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Abstract

This paper uses Morse-theoretic techniques to computejthiesei-
ant Betti numbers of the space of semistable rank two degrediiggs
bundles over a compact Riemann surface, a method in the epiri
Atiyah and Bott’s original approach for semistable holoptoc bun-
dles. This leads to a natural proof that the hyperkahler Kinmap is
surjective for the non-fixed determinant case.
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2 DASKALOPOULOS, WEITSMAN, WENTWORTH & WILKIN

1. Introduction

The moduli space of semistable holomorphic bundles ovengect Rie-
mann surface is a well-studied object in algebraic geomdtng seminal pa-
per of Atiyah and Bott introduced a new method for computimg ¢cohomol-
ogy of this space: The equivariant Morse theory of the YarilisNunctional.
This and subsequent work provides substantial informatioits cohomology
ring. Also of interest is thenoduli space of semistable Higgs bundldhe
purpose of this paper is to develop an equivariant Morseryhew the (singu-
lar) space of Higgs bundles in order to carry out the Atiyatt Bott program
for the case of ranR.

The precise setup is as follows. LEthe a complex Hermitian vector bun-
dle of rankn and degreelp over a compact Riemann surfagé of genusg.
Let.A(2,dg) denote the space of Hermitian connectionghand.Ay(2, dg)
the space of traceless Hermitian connections (which carddatified with
the space of holomorphic structures éhwithout or with a fixed determi-
nant bundle). We usEnd(F) to denote the bundle of endomorphismsif
Endy(E) the subbundle of trace-free endomorphisms, &) C End(E)
(resp.ado(F) C Endy(E)) the subbundle of endomorphisms that are skew
adjoint with respect to the Hermitian metric.

Let

B(2,dg) = {(A,®) € A2,dg) x Q°(End(E) ® K) : d'}® = 0}
be the space dfliggs bundleof degreeir and rankn over M and let
Bo(2,dg) = {(A,®) € Ag(2,dg) x Q°(Endy(F) @ K) : d'4® = 0}

denote the space of Higgs bundles witted determinantLet G (resp. G©)
denote the gauge group &fwith structure grouf/(2) (resp.GL(2)) for the
non-fixed determinant case, a@@l(resp.gg) the gauge groups with structure
groupSU (2) (resp.SL(2)) for the fixed determinant case. The action of these
groups on the space of Higgs bundles is given by
1) g-(A,@) = (¢ ' A"g+g" A'(g") " + 97 d"g— (d'g")(g") " g7 @g),
whereA” and A’ denote the€0, 1) and(1, 0) parts of the connection form.

The cotangent bundler : 7% A(2,dr) — A(2, dg) is naturally

T*A2,dp) ~ A2,dg) x Q°(End(E) ® K)

and this gives rise to a hyperkahler structure preservetidwadction ofG (cf.
[9]). The moment maps for this action are

p = Fa + [®, 97
po = —i (d'y® + d/y )
pz = —d'y® + dy &
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In the sequel, we refer toc = po + ip3 = —2id’y @ as thecomplex moment
map The hyperkéhler quotiert* A(2, dg) /G is the space

A2.dp) 1G = py () N pz ' (0) N5 (0)/G,

where« is a constant multiple of the identity (depending @) chosen so
thatu; = a minimizes theYang-Mills-Higgsfunctional

YMH(A, @) = ||Fa + [@, ®*]|?

In the following B or B, (resp..A or Agy) will often be used to denote the
space of Higgs bundles (resp. connections) with non-fixefixed determi-
nant, and the extra notation will be omitted if the meaningléar from the
context. LetB! (resp. B%%) denote the space aftable (resp. semistable
Higgs bundles, those for which evebyinvariant holomorphic subbundig c
E satisfies

deg(F) _ deg(E) deg(F) _ deg(E)
rank(F) < rank(FE) <reSp'rank(F) = rank(E)>

Similarly for B§* andBy**. Let (u,v) = [}, tr{uxv} be theL? inner product
onQ°(ad(E)), with associated norriu||* = (u, u). The functionalY MH is
defined onB andBy, andyu ! (a) N u(gl(o) is the subset of Higgs bundles that
minimize YMH.

Theorems of Hitching] and Simpson13] identify the hyperkahler quotient

{Bumin = 17 (@) N g (0)} /G

with the moduli space of semistable Higgs bundtésankn, degreedy and
non-fixed determinantjp 1995 (2, dE = B*¢ //G©, and similarly in the fixed
determinant casa/lH’ggs 2,dp) = //go Since—2id'\® = pg + ips,
this hyperkéahler quotient can be V|ewed as a symplecticiepiodf the singu-
lar space of Higgs bundles

T*AJG = (BN i (@) /G

This paper uses the equivariant Morse theory of the funatign/H on the
spacel5 and 3y to study the topology of the moduli space of rakldiggs
bundles for both fixed and non-fixed determinant and bothesegero and
odd degree. The main results are the following.

Theorem 1.1. For the degree zero case, we have the following formulae for
the equivariant Poincaré polynomials. For the fixed deteant case,

PY(Bg*(2,0)) =P,(BG) — it%w

e 1—1t2
@ o
+ Z t2,udPt(S2g—2d—2M)’
d=1
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and for the non fixed determinant case,

(L+1t)%
g 2
Pf(B*(2,0)) =P,(BG) — Zt a T
€)
g—1 2
1+1¢)%9
n Z tz“dPt(Szg_zd_zM)( 14; t)2 ’
d=1

whereuy = g+ 2d — 1 and S™ )M denotes the29-fold cover of the symmetric
productS™M as described ifi9, Sect. 7]

Corollary 1.2. The equivariant Poincaré polynomial of the space of selbista
Higgs bundles of rank and degree zero with fixed determinant over a compact
Riemann surfacé/ of genusy is given by

1 t3 29 _ 14+t 2gt2g+2
Ptg(838(27 ) :( * (1) _ tz)((lt t)4)
ag—a, PR+ DM (1)t
a T2 a1+

(14 t)29¢49=1 [ 2g 1 1
——+(3-2
- \iz1 g1 2t6-2
1
+ 5(229 DT (L + )P (1 —1)27% - 2)

and in the non-fixed determinant case,

(1 _(12—)1_ 829— t4) (1 +1%)% — (14 t)2912912)

(1 + 75)25] g t29+2(1 + t)2g N (1 _ t)29t4g_4
12 A—2)(1 ) " 41+
(1 + t)t9¢t9—1 < 2g N 1 1 >

— 2+ (3-2
sa-mr \ix1 o1 2768-%)

PP (B*(2,0)) =

_l’_

The odd degree case was studied by HitcBjnuging the Morse theory of
the functional||®||* which appears as (twice) the moment map associated to
the S* actione’ - (A, ®) = (A, ¢/'®) on the moduli spacé 1y 99*(2,1). The
methods developed in this paper give a new proof of Hitchiessllt.

Theorem 1.3(cf. [9, Sect. 7])

> L (112 .
(MHZggS( )) _ Pt(Bg) N Z t2ud ( 1—’; t)2 +Z t2udPt(S2g—2d—lM)
d=1 d=1
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where S" M denotes the229-fold cover of the symmetric produét*M as
described i{9, Sect. 7] In the non-fixed determinant case,

Py (MT995(2 1)) = (1 — t*) P(BG) — Zt% (1+ ) 1

g—l
+ ) P (SPTRIM x Jg(M)
d=1

wherepg = g + 2d — 2.

As mentioned above, the moduli spab¢!/’'99¢ is the hyperkahler quotient
of T* A by the action oG, with associatethyperk&hler Kirwan map

ki Hy(A x Q°(K @ End(E))) = Hg (7 (0) 1 g (0))

induced by the inclusiop; (0) N pa'(0) — A x Q°(K ® End(E)). The
Morse theory techniques used to prove Theorems 1.2 and do3edd to a
natural proof of the following

Theorem 1.4. The hyperkahler Kirwan map is surjective for the space of
rank 2 Higgs bundles of non-fixed determinant, for both degree aadbfor
odd degree.

For the case of odd degree, surjectivity was previously shopwHausel and
ThaddeusT] using different methods. The result proved here applieseds
to the heretofore unknown degree zero case, and the prdoivihaturally
from the Morse theory approach used in this paper. In the filetdrminant
case, Hitchin’s calculation of, (M 9?%(2, 1)) for a compact genussurface
shows thabs (M, 99%(2,1)) = 34, however for genus, bs(BG5U®?)) = 4,
hence surjectivity cannot hold in this case.

The most important technical ingredient of this paper isrdsult of [L4]
that the gradient flow o¥ MH on the space8 and 5, converges to a critical
point that corresponds to the graded object of the Hardeagiahan-Seshadri
filtration of the initial conditions to the gradient flow. THhenctional YMH
then provides a gauge group equivariant stratification @ffaces, 5y, and
there is a well-defined deformation retraction of each @itnabnto an associ-
ated set of critical points. This convergence result is cieffit to develop a
Morse-type theory on the singular spad®andB, and to compute the coho-
mology of the semistable stratun¥$® andB;;°. It is therefore a consequence
of our methods that the lack of Kirwan surjectivity in the fixdeterminant
case immotdue to analytic problems, as one might initially suspect.

More precisely, the results o14] show that this Morse stratification is the
same as the stratification by the type of the Harder-Naraminiittration (cf.
[7]). In the case whereank(E) = 2 the strata are enumerated as follows.
Given an unstable Higgs pait, ®), there exists a destabilizing-invariant
line bundle. ¢ E. The quotient£'/L is a line bundle (and hence stable),
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6 DASKALOPOULOS, WEITSMAN, WENTWORTH & WILKIN

therefore the Harder-Narasimhan filtratiois- . C E. In this case the type
of the Harder-Narasimhan filtration is determined by thedetd = deg L,
and so
B=8B*u |J By
dez

d>1dg
whereB5, is the set of Higgs pairs with Harder-Narasimhan tylpd-or d >
dg /2 we define the spac¥,; to be the union

(4) Xq=B*u |J B
ez
d>>3dp
and by convention we seX |, o) = B*. Then{Xy}3® , , is the Harder-
Narasimhan and YMH-Morse stratification.

This approach fopM 7995 is a special case of a more general method origi-
nally outlined by Kirwan, where the topology of a hyperké&tdeotient) /G
can be studied using a two-step process. First, the cohgyl@lbu(gl(o) is
calculated using the Morse theory fpic||? on M associated to the complex
moment mapuc = po + ius , and then the cohomology dff j/G can be
obtained by studying the Ké&hler quotientm@l(o) by the groupG with mo-
ment mapy;. In the case o = A x QY(K ® End(E)) we have that
HE(A x Q°(K ® End(E))) = Hj(B). Therefore, in the Higgs bundle case
studied here, it only remains to study the Morse theory BfH = |11 |? on
B and B, respectively.

The formula obtained here for the equivariant cohomologgefminimum
has the form

o) g—1
(5) PF(B*)=Pf(B)—> t*PF(Bs)+ > t*PI(B).,Bj.)
d=0 d=1

whereB; denotes thel!" stratum of the functionaV MH, 1.4 is the rank of a
certain bundle over thé"” critical setr, (see (24)) representing a subset of
the negative eigenspace of the Hessial bfH atr,, andPY (B, _, B’ ) are
correction termsarising from the fact that that the Morse index is not well-
defined on the firsy — 1 critical sets. Indeed, as shown ih4], the Morse
index at each critical point of MH can jump from point to point within the
same component of the critical set, and so standard Morseytlvannot be
useda priori. If the spacel3 = pz'(0) were smooth then the Morse index
would be well-defined and the Morse function equivariantyfect (as is the
case for the symplectic reduction consideredlihdr [10]) and the formula
for the cohomology of\/ /G would only consist of the first two terms in (5).
However, this paper shows that it is possible to constrietMbrse theory by
hand, using the commutative diagram (29) in Section 3, amapcding the
cohomology groups of the stratification at each stage.
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MORSE THEORY AND HYPERKAHLER KIRWAN SURJECTIVITY FOR HIGGBUNDLES

In order to explain how to define the indgy in our case we proceed as
follows: Regarding4d x Q°(K ® End(E)) as the cotangent bundiE* A,
andB = ' (0) as a subspace of this bundle, on a critical se¥dfH the
solutions of the negative eigenvalue equation of the Hessia MH = ||, ||
split naturally into two components; one correspondingh® index of the
restricted functional|p1|A||2, and one along the direction of the cotangent
fibers. The dimension of the first component is well-defineer @il points of
the critical set (this corresponds fq in the formula above), and the Atiyah-
Bott lemma can be applied to the negative normal bundle dbfieng these
directions. The dimension of the second component is ndtdedined over
all points of the critical set, the methods used here to déhlthis show that
this leads to extra terms in the Poincaré polynomiaB¢f corresponding to
PY(B,_, B! ). More or less this method should work for any hyperkahler
quotient of a cotangent bundle.

For the non-fixed determinant case, the long exact sequdraied at
each step of the Morse stratification splits into short exacfuences, thus
providing a simple proof of the surjectivity of the hyperk&hKirwan map.
This is done by careful analysis of the correction terms,ifisdn a way one
of the key observations of this paper (cf. Section 4.1). Asiineed above
this fails in the fixed determinant case.

This paper is organized as follows. Section 2 describesrifigitesimal
topology of the stratification arising from the Yang-Miliiggs functional.
We define an appropriate linearization of the “normal buhtti¢he strata and
compute its equivariant conomology.

Section 3 is the heart of the paper and contains the detailseoMorse
theory used to calculate the cohomology of the moduli spadee first re-
sult proves the isomorphism in Proposition 3.1. This is tkeceanalogue of
Bott's Lemma B, p. 250] in the sense of Bott-Morse theory. The second main
result of the section is the commutative diagram (29) whielctdbes how
attaching the strata affects the topology of our space. Astioreed before
the main difference between Poincaré polynomials of hyfidee quotients
from Poincaré polynomials of symplectic quotients is thpegwance of the
rather mysterious correction terms in formula (5). In therse of the proof of
Proposition 3.1 we show how these terms correspond by excisithe fixed
points of theS! action on the moduli space of Higgs bundles. This in our
opinion provides an interesting link between our approauh Hitchin’s that
should be further explored.

Section 4.1 contains a detailed analysis of the exact sequigrived from
the Morse theory. We prove Kirwan surjectivity for any degia the non
fixed determinant case (cf. Theorem 4.1). This is achievedhowing that
the vertical exact sequence in diagram (29) splits indueirsplitting on the
horizontal sequence. The key to this are results of MacRbfi#l] on the
cohomology of the symmetric product of a curve. Next, weaddtrice the
fundamentall’y = H'(M, Z,) action on the equivariant cohomology which
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8 DASKALOPOULOS, WEITSMAN, WENTWORTH & WILKIN

played an important role in the original work of Harder-Nanahan, Atiyah-
Bott and Hitchin (cf. [, 9]). The action splits the exact sequences in diagram
(29) intoT's-invariant and noninvariant parts, and the main result isofém
4.13, which demonstrates Kirwan surjectivity holdsIgrinvariant part of the
cohomology.

Finally, Section 5 contains the computations of the eqiavarPoincaré
polynomials of3*¢ and55® stated above.

Acknowledgments.We are thankful to Megumi Harada, Nan-Kuo Ho and
Melissa Liu for pointing out an error in a previous versiorttué paper.

2. Local structure of the space of Higgs bundles

In this section we explain the Kuranishi model for Higgs desdcf. [2]
and [11, Ch. VII]) and derive the basic results needed for the Mdngety of
Section 3. For simplicity, we treat the case of non-fixed eigant, and the
results for fixed determinant are identicalitatis mutandi

2.1. The deformation complexWe begin with the deformation theory.
Infinitesimal deformations df4, ®) € B modulo equivalence are described
by the following elliptic complex, which we denote By, ¢).

(6)

D Cl

D
C?A,@) = Y(A,®) > C

(A4,®)

Q0(End(E)) —2 QO1(End(E)) & Q'0(End(E)) —2= Q%(End(E))

where
Dl(u) = (d:gu7 [(I)’u]) ) DQ(a7 SO) = d%ﬁ + [a’ (I)]
Here, D, is the linearization of the action of the complex gauge grons,
and D is the linearization of the conditiody® = 0. Note thatD;D; =
[d)®,u] =0if (A, ®) € B.
The hermitian metric gives adjoint operataty’, D3, and the spaces of
harmonic formsare given by

,HO(C(A@)) = ker Dl
HI(C(A@)) = ker D] Nker Do
H2(C(A’q>)) = ker D5
with harmonic projectionsl; : C{ , 4 — H'(C(a,a))-
We will be interested in the deformation complex along higtréical sets
of the Yang-Mills-Higgs functional . These are given by spliggs bundles
(A, @) = (A1 DAy, D1BD2) corresponding to a smooth splittiiy= L1 Lo

of E with deg I.; = d > deg Ly = dp — d. The set of all such critical points
is denoted byy; C B. We will often use the notatiolh = L; ® L3, and
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®, = 3(®; — ®,), and denote the components 6fid(E) ~ L; ® L} in

the complex byu;;, aij, ¢ij, w, = 3(u11 — us2), etc. DefineEnd(E)YT to

be the subbundle dind(E) consisting of endomorphisms that presefve
andEnd(E)°YT ¢ End(FE)Y" to be the subbundle of endomorphisms whose
component in the subbundind(L,) & End(L2) is zero. We say that

(a, ) € Q" (End(E)YT) @ Q1 (End(E)T)
is upper-triangular and
(a,¢) € Q¥ (End(E)°YT) @ Q' O(End(E) YT

is strictly upper-triangular Similarly, define thelower-triangular, strictly
lower-triangular, diagonal and off-diagonalendomorphisms, with the obvi-
ous notation. Since is diagonal, harmonic projection preserves components.
For example?—[l(C(A@)) consists of al(a, ) satisfying

(7) d"ii =0 (d")*ai; =0
(8) dhp12 +2Ppa12 =0 (d))*a12 + 2%(P,xp12) = 0
(9) 1219021 —2®Ppa9; =0 (d%)*am — 21(1%%(,021) =0

wherex is defined as inl1, eq. (2.8)].
The following construction will be important for the comptions in this
paper.

Definition 2.1. Letg : 7 — ny4 be the trivial bundle overn, with fiber
Q% (End(E)) ® Q"(End(E))
and definev; C T to be the subspace with projection map v, — ng,

where the fiber ovetA, ®) € nq is H'(C{g,). Note that in general the

dimension of the fiber may depend on the Higgs structure.
We also define the subsets

vy =vg \"d
I/&/ = {((A7 (I))v (CL, (10)) € Vd_ : H(a21) 7& 0}
where?# denotes the’)-harmonic projection.

2.2. Equivariant cohomology of the normal spaced\ote that there is a nat-
ural action ofG on the spaces introduced in Definition 2.1. In this section we
compute th&j-equivariant cohomology associated to the trigfe v/, andv/].

We first make the following

Definition 2.2. Let (A,®) € ng, E = L1 & Lo, andL = L; ® L3. Let
(a,¢) € QV(End(E)) ® Q1 (End(E)). Sincedeg L > 0, there is a unique
fo1 € Q°(L*) such thatas; = H(ag1) + d’y fo1. Define
(10)

T QY(End(E) Q" (End(E)) — HYO(L) : (a, ) — H(pa +2f21P,)

Setyo; = a1 + 2f21 Py, and letFy; be the unique section i(ﬂ(er(dfg)*)l C
Ql’l(L*) such thatqul = \If(a, (p) + (dig)*F21
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10 DASKALOPOULOS, WEITSMAN, WENTWORTH & WILKIN

Let
(11) Ty ={(a,¢) €vy : H(ag1) =0, ¥(a,p) # 0}
and sefuy = g — 1 + 2d — dg. We will prove the foIIowmg

Theorem 2.3. There are isomorphisms

(12) Hy(vy,vly) ~ H 2 (ng)
(13) HE (v, vl)) ~ HG*M(T)

With the notation above, eq. (9) becomes
(14) DAF21 + 27‘[(&21)@[, =0
(15)  Oafor + 4] far = (d4)" (25(P,7Fa1)) + 25(9,7 ¥ (a, ¢))
Given(H(az1), ¥(a, p)) € HOY(L*) HMO(L*), satisfyingH (H (a1 ) ®,) =
0, (14) uniquely determinegy;. Then (15) uniquely determines;. Note
that sincedeg . > 0, (4, 2 has no kernel. We
then reconstructa, ¢) € H'(CF{g) by settingas; = H(az1) + d’} for, and
Y21 = \I’(a, (,D) + (dg)*Fgl — 2f21(1)|,. Thus, we have shown

(16)
vy NG (A, <I>>
>~ { a21 )) S Ho’l(L*) D Hl’O(L*) . H(H(am)q)b) = 0}

Next, letn, o C nq be the subset of critical points whe#e= 0. Notice that
na,0 < 14 IS aG-equivariant deformation retraction under scalingy ®) —
(A, t®),for0 <t < 1. Let

Vgo = Vg N G *(Ma0) » Vo= Vg G *(Ma0) » Vg = Vg N G *(nao)
We have the following

Lemma 2.4. There is aG-equivariant retractionv, , — v, that preserves
the subspaces), andv/].

Proof. Given(A, ®) and(az, pa1) € QUL L*)@QYO(L*), let(for (@
be the unique solutions to (14) and (15). Notice thfat (0), F»1(0)) = (
Then an explicit retraction may be defined as follows

) Fo1(®))
0,0).
p:[0,1) xv, — v,
p(t, (A, @), (a,9)) = ((A,t®), H(aa1) + d} far (tP),
U(a, ) + (d4)" Fo1 (t®) — 2t fo1 (tP) D, )
It is easily verified thap satisfies the properties stated in the lemma. g.e.d.

Proof of Theoren2.3. First, note that by Riemann-Rockjm H%!(L*) =
1q- By Lemma 2.4, there a@-equivariant homotopy equivalences, ,, v ;) ~

(vg,vy), and(vy g, vy o) = (v, V). Also, sincenq o < nq is ag-equivariant
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deformation retractionf{;;(na) ~ Hg(nao). By (16), a similar statement
holds for

(17) Tao=TaN G " (n4,0)
Hence, it suffices to prove

(18) H§(vg g, Vi) = Hg " (140)
(19) HE (i, vi) = Hg ' (Tuy)

From (16) we have,
v, NG H(A,0) ~ H"N(L*) @ HY(L¥)
Then (18) follows from this and the Thom isomorphism thear&ext, let

Yi={(a,0) €vjy:¥(a,) =0}

Clearly,Y; is closed invj ;, and one observes that it is also closed]y.
Hence, by excision and the Thom isomorphism applied to tb;epmon to
Hl O(L*)

Hé(”&,o» Véz/,o) = HE(V&,O \ Y, Véll,o \Yy) =~ Hé_%d (Td,O)
This proves (19). g.e.d.

There is an important connection between the topology ospaeeT;; o
and the fixed points of th8'-action on the moduli space of semistable Higgs
bundles, and this will be used below. Recall frofq $ec. 7] that the non-
minimal critical point set of the functioft®||? on M99%(2, dr) has compo-
nentscy corresponding to equivalence classes of (stable) Higgs pai @),
whereA = A; & A, is a split connection oty = L1 & Ly with deg L1 =
d > deg Ly = dp — d and® # 0 is strictly lower triangular with respect to
the splitting. On the other hand, it follows from (9) and (1f7at

Tuo={((A,®=0), (a1 =0,921)) : A= A1 ® Ay, d4(p21) =0}
Taking into account gauge equivalence, we therefore olthaifollowing
Lemma 2.5. Let¢, be as above. For the non-fixed determinant case,
Hg(Tu0) = H"(ca) ® H*(BU(1))
and in the fixed determinant casi;(7y,0) = H*(ca)-

3. Morse Theory on the space of Higgs bundles

The purpose of this section is to derive the theoretical ltesunderpin-
ning the calculations in Section 5. This is done in a naturay,vwusing the
functional YMH as a Morse function on the singular spdge As a conse-
guence, we obtain a criterion for hyperkahler Kirwan suiyity in Corollary
3.5, which we show is satisfied for the non-fixed determinaisedn Section
4.1. The key steps in this process are (a) the proof of theagaiism (20),
which relates the topology of a neighborhood of the stratuthé topology of
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12 DASKALOPOULOS, WEITSMAN, WENTWORTH & WILKIN

the negative eigenspace of the Hessian on the critical ggr(aralization of
Bott’'s isomorphism3, p. 250] to the singular space of Higgs bundles), and (b)
the commutative diagram (29), which provides a way to meathe imper-
fections of the Morse functiolf MH caused by the singularities in the space
B.

The methods of this section are also valid for the ramlegreel case, and
in Section 5 they are used provide new computations of thetsesf [9] (fixed
determinant case) and][(non-fixed determinant case).
3.1. Relationship to Morse-Bott theory.Recall the spaces,, v/, and v
from Definition 2.1. This section is devoted to the proof of Bott isomor-
phism

Proposition 3.1. For d > dg/2, there is an isomorphism
(20) H§(Xa, Xg1) ~ Hg(vy,vy)

Let A, denote the stable manifold iA of the critical set), o of the Yang-
Mills functional (cf. [1, 5]). We also define

Xi=A"u |J A
dp/2<t<d
Let X7 = X4\ pr~!(Ay). By applying the five lemma to the exact sequences
for the triples(Xg4, X4_1, X)) and (v, , v/}, v]), it suffices to prove the two
isomorphisms
(21) HE(Xq, X)) ~ Hg (v ,vy)
(22) HE(Xqo1, X)) ~ Hg (v, vy) -
We begin with the first equality.

Proof of (21). By (12), the result of Atiyah-Bott]], and the fact that the pro-
jectionng — 14,0 has contractible fibers, it suffices to show

Hé(Xd7Xc/l/) = Hé(Xf’Xf—l)

Also, note that for > d/2, pr(B;) = A,. Indeed, the inclusiorb comes
from taking® = 0, and the inclusiornc follows from the fact that for any
extension of line bundles

0—L1 —FE—Ly—0

with deg L1 > deg Lo, 0 C L1 C FE is precisely the Harder-Narasimhan
filtration of E. With this understood, l1eC; = pr(B°*) N (Uy=q.A¢). Then
we claim that/C;, which is manifestly contained ipr(Xy), is in fact closed

in pr(Xy4). To see this, led; € K4, A; — A € pr(Xy). By definition,

A = pr(A, @) with either (A, ®) € B**, or (A, ®) € By, ¢ < d. Notice that
by semicontinuity, A € Uy~ 4.4,. Hence, the second possibility does not occur.
It must therefore be the case thatc pr(5°¢), and henced € K; also. Now,
sincekC; N Ay = 0 by definition, it follows that

Ka C pr(Xq) \ Aq = pr(Xq\ pr'(A4q)) = pr(X})
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Since the fibers of the map : X; — pr(X,) areG-equivariantly contractible
via scaling of the Higgs field, it follows from excision that

HE(Xa, Xg) =~ Hg(pr(Xa), pr(Xy)) ~ HG(pr(Xa) \ Ka, pr(Xg) \ Ka)
However,
pr(Xg) = pr(B*) U (UdE/2<Z§d pr(Be))

= A% U (Ugy j2<eAe N pr(B*)) U (Ugy, j2<e<aAr)

= A* UK U (Ugy 2<i<aAe)
Hence, since the union is disjointy(X,) \ K4 = X;'. Furthermore,

pr(X) \ Ka = pr(Xg) \ KqU Ag = X3\ Ag = X34,

This completes the proof. g.e.d.

Proof of (22). By the isomorphism (13) (see also Lemma 2.4), it suffices to
prove H;(Xq-1, Xjj) ~ HE(Ty40). From the proof of (21) we have

X = {B* U (Ugy 2<e<aBe)} \ pr " (Ag)

={B"\ Pr_l(Ad)} U (Uay, j2<r<d—18e)
whereas
Xa-1 =B U (Uq, 2<e<a-18¢)

SinceUy,, ja<r<a—1B¢ C X7} is closed inX,;_1, it follows from excision that

H§(Xg-1, X[) = HG(B*,B* \ pr*(Aq))

By the main result of14], the YMH-flow gives aG-equivariant deformation
retract toB,,;,. Hence,

H(E'(Xd—hXc/l/) ~ H(E'(Bmszmm \ pr_l(-Ad))'

Next, notice that the singularities &,,;,, correspond to strictly semistable
points and therefore there exists a neighborhdgdof pr=1(Ag) N By in
B,.in. consisting entirely of smooth points. Furthermogeacts onN; with
constant central transformations as stabilizers. Thexefny again applying
excision and passing to the quotient we obtain

HE(Xqo1,XY) =~ HENgNa\prt(Ag)
~ H*(Ng/G,(Ng\ pr~'(A4q))/G) @ H*(BU(1)).

Now according to Frankel and Hitchin (cfO,[ Sect. 7]) the latter equality
localizes the computation to thieth component, of the fixed point set for
the S'-action onB,,;,/G. Hence,

Hy(X g1, X)) ~ H*2(cy) @ H*(BU(1)).
The result follows by combining the above isomorphism withedrem 2.3
and Lemma 2.5. g.e.d.
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14 DASKALOPOULOS, WEITSMAN, WENTWORTH & WILKIN

3.2. Aframework for conomology computations.From Proposition 3.1, the
computation offf (v, , v;) in Theorem 2.3 leads to a computation of the equi-
variant cohomology of the space of radldiggs bundles, using the commu-
tative diagram (29). Recall the decomposition (4).

The inclusionX,; ; — X, induces a long exact sequence in equivariant
cohomology

(23) e — Hé(Xd,Xd_l) — Hé(Xd) — Hé(Xd_l) — e,

and the method of this section is to relate the cohomologyps/;(X ;) and
HE(Xq-1) by Hj (X4, Xq-1) and the maps in the corresponding long exact
sequence fofv, , v, v).

Let J;(M) denote the Jacobian of degrééne bundles over the Riemann

surfaceM, let S" M denote then!” symmetric product of\/, and letS™ M
denote the2?9 cover of S"M described in9, eq. (7.10)]. The critical sets
correspond tab-invariant holomorphic splitting = Ly & Lo, therefore
after dividing by the unitary gauge grogjpthe critical sets oy MH are

T*Jg(M) x T*Jq,—q(M) non-fixed determinant case;
T*Jq(M) fixed determinant case.

(24) ma= {

By combining this with Lemma 2.5 and the computation9hwe obtain

Lemma 3.2. In the non-fixed determinant case

(25) HE(ng) = H*(Jy(M) x J,(M)) ® H*(BU(1))®?
(26) HE(Ty) = H*(Jo(M)) ® H*(S"M) ® H*(BU(1)).

In the fixed determinant case

(27) Hg(na) = H*(Ja(M)) ® H*(BU(1))
(28) H(Ty) = H*(S™M).

The spacesv, , v, v;) form atriple, and the isomorphisid; (X g, Xq-1) =
HE(vy ,vy) from (20) implies the long exact sequence (abbtesg of this
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triple is related to the LES (23) in the following commutatigdiagram.
(29)

e Hé(Xdde—l) = ng Xd) — Hlé(Xd—l) -

where the two horizontal exact sequences are the LES of trse(p&;, X;—1)
and (v, , /) respectively. The vertical exact sequence in the diagratineis
LES of the triple(v;, v/}, v/]). The diagonal mag” is from the LES of the
pair (v, , 7). Applying the Atiyah-Bott lemma ([, Prop. 13.4]) gives us the
following lemma.

Lemma 3.3. The map- e : Hj(v;,v)) — HE(nq) is injective and there-
fore the mag” is injective, sinces® o ¢F = e.
From the horizontal LES of (29)

HE(Xq) | HE(Xa) o 41

im~* = ker o

im 3k ker vk
and also ) .
im 5’“ > Hg(Xd) = }{g (Xa)
ker Bk im ok
Therefore

dim ker o1 = dim Hg(Xd_l) — dim im g*
= dim Hg(Xd_l) — dim Hg(Xd) + dim im o*
Lemma 3.4. ker o C ker ¢*.

Proof. Lemma 3.3 impliest” is injective, and sincel* = ¢* o ¢*, then
ker af = ker ¢*. Using the isomorphism (20) to identify the spa¢&y( X4, Xq_1) =
H(vy ,v)), we see thaker o C ker of, which completes the proof. g.e.d.

PROOF COPY NOT FOR DISTRIBUTION



16 DASKALOPOULOS, WEITSMAN, WENTWORTH & WILKIN

Corollary 3.5. If \* is surjective for allk, thens* is surjective for allk.

Proof. If \* is surjective for allk, then¢* is injective for allk, and so
Lemma 3.4 impliesy”* is injective for allk. Therefore 8* is surjective for all
k. g.e.d.

In particular, we see that if for each stratukfy, we can show thad® is
surjective for allk, then the inclusion3*® < B induces a surjective map
kg« H5(B) — HE(B%°). The next section shows that this is indeed the case
for non-fixed determinant Higgs bundles.

4. Hyperkéahler Kirwan surjectivity

We now apply the results of Section 3 to the question of Kinsarnectiv-
ity for Higgs bundles. We establish surjectivity in the cat¢he non-fixed
determinant moduli space. In the fixed determinant casedivity fails, this
will be explained in more detail in Section 4.2, where weaddtrce an action
of 'y = H'(M,Zs) and prove surjectivity onto thE,-invariant equivariant
cohomology.

4.1. The non-fixed determinant casef-or simplicity of notation, throughout
this section letr = 29 — 2 + dp — 2d wheredg = deg(FE) andd is the index
of the stratuniB,; as defined in Section 3. In this section we prove

Theorem 4.1. The spacesv171995(2, 1) and M*%99%(2,0) are hyperkah-
ler quotientsT™A /G for which the hyperkahler Kirwan map

kp : HG(T*A) — HG(B*)
IS surjective.

As mentioned in the Introduction, for the spagsé/’'995(2,1) a special
case of Theorem 4.1 has already been proven by Hausel anddusaoh [/].
However, because of singularities their methods do notyafmpkhe space
MHig9s(2 ),

The calculations of Hitchin ing] for M ¥9*(2,1), and those of Section 5

in this paper for/\/léﬂggs(z 0), show that the hyperkahler Kirwan map cannot
be surjective for the fixed determinant case. The resultdisfdection also
provide a basis for the proof of Theorem 4.13 below, where mvsthat
the hyperkéahler Kirwan map is surjective onto theinvariant part of the
cohomology. This is the best possible result for the fixeémeinant case.

The proof of Theorem 4.1 reduces to showing that the LES (BBjss
and hence the map* : Hg(Xq) — H;(X4-1) is surjective for each positive
integerd. Lemma 3.4 shows that this is the case iff the vertical LESaxjichm
(29) splits. By Corollary 3.5, together with the descriptiaf the cohomology
groups in Theorem 2.3, the proof of Theorem 4.1 reduces twisigothat
the map\* : H§_2“d(nd) — H§_2“d(Td) is surjective. In the non-fixed
determinant case, the following lemma provides a simplscugtion of the
map\*.

PROOF COPY NOT FOR DISTRIBUTION



MORSE THEORY AND HYPERKAHLER KIRWAN SURJECTIVITY FOR HIGGBUNDLHES

Lemma 4.2. The map\* restricts to a map
Ap s HS72(Jy(M)) @ H*(BU(1)) — H*2#4(S"M),

and \* is surjective iff\} is surjective. The restriction of the mayj to
H*~?va(J;(M)) is induced by the Abel-Jacobi m&# M — J,,(M).

Proof. The same methods a§,[Sect. 7] show that for the critical sef,
the following decomposition of the equivariant cohomoldwjds

Hg(na) = Hg,,, (na) = He,,,, (72)

whereGg;q, is the subgroup of gauge transformations that are diagoitial w
respect to the Harder-Narasimhan filtratigij,refers to the subset of critical
points that split with respect to a fixed filtratiots ., is the subgroup of
constant gauge transformations that are diagonal witleot$p the same fixed
filtration, andsj;; is the fiber oy} = Guiqy X, ;- In the rank2 case, the
group G giqg is simply the torusl” = U(1) x U(1) and we can define (using
the local coordinates om; from Section 2)
(30)  Zj={(A®,a,¢) € (vy)r : (A®) € qa=0}
Bl Z;={(A2,a,0) € (vg)r : (A, ®) €7jg,a =0, # 0}
(we henceforth omit the subscript 21 frdm ¢); also, L will denote a general
line bundle, anNd not necessarilyy @ L3). The map\* |~s induced by the in-
clusionZ; — Z; and so the map* becomes\* : H7(Z}) — H7.(Z})). Let
T’ be the quotient of" by the subgroup of constant multiples of the identity.
Since the constant multiples of the identity fix all points4p and Z; then
H(Z5) = Hy(Z) @ H*(BU(1)) andH}(Z5) = Hy,(Z) @ H*(BU(1)).
Therefore the map

N HY(Z3) @ HY(BU(1)) — Hi(Z5) @ H*(BU(1))

is the identity on the factoH *(BU(1)).

Now consider coordinates cfE’\C’; given by(Ly, Ly, ®1, P9, p) WhereL, €
Ja(M), Ly € Jg,—q(M) are the line bundles of the holomorphic splitting
E =1L ®Lyandp € H°(L, L} ® K). For a fixed holomorphic structure,
®, and®d, take values in a vector space, andf@bis homotopy equivalent to
a fibration over

(32) {(L,p):LeJ,, peH L)}
with fiber J;(M). The fibration is trivialized by the map
(L17L7 SO) = (L17L2 =L1® K*® L,QO)

Let F,, be the subspace of (32) withp|| = 1. Then the cohomology of the
fiber bundle splits as

(33) Hi:(Z3)
(34) H:(Z3)

1

H*(Ja(M)) @ Hp:(Jn (M)
H*(Ja(M)) @ Hi(Fr)

1
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Note thatF,, fibers over the symmetric produst’ M/ with fiber U(1) = T7,
whereT” acts trivally on the base, and freely on the fibers. The xiagstricts
to the identity on the factoH*(J;(M)) in (33) and (34), and therefore it
restricts to a mapd.;, (J,(M)) — H3.(F,). Now the action ofI” fixes
the holomorphic structures ay and Lo, and so acts trivially on the base of
the fiber bundle.7’ acts freely on a nonzero sectignc H°(LiL,; ® K)
and so (after applying the deformation retractign — 1), the quotient of
the spaceF;, is the space of effective divisors avi, since the zeros of each
0 # ¢ € H*(L7L, ® K) correspond to an effective divisor of degree=
29 — 2 + dg — 2d. Therefore the map* restricts to a map

X H (o (M) @ H*(BU(1)) — H*(S™M)

which is induced by th&g”-equivariant mapF,, — J,,(M), which maps a
nonzero sectionp € H°(LiL; ® K) to the line bundleL;Ls; ® K. On
the quotientF;,/T" = S™M this restricts to the Abel-Jacobi ma&y' M —
In(M). g.e.d.

Let
MPTs = [(L, @) : L€ J,(M),® e H(L® K)}
MBS = (L, ®) : L€ J,(M),® € H'(L® K)\ {0}}

The groupl/ (1) acts onMP*"s and M5™"® by ¢/ - (L, ®) = (L, ¢"®). The
inclusion MF™"* — MPaTs s [ (1)-equivariant with respect to this action,
and the proof of Lemma 4.2 shows thétis induced by this inclusion.

REMARK 4.3. The paper]2] describes the cohomology ring of the sym-
metric product of a curve in detail. The result relevant tis fhaper is that
H*(S™M) is generated byg generators inf/!, and one generator ifl>.
Therefore, the proof of Theorem 4.1 reduces to showing Xhahaps onto
these generators.

From the proof of 12, (14.1)] we have the following lemma for the Abel-
Jacobi map.

Lemma 4.4. \* is surjective ontadZ!(S™"M).
Next we need the following technical lemma.

Lemma 4.5. For any positive integen, the cohomology grougi?(F,,)
consists of products of elementsiét (F},).

Proof. First consider the case whete> 2g — 2. By Serre dualityh!' (L) =
0 for all L € J,(M), and so Riemann-Roch shows th&(L) = n + 1 —
g. ThereforeF,, is a sphere bundle over the Jacobigf{)M) with fiber the
spheres2(®—9+1)~1 By the spectral sequence for this fiber bundfé, F;,) =
H*(J,(M)) for all k < 2(n — g + 1) — 1, therefore in low dimensions the
ring structure ofH*(F,,) is isomorphic to that off*(.J,,(M)). In particular,
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since2(n—g+1)—1>2g—1 > 2, we see that{?(F,,) consists of products
of elements of/ ! (F},).

Whenn < 2¢ — 2 we see that, is not a fiber bundle over the Jacobian
(since the dimension of the fiber may jump). For a fixed basepgi of M,
consider the inclusion map/™ — M given by

(T1y ooy y) = (L1, e oy T,y Ty v -, X0)
This induces the inclusion of symmetric produttsS™ M < SN M, and the
description of the generators &f*(S™V M) in [12, eq. (3.1)] shows that the
induced map* : H*(SYM) — H*(S"M) maps generators to generators
and hence is surjective. Therefore the inclusionduces the following map
of fiber bundles

(U(l) — Fn> (U(l) — FN)
N I
S M SN M

which is the identity mag : U(1) — U(1) on the fibers.

If N > 2g — 2 then the previous argument impli¢&?(Fy) has no irre-
ducible generators, and so in the Serre spectral sequené& {d’y ), the ir-
reducible generatgry € H? (SYM; HO(U(1))) = H*(SNM)®@HO(U(1))
must be killed by a differential (note that (S™V M) acts trivially on the space
of components of the fiber, and henceBA(U (1))). For dimensional reasons
this must be the differential

dy - Byt = HY(U1) @ H'(SYM) — E2° = HO(U (1)) @ H2(SN M)

on theF, page of the spectral sequence. Since the ihapsurjective;* o d}’
maps ont,,, the irreducible generator &f2(S™M).

Naturality of the Serre spectral sequence then showsifhaj* maps onto
pn, Wheredy : ES' — E>° is a differential on the¥, page of the Serre spec-
tral sequence faF,,. Sincej* is an isomorphismy; maps onto the irreducible
generatop,, of H? (S™M; H°(U(1))).

The following diagram summarizes the argument

HY(U(1)) © HO(SN M) —2 BOU(1)) @ H(SN M)
lj* iso. lz* surj.
o
HY(U(1)) @ H(S"M) —= HO(U(1)) @ H2(5"M)

Therefore the irreducible generator if?(S™ M) is killed by a differential
in the spectral sequence fét,, and so there are no irreducible generators of
H2(F,). g.e.d.

Lemma 4.6. \* is surjective ontd7?(S™"M).

Proof. Using the definition off, from above, note tha§" M ~ F,, x()
EU(1), whereU(1) acts by multiplication on the fibers &f(1) — F, —
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S™M. ThereforeS™ M is homotopy equivalent to a fiber bundle ovgy with
fibersBU(1). From the Serre spectral sequence, we have the map

(H°(F,) ® H*(BU(1))) @ (H'(F,) ® H'(BU(1)))
& (H*(F,) ® H'(BU(1))) — H*(S"M)

From [L2], H?(S™ M) has an irreducible generatey. We have that{ ! (BU (1)) =
0 and by Lemma 4.5 there are no irreducible generatofg®f, )@ H°(BU (1)).
Thereforep,, is in the image of the terntl®(F,,) ® H*(BU(1)) = C, and
therefore this term is not killed by any differential in ther& spectral se-
quence forS" M ~ F, xyq) EU(1).

By construction, the map’ is induced by a map of fiber bundles which is
an isomorphism on the bagsl/ (1)

F, — Fyxyg) BU(1) ~S"M Jn(M) = Jo(M) xpy BU(1)
\ — 1
S A N S

and therefore the induced map
H*(BU(1)) ® H°(J,(M)) — H*(BU(1)) ® H*(F},)

is an isomorphism on th&s page of the respective Serre spectral sequences.
Therefore the map

H?*(BU(1)) ® HO(Jo(M)) = H?*(Jo(M) Xy EU(1)) — H*(S"M)
is surjective onto the generatgy of H2(S"M). g.e.d.

Proof of Theorend.1. The results of Lemmas 4.4 and 4.6, together with Mac-
Donald’s results about the cohomology of the symmetric pecbd” M (see
Remark 4.3), show that the may is surjective. Therefore, Corollary 3.5
implies ks is surjective. g.e.d.

4.2. The action ofI's on the cohomology.First we recall the definition of
the action of

Iy = HY(M,Zy) = Hom (w1 (M), Zs)

on the space of Higgs bundles (ci, P]). I's can be identified with thé-
torsion points of the Jacobiafy (/1) which act onM%9%(2, df) by tensor
product

L-(E,®)=(E®L,®)
The Jacobian acts also ovi1995(1, k) by
L-(F,®)=(F®L*®)
and the determinant map
det : MT1995(2 dp) — MM995(1 dp) : (E, ®) — (det E, tr D)
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becomes/y (M )-equivariant. Sincd € Jy(M) acts on the base by tensoring
with L? we obtain, after liftingdet from MH%995(1, dg) (which is homo-
topy equivalent to/y(M)) to the cover/\//TH"ggs(l,dE) corresponding td's,

a product fibration

(35)  det : M52, dp) x MHT995(1, dg) — MT995(1,dp).

The trivialization

(36) X : M99 (2 dp) x MT995 (1, d) — M99 (2, dp)

given by(FE, L) — FE ® L descends to a homeomorphism
ME199% (2 ) s, MH1995(1, dg) = MHT199% (2, dpg).

(cf. [1, eq. (9.5)] for the case of holomorphic bundles). It is aradiy one of
the main observations of Atiyah and Bott (cf, [Sects. 2 and 9]) that we can
also define thé&';-action via equivariant cohnomology.

Recall from [1] that the groupl’ of components ofj is given byI' =
HY'(M,Z). LetT" = 2I' C T be a sublattice of indeg, and letG’ be the
associated subgroup ¢f whose components correspond to elementE’ of
By [1, Prop. 2.16],BG’ is torsion-free and has the same Poincaré polynomial
asBg.

The degreeof a gauge transformation is the componengafontainingg,
i.e. degg € I'. Dividing by the subgroup of constant central gauge transfo
mations, we obtai = G/U(1), andGy = Gy/{+£1}, and we define

G ={g€G :deggecl’}.

Let B(1, k) denote the space of Higgs bundles on a line buddie M of
degreek, G(1) the corresponding gauge group, a&)d1) the subgroup based
atp. Fix a basepoinD, € By(2,dr) and definel’ : B(2,dg) — B(1,dg),
thetrace mapby T'(A, ®) = (tr A, tr ®). Clearly, T is a fibration with fiber
~ By(2,dg).

The fixed determinant gauge grodpacts on3(2, dg ) preservingsy(2, dg)
and such thal is invariant. To see this, note thagifc Gy, thentr(Dggg~!)

0. Indeed, sincejy is connected it suffices to show that(Dogg™') =
tr(dgg~1) is locally constant. Any in a neighborhood oy can be expressed
e" g0, Whereu € Lie(Gy) is a smooth map from¥/ to the vector space of trace-
less endomorphisms. In particular(du) = dtru = 0. But then

tr(dgg™") = tr(d(e*)e™™) + tr(e"dgogy e ™")
= tr(du) + tr(dgogo_l) = tr(dgogo_l).

Now for g € Gy,

T(9(A),g®g~") = (tr(gAg~ " —dgg™"),trg®g ") = (tr A, tr ®),
hence there is an induced fibratih: B(2,dg) xg, EG — B(1,dg) with
fiberBo(Q,dE) X Go EG.
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The groupG /Gy ~ G(1) induced by the determinant map acts fiberwise
on T with nontrivial stabilizers om3(1, dg) given by the constarifi(1) gauge
transformations. Therefore, following the approach Hf we pass to the
quotientG = G/U(1), Go = Go/{%1} and consider the induced fibration
T : B(2,dg) xg, EG — B(1,dp). We claim thatT is a trivial fibration.
Indeed, with respect to the fixed base pdint € By(2, dr) define

X : B(Q,dE) — Bo(Q,dE) X B(l,dE)
X(A,®) = (A= (Ftr A)L,® — (Ftr @), (tr A, tr D)) .

Theny descends to a trivialization
X : B(2,dg) x5, EG — (80(2,dE) x5 EC) « B(1,dp).

Now the groupG /Gy ~ G(1) = G(1)/ U(1) induced by the determinant map
acts freely on the total space and the bas& obut the induced fibration on
the quotient is not trivial. For this reason we need to passsiobgroup.

Indeed, givery € G(1) letdegg € T' = H'(M,Z) denote the degree of
the gauge transformatian Since constant gauge transformations have degree
0, itinduces a mapleg : G(1) — T. Let

?l(l) ={g€G(1):degge2l'}.

We defineG’ = {g € G : det(g) e?'(l)}. Giveng € G (1), setg = s2,

s € G(1), and letg = (8 2) € G. Defineg[A, ®,e] = [§(A, ®,e)] for

[A, @, e] € B(2,dE) xg, EG. Notice that the action is well-defined indepen-
dent of the choice of square root. Furthermoyes equivariant, where the
action of?'(l) is trivial on By(2,dg) xg, EG and has the usual action on
B(1,dg). Hence the induced fibration

(37) T:B(2,dp) xg EG — B(1,dp) /T (1)

can be trivialized by the homeomorphism

(38) 1 B(2.ds) g BG — (Bo(2. d) xg, ) x B(1d5)/T (1
induced fromy.

REMARK 4.7. Formulas (37) and (38) should be considered as the equi-
variant analogues of (35) and (36).

Now I'; acts on the IeftAhand side of (38). Itis also clear that thaaif
Iy on B(1,dg) /G (1) = MHi995(1,dy) is just by tensoring with a torsion
point in the Jacobian.

Definition 4.8. The action ofl’y on By(2, dg) X5, EG is defined so that
the mapy becomeg’>-equivariant.
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The following simple lemma identifies also the two actiongtmnfibers of
(35) and (37).

Lemma 4.9. On any subspac¥ of By(2, dg) invariant underg, on which
Go acts with constant stabilizer, the actionlof onY/G is given by tensoring
with a 2-torsion point of/y(M).

Proof. Giveny € T, let g, be a gauge transformation §(1) such that
deg(gy) = v mod H'(M,2Z) andh, € G with det(h,) = g,. Note that
tr(h'dh,) = g5 'dg,. Then by Definition 4.8, the action &f, on By (2, d)
(modulo gauge transformationsdy) is given by

1
hy [(A,®)] = [(hy ' Ahy + b3 Doh., — St (hy"Dohy + h " Ahy) I,
_ 1 _
Ty @y — o tr (h @hy) 1))

- - 1 -
= KthDohv +hat Ahy = S (g g )T, h71®h7>} :

sincetr A = 0 andtr ® = 0. We claim that this equivalent to tensoring with
the line bundleL., corresponding toy. To see this last statement, chose a
simple loops on M and note that ify[c] = +1, theng, has even degree
around the loopr and so in an annulus arourdthe gauge transformation
Gy = s? is a square, hence the previous formula becomes

ha[(A,@)] = [(57hy) - (A, 9)]

whereg = sI as before (note that singg € G(1) theng 'dg, = dg,g™").
Sinceg'h., € Gy then this shows thai,[(A, ®)] = [(4, ®)] in an annulus
aroundo.

If v[o] = —1 then parametrise the loapby 6 : 0 < 6 < 27 and note that
sinceg, has odd degree, then = ¢?s? in an annulus around. Therefore
the effect of the gauge ten(r%gfldgw)l is that it changes the argument of
the holonomy around by 7, as desired. g.e.d.

In the above we can restrict to tig-invariant subspaceX; of By (2, dg),
and the action commutes with inclusions and connecting noonphisms
from the LES in cohomology. Therefore, we have a LES gfspaces and
I'>-equivariant maps

k oF ok B ok v k+1
Hg (Xa, Xq-1) — Hg (Xq) — Hg (Xa—1) — Hg (Xa, Xa-1)

Lemma 4.10. TheI's-action commutes with the isomorphism(20)

(39) Héo (Xa, Xg_1) = Héo (Vd_, I/él),
and with the isomorphism@2) and (13), (27) and (28).
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Proof. First, note that th&'y action onBy(2,dg) xg, EGy preserves the
subspaces; x g, EGy andv; xg, EGy, Xq x g, EGy andv), x g EG, for all
values ofd, and so the inclusion of pairs

(Va xg, EGo,va % g, EGo) = (Xa xg, EGo, Xa-1 % g, EGo)
is I'y-equivariant. Therefore the action 6 commutes with the excision
isomorphism
H* (X4 XGo Eg_o,Xd_l XGo Eg_o) = H*(Vd_ XGo Eg_o, I/él XGo Eg_o)
which descends to the isomorphism (39) in equivariant caiiogy.
The isomorphisms (27) and (28) arise from taking quotients

H}, (n4) = H*(nax g, EGo) = Hyyy)(n4/Go) = H* (Ja(M))® H* (BU(1))
(whereg, acts ony, with isotropy groupU(1)), and
(40)  Hy (Ty) = H*(Ty xg, EGo) = H*(T4/Go) = H*(S" M)

(sinceg, acts freely orf;). The action ofl’, on the spacé X g, EG, induces
actions oy, xg, EGo andTy xg, EGo which in turn induces an action on
the spaces);/Go andT;/Gy. By Lemma 4.9 the action of € I'; on the
quotientn, /Gy ~ {(L1,La) € Jg(M) X Jq,—a(M) : L1Ly = F}, is given
by tensor productL;, Ls) — (L1 ® L, Ly ® L), whereL, € Jy(M) is
the line bundle corresponding to The induced action on the cohomology
is trivial by [1, Prop. 9.7]. The action dfy on the quotientl;/G, is also by
tensor product(Li, Ly, ®) — (L1 ® L., Lo ® L, ®), therefore the action on
the right-hand side of (40) is via deck transformations ef2F/-fold cover
SnM — S™M (see alsog, Sect. 7)). g.e.d.

Let NV be a space with By-action. Then we have a splitting
H*(N) = H*(N)'2 @ H*(N)*
where H*(N)' is thel's-invariant part of the cohomology and
HY(N)* = ©pz1 H"(N),

whereyp varies over all homomorphisniy, — {+1}. If Ny, N, are two such

spaces and : H*(N;) — H*(Ns) is al's-equivariant homomorphism, we

denote byfr, (resp.f,) the restriction off to H*(N1)"2 (resp.H*(N1)%).
Applying this notation to\* we have

Ay + Hg(vg v — Hg(vg, vy)".
The main result of this section is Lemma 4.12 which shows Mjatis sur-
jective, a key step towards provmg Theorem 4.13. The eadmults (13) and
Lemma 3.2 show thatfg (v, vy) = H*~ 214 (S M), wheren = 2g—2+dp—
2d. Points inS™ M correspond to triplegL,, Ly, ®) € Jy(M) x Jq, _a(M) x
QO(L% Ly ® K) whereL; Ly = det E is a fixed line bundle. Similarly, there is
a corresponding? cover of the Jacobia, (M) = Jy(M) x Ja, —a(M)/~,
where the equivalence is given b¥q, L) ~ (LI,L2) if LyLy = LqLo.
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The isomorphisms
H{ vy vg) & H*2(ng) = H* 214 (J(M) x BU(1))
HE (v, vg) = H*24(Ty) = H* 24 (5" M)
from Theorem 2.3 and Lemma 3.2 show that the myapis given by
A, H*=2#a(J(M) x BU(1))'2 —— H*—20a(Sn )2 = =204 (S5m0

H*— 21 (77d)F2 H*— 21 (Td)FQ
wheren = 2g —2+dg — 2d, andug = 2d — dg + g — 1. This map is induced
by the inclusionl; — (v, ), (where the spaces are now subsets of the space
of fixed determinant Higgs bundles). We define lifked Abel-Jacobi map
to be the mapS”M — J(M), which takes a tripl€ L, Lo, ®) to the pair

(L1,Ls) € J(M). The same proof as Lemma 4.2 in the previous section
gives us the following

Lemma 4.11. The restriction of\},, to H*~24(.J,(M)) given by
(AR ) s HY 7214 (J,(M)F2 — Fre=2ma(Sn )
is induced by the lifted Abel-Jacobi map.

1%

Lemma 4.12. The map\y,, is surjective.

Proof. By [9, egs. (7.12) and (7.13)H*(S"M)F2 =~ H*(S"M), and we
also haverl*(.J,,(M))'? = H*(J,(M)). Therefore Lemma 4.4 impliesy,
is surjective ontad*(S™M)''2, By the same argument as in Lemma 4.6 (with
theT'>-invariant part of the cohomology)y, is surjective onta72(S"M)"2,
By [12], H*(S"M)'> =~ H*(S"M) is generated in dimensionis and 2;
hence \r, is surjective. g.e.d.
4.3. I's-invariant hyperkéhler Kirwan surjectivity. For fixed determinant
the inclusionB;* — 1.4, induces a map on thi;-invariant part of thej-
equivariant cohomology which we call thg-invariant hyperkéhler Kirwan
map

K2 s HE(T* Ag) = HE(T* Ag)'? — HY(Bs) .
In this section we prove
Theorem 4.13. k7, is surjective.

As mentioned in the Introduction, it turns out that the fullWan map isnot
surjective.

The second goal of this section is the following. The resuiitSection 4.1
show that the map® in Diagram (29) is always injective for non-fixed deter-
minant Higgs bundles, and so Lemma 3.4 implies that in thigker o =
ker (¥ = {0}. In this section we will show thater o* = ker ¢* holds for
fixed determinant as well, which is important for the caltiolas in Section 5.
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Proposition 4.14. For rank 2 Higgs bundlesker of 2 ker ¢* for all k,
and thereforedim im o = dim im ¢* also. In the non-fixed determinant
caseker oF = 0 for all k, and in the fixed determinant case

ker ¥ = HE(X 4, Xa-1)"
N {Hk—Zud(§29—2d—2+dEM)a k=49 —4—dg+2d+1

0 otherwise

Note that we have already proviar o* = ker ¢* in the non-fixed determi-
nant case (Sect. 4.1). Hence, for the rest of this sectiorestact to the fixed
determinant case.

In order to separate out thg-invariant part of the equivariant conomology,
we require the following simple

Lemma 4.15. Let

fn 9n hn

be a LES ofC-vector spaces. Suppose thats a finite abelian group acting
linearly onA,,, B, andC,, such thatf,, g,,, andh,, are equivariant. Then for
each homomorphism : I' — C* the restriction

Apig — -

fn, dn, hn7
T (An)so —5 (Bn)so o (Cn)go —s (An+1)4,0 —

to the p-isotypical subspaces is exact.

Proof. By the equivariance of the maps the restrictions are wdihdd.
We prove exactness aB,,),. By equivariance and exactness of the original
sequence,

fn((An)AO) C ker g, N (Bn)so
Supposé € ker g, N (B,),. Again by exactness of the original sequence,
b= fn(a)for somea € A,,. Set

1
a= T Z oo Hoa

oel
Then
_ L “Lgp— L -1 _ sy, =

fal@) = 25 U;w Job = = ;wf Je(o)b = o5 ;b =b

and since € (By),,
1 1 . 5
1a= 25D eloTod= o5 3 e((e) e(vhed = e()e
oel yoell

Hence.a € (A,), and f,(a) = b. This completes the proof. g.e.d.

We apply this result to the vertical and horizontal long é)serjuences in
(29).
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Proposition 4.16. The decomposition of theertical LES of Diagram(29)
into I's-invariant and noninvariant parts gives the following fdt &:
() o - HE (v, v))® — HE(v;,v/)* is an isomorphism; in particular,
H (v, vy)® = 0.
(i) the sequence
k )\k 5k

r T r
0—= HE(vy v —2= HE(vy v —= HE(V),v])T? —0

is exact.

Proof. Since thd’, action is trivial on the cohomology of the Jacobian and
on the cohomology oBU (1), it follows from (12) and (27) thaki (v, , v)* =
0. Lemma 4.12 implies7& (v, 1)) C im A" = ker 6, 3051’22 = 0 for all
k, which proves the second part of the Proposition. The findtthan follows
from Lemma 4.15. g.e.d.

Corollary 4.17. af,, is injective.

Proof. Letx € HE (X4, Xq-1)"2 = HE(v; ,v;)"2, and suppose thaf* (z) =
0. Inthe following, user to also denote the corresponding eleme[ﬂTS{Bd,s, Bg@)
via the excision isomorphism. Then from the commutativitpp@gram (29),
oF(z) = 0 implies thata®(x) = 0, and so¢® o ¢¥(x) = 0. By Lemma
3.3 and Proposition 4.16" is injective and;" is injective onHE (v, /)",
Thereforex = 0, which completes the proof. g.e.d.

Lemma 3.2, Theorem 2.3, and Lemma 4.10, together with HiEfdrmu-
las [9, egs. (7.12) and (7.13)], give us the following result.

Lemma 4.18.

V k=4g—4—dg+2d
Hk y/’y// a _
g( wva) {0 otherwise

whereV = Hk—2p4(§29-2d-2+dp \[)e js 3 complex vector space of dimen-

sion
29 — 1
. _ 29 g
dime V' = (2% — 1) <2g—2d—2+dE>'

Lemma4.19. HE(X,)* =0, forall k < 4g — 4 — dp + 2d + 1.

Proof. The proof is by induction on the indek Ford > ¢g — 1 the induced
mapry : H;(B) — HE(Xg) is surjective, since each stratum has a well-
defined normal bundle, and so the methodslpijork in this case. Therefore,
whend > g — 1 we have thatj;(X) is I'y-invariant for allk. Suppose the
result is true forX,;. To complete the induction we show that it is true for
X4-1,1.e. HY(X4_1) isTy-invariant for allk < 4g — 4 — dp + 2d — 1.
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Consider the following LES fok < 49 — 4 — dg + 2d — 1.
(41)
k+1

k 5k ,yk
" HE(Xg) —— HE(Xg-1) — HET (Xg, Xago1)
From Lemma 4.18 and Proposition 4.16 we see that
HE N (Xa, Xao1)* = HE P vy vh)* =2 HE(Vg, V)" =0

forall k < 4g—4—dg+2d— 1. ThereforeH 5! (X4, X4-1) is To-invariant.
The exact sequence (41) decomposes to become

k
0 —im 3" —>H§(Xd—1) L>im7k —0

Sinceim~v* C H’&“(Xd, X4-1), and the latter i§'2-invariant, an application
of Lemma 4.15 implies

0 — (im B5)* — HE(X4-1)* — 0

is exact. By the inductive hypothesi (X, is I's-invariant; hence(im 8*)* =
0, and soH$(X,4-1)®* = 0 also. g.e.d.

Proposition 4.20. The decomposition of theorizontal LES of Diagram
(29) into I's-invariant and noninvariant parts gives the following fdi & <
4g—4—dp+2d+1:

() vE=1 HE N (Xqo1)® — HE(Xq, X4-1) is an isomorphism; in partic-

_ ular, HE N (Xqo1)® = HE(vy  v)°.

(i) the sequence
allg—l 6113—1 ,yllg—l
00— Hy ' (Xg, Xg-1)'2 — H N (Xg)'2 —> HY N (X)) —>0

is exact.

Proof. First, by Lemma 4.19H’5‘1(Xd)“ =0= H’g“(Xd)“ for k <4g —
4 —dp + 2d + 1. Next we claim that/*—! mapsH’g‘l(Xd_l)F2 to zero for
all values ofk (not just fork < 49 — 4 — dg + 2d + 1). To see this, let
z € Hy '(X4-1)"2, and lety = v~ 1(z) € HE(X4, Xq-1)"2. Exactness of
the horizontal LES in Diagram (29) implies®(y) = o* o v*~1(z) = 0. By
Corollary 4.17 o is injective onHE (X4, X4-1)"2; hencey = v*~!(z) = 0.
Therefore*~1(z) = 0, and soy*~ is the zero map o7 ' (X4_1)"2. The
result then follows from Lemma 4.15. g.e.d.

Proof of Theoren#.13 By the proof of Proposition 4.20;{’132 = 0 for all k.

By Lemma 4.18H’§(Xd_1)“ is only nontrivial fork = 4g—4—dg+2d, and so
Proposition 4.20 (i) implies* is injective onH (X 1) for all k. Therefore,
B* mapsHE(X,)" surjectively ontoH%(X,_1)" for all k. Applying this
result to every stratunX ; completes the proof of the theorem. g.e.d.
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Proof of Propositiond.14 Fork < 4g — 4 — dg + 2d + 1, Proposition 4.20

(i) impliesker o* O HE(X4, X4-1), which together with Corollary 4.17 im-

pliesker o = HE(X4, Xq-1)* = HE(vy,v})". The two exact sequences in

Proposition 4.16 show thébr ¢F=HE(vy ,v))* = HE (v, v))*. Therefore

Lemma 4.18 implies

ker o = ker (¥ = ng“_l(yél, Ve

o [ HF1 20 (§20-2d-24dp (Yo | — 4g — 4 — dp +2d+ 1

N 0 k<4g—4—dp+2d+1

Fork > 49— 4—dg+2d+1, Lemma 4.18 and Proposition 4.16 show that
HE(Xq, Xg-1)" = HE(vy ,vp)* = HE (v, v))* =0

Hence, HE (X4, Xq-1) = HE(Xq, X4-1)"?, and soker of = 0 by Corollary
4.17. Together with the vanishing (H’(j(u;, v},)®, Proposition 4.16 implies
ker ¢F = 0, and soker (¥ = kera® = 0fork > 4g — 4 — dp + 2d + 1.
Therefore, for all values df we haveker a* = ker ¢*. g.e.d.

5. Computation of the equivariant Betti numbers

Here we use the results above, specifically Proposition, 4otyéther with
the commutative diagram (29), and derive an explicit forrfal the equivari-
ant Poincaré polynomial d8;°(2,0) and3°*(2,0).

We have the following relationship between the equivarieiti numbers
of XyandX,_1.

Lemma5.1.

dim ker o1 — dim im o = dim Hg(yé, V) — dim Hé(l/d_, V)

Proof. Using the vertical LES in diagram (29) we have

Hk AT Hk AT
keI‘Ck—H glm(;k o g( d’ d) ~ g( d’ d)

kerd¥ im Mk
L HBO ) G
 ker A im¢k

Therefore
dim ker ¢¥*1 = dim HS(V&, V) — dim im A\¥
= dimH’é(V&, V) — dimH]g“(yd_, V) + dim im ¢*
and so Proposition 4.14 implies
dim ker o' — dim im o = dim ker CkH — dim im Ck
= dimHé(V&, V) — dimHg(y;, V).

completing the proof. g.e.d.
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Proposition 5.2.
dimHé(Xd) - dimHé(Xd_l) = dimHé(Vd_, V) — dimHg(Vél, vl)
In the fixed determinant case

(42) dim HE(X,) — dim HE(X4-1)
= dim H* 214 (Jy(M) x BU(1))) — dim H*~2#e(§29-2+dp=2d 1)

In the non-fixed determinant case
(43) dim HE(X,) — dim HE(X 1)
= dim H*=24a (Jy (M) x J,(M) x BU(1) x BU(1))
— dim H*—2a (529—2+dE—2dM x Ja(M) x BU(1)> .

Proof. Lemma 5.1 shows that
dim HE(X4) — dim HE(X41)
= dim im 8* + dim ker 8% — dim im4* — dim ker ¥
= dim im ¥ + dim im o — dim ker o*T! — dim im g*
= dim im o* — dim ker o *!
= dimH’é(VC?, V) — dimH’é(V&, V).
In the fixed determinant case use eqs. (12), (13), (25) andd2tbtain (42).

In the non-fixed determinant case use eqgs. (12), (13),(2Y)28) to obtain
(43). g.e.d.

Inductively computingf/;(X4) in terms of (X1 ) for each value of],
we obtain the

Proof of Theorenl.1 First we study the fixed determinant case. Eq. (42)
shows that in both the degree zero and degree one case we have

—1
(1 t 3
Ptg(B) Pg B ZtZud + Zt2“dP S2g 24+dg— 2dM)

whereu, = g — 1+ 2d — dg. Note that the second sum has oply 1 terms

becauselfj; (v}, v/;) is only non-zero if the vector spadé’(LiLy ® K) is

non-zero, i.edg —2d+2g—2 > 0, wheredeg L = d anddeg Lo = dp —d.
Re-arranging this equation and substitutﬂ%(l?) = P(BG),

g—1
PY(B¥) = P(BG) — Z t2ud 1 —l— t _|_ Z 121 p,(G29-2+dp—2d )
d=1
which proves (2). A S|m|Iar argument using (43) in Propositb.2 proves (3).

g.e.d.
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As mentioned in the Introduction, in the degree one casa@ihés a new proof
of [9, Thm. 7.6 (iv)] (fixed determinant case) and the resultsrp{rion-fixed
determinant case).
In[9, Sect. 7] an explicit formula is given for the sum

g—1

Z t2,u,dPt(§2g—2d—1M)

d=1
for ug = g + 2d — 2, corresponding to the case whekez(E) = 1. For the
degree zero case we use egs. (2) and (3), together with ti@dees of 9] to
give the

Proof of Corollary1.2. First, recall from [, Section 2] that for the rank
fixed determinant case
- (1 + 753)2g
and for the non-fixed determinant case
(14t + )

(45) Pt(Bg) - (1 N t2)2(1 I t4) :
Note that using the results from,[eq. (7.13)], the last term in (2) is given by
(46)

g—1

Z t2‘udpt(§2g_2d_2M Z t2 g+2d— 1 S2g 2d— 2M)

d=1

g—1
29 — 2
29 g 4g+2d—4
+(2 1); (29_2d_2>t

g—1
_ Z t2(9+2d_1)Pt(S2g_2d_2M)
d=1

+ (229 — q)pho—t Z (292—92212— 2) 42d

Using the binomial theorem, the second term is

1
(47) 5(229 D1+ )92+ (1 - 1)272 - 2)
The first term is calculated in the following lemma

Lemma 5.3.

th(g+2d Hp S2g 2d— 2]\/[) _ g4 t29+2(1+t)29 N (1_t)2gt4g—4
A—2)(1—th) 41 +2)

(t+ 1)%9¢49—4 ( 29 1

1
— S+ (3-2
-1 \ir1 E—1 2t g)>
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Part (b) of Corollary 1.2 immediately follows from egs. (8)5) and (5.3).

Part (a) follows from combining egs. (2), (44), (46) and (4/@y Lemma 5.3.
g.e.d.

Proof of Lemm&.3. By [12], P;(S%9729=2 M) is the coefficient ofy29—24—2

in % or equivalently the coefficient af?9 in W There-
fore the sum
Zt2(g+2d Hp S2g 2d— 2M)
is the coefficient of:29 in
! 14 at)%
Z (2(g+2d-1) ,.2d+2 (1+xt) _
— (1 —2)(1 — xt?)
which is equal to the coefficient a9 in the following infinite sum
i (2(g+2d—1) 2d+2 (1+xt)*
_ D)
= (1 —2)(1 —xt?)
The sum above is equal to
it2(9+2d—1)w2d+2 (1 +at)? _ Q20424 (1 +at)? f: pt2)2-2
= (1—2)(1 — xt?) (1—2)(1 — xt?) ) =

B t29+2$4(1 +£L't)2g
(1 —2)(1 — 2t2)(1 — 22t4)

Therefore the coefficient of?9 in the above sum is equal to the residue at
x = 0 of the function

(1 4 at)?9¢29+2 1

f(z) = (1 —x)(1 — 2t2)2(1 + xt2) " 729-3

As in [9], this residue can be computed in terms of the residues aithgle
polesz = 1 andz = —t~2, the residue at the double pale= ¢~2, and
the integral off (z) around a contour containing all of the poles. In this case
the same methods can be used to compute the residues. Hpwaier the
situation in P], the contour integral is not asymptotically zero as thetacon
approaches the circle at infinity, so this must be computed ae well. To
compute the integral, let’. be the circle of radiug in the complex plane
wherer > 1 andr > t~2 (i.e. the disk insideC, contains all the poles of
f(z)). Then for|z| = r we have the following Laurent expansion ffz)
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centred atr = 0.

(1+xt)29t2g+2x3—2g - (% +t)2gt2g+2

(I—2)(I—a2(I+at?) 6 (1-1)(1- L)% (1+ L)

xt

L[t ,\% 1
——@<;+t> <1+;+"'>
1 2 1
14+ — 4 ... 1— — 4+ ...
X<+wt2+ > < wt2+ )

754g—4
=— + terms of order =" wheren > 1
T

This series expansion is uniformly convergent on the amniiu: r — ¢ <
x<r+epforr>1,r > t~2 ande small enough so that the closure of
the annulus doesn't contain any of the polesf¢f). Asr — oo the series
asymptotically approachest*9—*/z, and so the integral approaches

1 1 t 2gt2g+2 3—2g
(48) lim —— / (1+at) ”” do = —ti9=4
r—o0 270 Jo (1 —x)(1 — xt?)2(1 + xt2)
The residues off (z) atz = 1, 2 = —t~2 andx = t~2 are similar to the

results obtained ing). At the simple poler = 1,

t2§]+2(1 + t)2g

(49) Resy=1f(z) = — (1— tz)(l _ t4)

At the simple poler = —t—2

(1 — t)29449—4

(50) Resx:—t*Qf(x) == 4(1 + t2)
and at the double pole = t—2

C (t+1)%tt9t 2 11 B
(51) Res,_;—=f(z)= 52 1) P—— + 21 3 + (3 —29)

Combining (48), (49), (50) and (51) we have

2921+ 1)%9 (1 —t)29¢t9?
(1—-t2)(1 -1t 4(1 4 t2)

(t+1)29¢19=1 [ 2g 1 1
- (32
- i1 el 3t

g—1
Zt2(g+2d—1)Pt(S2g—2d—2M) — g4
d=1

thus completing the proof of the lemma and therefore alsoarblary 1.2.
g.e.d.
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