(0) = (�i , �0) and g̃

′
i(t) is

irreducible fort �= 0. Keeping the other factors fixed, these define paths

g̃i : [0,1] −→ L Hom(�, U(n1)× · · · × Û (ni)× · · · × U(np)× U(np+1+ ni)),

wherêmeans that factor is deleted. Combining these paths defines a continuous mapf̃ : ∪pi=1 e0ei →
�. Suppose inductively that we have definedf̃ on all simplices of the formei1 · · · eik , 2�k <p − 1,
1�i1< · · ·< ik. For each such simplex, let{j1, . . . , jp−k} be the complimentary set to{i1, . . . , ik} in
{1, . . . , p}. We will assumef̃ has been defined such that the following hold:

(1) � ◦ f̃ (ei1 · · · eik ) ⊂ Wj1 ∩ · · · ∩Wjp−k ;

(2) For eachx ∈ ei1 · · · eik , f̃ (x) is relatively irreducible with respect to the decompositionU(nj1) ×
U(njp−k )× U(n−∑k

�=1nj�);

(3) � ◦ f̃ (ei1 · · · eik ) ∩W1 ∩ · · · ∩Wp = ∅.
Wenowextendf̃ to a simplexof the formei1 · · · eik+1 as follows.Byassumption (1), for the complimentary
set of indices{j1, . . . , jp−k−1} we have� ◦ f (�(ei1 · · · eik+1)) ⊂ Wj1 ∩ · · · ∩Wjp−k−1. Assuming� has

been chosen sufficiently small so that� ∩ �−1(Wj1 ∩ · · · ∩Wjp−k−1) is contractible, we may extend̃f
to a mapei1 · · · eik+1 → Wj1 ∩ · · · ∩Wjp−k−1. Applying the same codimension argument we have used
several times already, we can further assume that this extended map satisfies conditions (2) and (3) as
well. Continuing in this way, we have defined̃f on the boundary ofe1 · · · ep. Recall thatf is also defined
on the one simplicese0ei , i = 1, . . . , p. Again using contractibility of�, we extendf̃ inductively and
arbitrarily to simplices of the forme0ei1 · · · eik , k = 1, . . . , p. This completes the definition of̃f . �

6. Examples

In this last section, we illustrate some of the ideas in the paper by explicity giving the wall structure
for the cases:�= 3,n= 2,3. For convenience, we will only consider distinct eigenvalues different from
unity. The case ofU(2) representations was first proven[11], and more generally[4]. The inequalities
were later derived from spherical triangles in[6].
Let us first introduce some useful notation. For integersis , 1�is �n, s=1, . . . , �, define the collection

of subsets as in Section 2.2℘(1)= (℘s
(1)),℘

s
(1)={is}. Fora= (�sj ) ∈ A�(n), we will use the notation (cf.

(3))

[i1, . . . , is]a = I (a, ℘(1))=
�∑

s=1
�sis .

By a permutation of[i1, . . . , is]a, we mean a quantity of the form:[i
(1), . . . , i
(s)]a, for some
 in the
group of permutations of{1, . . . , �}. With this understood, we may write theU(2) inequalities as
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Theorem 6.1 (cf. Biswas[4] , Falbel et al. [6] ). There exist representations� : �3 → U(2) with
a= �(�) ∈ UI,3(2), if and only if

• I = 2,and: [2,1,1]a�1,plus all permutations;
• I = 3,and: [2,2,1]a�2�[2,2,2]a, plus all permutations; or,
• I = 4,and: [2,1,1]a�2,plus all permutations;

The bounds on the index come from Proposition 2.2. Notice that for each index there are no inner
walls. Indeed, any equality of the form:[i1, i2, i3]a =K implies

I = [i1, i2, i3] + [ī1, ī2, ī3] =K + [ī1, ī2, ī3]�K + 1,

whereīs = {1,2}\{is}. Now if I = 2, for example, thenK = 1, and it is easy to see that the outer walls
are the only possible solutions for distinct nonzero eigenvalues.
We have used a duality in the wall structure. In general, if℘(k) = (℘s

(k)) is a collection of subsets of
{1, . . . , n} of cardinalityk, then let℘∗(k) denote the collection of subsets of cardinalityn− k defined by
(℘∗(k))

s=(℘s
(k))

c. It follows thatI (a, ℘(k))+I (a, ℘∗(k))=I (a). So an inequality of the formI (a, ℘(k))�K

may be writtenI (a, ℘∗(k))�I (a) − K. In particular, this means that forn = 3 we may express all the
inequalities in terms of the[i1, . . . , i�]a’s.
Theorem 6.2. There exist representations� : �3→ U(3) with a= �(�) ∈ UI,3(3), if and only if

• I = 3,and

[3,1,1]a, [2,2,1]a�1�[3,3,1]a, [3,2,2]a,
2�[3,3,2]a,

plus all permutations;
• I = 4,and

[2,1,1]a�1�[3,2,1]a, [2,2,2]a,
[3,3,1]a, [3,2,2]a�2�[3,3,3]a,

plus all permutations;
• I = 5,and

[1,1,1]a�1�[2,2,1]a, [3,1,1]a,
[3,2,1]a, [2,2,2]a�2�[3,3,2]a,

plus all permutations; or,
• I = 6,and

1�[2,1,1]a
[3,1,1]a, [2,2,1]a�2�[3,3,1]a, [3,2,2]a

plus all permutations.

The result is proven using the procedure given in[5]. Since this is straightforward, we will not give
the details. It turns out that there are no inner walls for this case either, though this is certainly tedious to
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check by hand. For example, take[1,2,3]a= 1 for theI = 3 case. This is compatible with the first set of
inequalities. However, since the total index is 3, we have[3,3,2]a + [2,1,1]a = 2, and this violates the
inequality[3,3,2]a�2.
Indeed, by combiningPropositions 2.1 (3) and 4.2, and using the connectivity of themoduli of parabolic

bundles, one can show that the smallestU(n) for which inner walls can appear isn = 5 (still assuming
�= 3).
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