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Abstract. In this paper we use the Morse theory of the Yang-Mills-Higgs functional on the singular
space of Higgs bundles on Riemann surfaces to compute the equivariant cohomology of the space
of semistable U(2, 1) and SU(2, 1) Higgs bundles with fixed Toledo invariant. In the non-coprime
case this gives new results about the topology of the U(2, 1) and SU(2, 1) character varieties of
surface groups. The main results are a calculation of the equivariant Poincaré polynomials, a
Kirwan surjectivity theorem in the non-fixed determinant case, and a description of the action of
the Torelli group on the equivariant cohomology of the character variety. This builds on earlier
work for stable pairs and rank 2 Higgs bundles.

1. Introduction

Let X be a closed Riemann surface of genus g ≥ 2. Choose complex hermitian vector bundles

E1, E2 on X with rankEi = i and degree degEi = di. Let B(d1, d2) denote the space of U(2, 1)-

Higgs bundle structures on E2 ⊕ E1 (see Section 2.1), and let G denote the group of U(2) × U(1)

gauge transformations. For a holomorphic line bundle Λ→ X of degree d1 + d2, let BΛ(d1, d2) be

the subspace defined by restricting to holomorphic structures with fixed holomorphic isomorphism

E1⊗detE2
∼= Λ, and let G0 denote the group of S(U(2)×U(1)) gauge transformations. Denote the

corresponding moduli spaces of semistable Higgs bundles by

M(d1, d2) = Bss(d1, d2)
//
GC

MΛ(d1, d2) = Bss
Λ (d1, d2)

//
GC

0

(1.1)

The main result of this paper is a computation of the G and G0-equivariant Betti numbers of

Bss(d1, d2) and Bss
Λ (d1, d2).

Tensoring by line bundles and dualizing give equivariant isomorphisms of these spaces. The

distinct cases are therefore enumerated by the mod 3 values d1 + d2 ≡ 0, 1, which we will refer

to as the non-coprime and coprime cases, respectively. The moduli spaces are nonempty only

if τ = τ(d1, d2) = 2
3(2d1 − d2) satisfies |τ | ≤ 2g − 2. By duality, we will assume without loss

of generality that τ ≥ 0. For a rank 2 hermitian vector bundle E → X of degree d, we also

introduce the space C(E) of holomorphic pairs consisting of holomorphic structures on E plus a

choice of holomorphic section. Given a real number σ, d/2 ≤ σ ≤ d, let Cσ(E) ⊂ C(E) denote the

space of σ-semistable pairs in the sense of Bradlow [3, 4]. We denote the corresponding moduli
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space Nσ(E) = Cσ(E)
//
GC(E), where GC(E) is the complexification of the group G(E) of unitary

gauge transformations of E. For generic σ (generic means semistable implies stable, which occurs at

noninteger values in (d/2, d)), the Poincaré polynomials of Nσ(E) were computed in [17]. For general

values of σ (not necessarily generic), the G(E)-equivariant cohomology of Cσ(E) was computed in

[20].

To state the main results, set

(1.2) σ(d1, d2) = 2g − 2 + (d2 − 2d1)/3

We also let J(X) and SmX denote the Jacobian variety and m-th symmetric product of X, respec-

tively. With this background we have

Theorem 1.1 (U(2, 1) Higgs bundles). Fix (d1, d2) such that 0 ≤ τ(d1, d2) ≤ 2g−2 and d1 +d2 ≡ 0

mod 3. Then the G-equivariant Poincaré polynomial is given by

P G
t (Bss(d1, d2)) =

1

(1− t2)
P

G(E)
t (Cσ(d1,d2)(E))Pt(J(X))

+
∑

1
3

(d1+d2)<`≤d2−d1+2g−2

t2(g−1+2`−d2)

(1− t2)
Pt(J(X))Pt(S

d2−d1+2g−2−`X)Pt(S
d1−`+2g−2X)(1.3)

where degE = d2 − 2d1 + 4g − 4. For d1 + d2 ≡ 1 mod 3,

Pt(M(d1, d2)) = (1− t2)P G
t (Bss(d1, d2)) = Pt(Nσ(d1,d2)(E))Pt(J(X))

+
∑

1
3

(d1+d2)<`≤d2−d1+2g−2

t2(g−1+2`−d2)Pt(J(X))Pt(S
d2−d1+2g−2−`X)Pt(S

d1−`+2g−2X).(1.4)

In order to state the result for fixed determinant, let S̃(m1,m2) denote the pullback by the 32g-

fold cover J(X)→ J(X) : L 7→ L3 of the product Sm1X × Sm2X, where the map to J(X) factors

through (L1, L2) 7→ L∗1L2Λ. The Poincaré polynomial of S̃(m1,m2) was computed by Gothen [11]

(see also Corollary 5.2 below).

Theorem 1.2 (SU(2, 1) Higgs bundles). Fix (d1, d2) such that 0 ≤ τ(d1, d2) ≤ 2g−2 and d1+d2 ≡ 0

mod 3. Then the G0-equivariant Poincaré polynomial is given by

P G0
t (Bss

Λ (d1, d2)) =
1

(1− t2)
P

G(E)
t (Cσ(d1,d2)(E))Pt(J(X))

+
∑

1
3

(d1+d2)<`≤d2−d1+2g−2

t2(g−1+2`−d2)Pt(S̃(d2 − d1 + 2g − 2− `, d1 − `+ 2g − 2))(1.5)

where degE = d2 − 2d1 + 4g − 4. For d1 + d2 ≡ 1 mod 3,

Pt(MΛ(d1, d2)) = P G0
t (Bss

Λ (d1, d2)) = Pt(Nσ(d1,d2)(E))

+
∑

1
3

(d1+d2)<`≤d2−d1+2g−2

t2(g−1+2`−d2)Pt(S̃(d2 − d1 + 2g − 2− `, d1 − `+ 2g − 2))(1.6)
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Eq.’s (1.4) and (1.6) have been previously obtained by Gothen [11]. Gothen’s results use slightly

different notation to that given here; to obtain (1.4) and (1.6) from [11, Theorem 3.3, Theorem 4.1]

one has to make the substitutions m2 = 2g− 2 + d2 − d1 − ` and d = d1 + d2 and then interchange

d1 and d2.

In the coprime case the moduli space is smooth, and one may use the moment map associated to

Hitchin’s S1-action as a Morse-Bott function. Critical points correspond to fixed points of the S1-

action, and the cohomology of these critical sets (as well as their Morse indices) can be computed.

As outlined below, the derivation of the Poincaré polynomials in this paper is different from that

of [11]. Indeed, showing that the two results agree in the coprime case actually depends on the

results of [17, 20]. The stable pairs moduli space that occurs in Gothen’s calculations has a different

stability parameter σ to that which occurs in the calculations of this paper, and one needs to look

at different critical sets for the terms corresponding to the flips that relate the two different Bradlow

spaces (cf. (4.2)). Therefore the connection between the two pictures is somewhat complicated and

is not merely a comparison of critical sets.

We also point out the following special case (see Section 4).

Corollary 1.3. In the maximal case τ(d1, d2) = 2g − 2,

P G
t (Bss(d1, d2)) =

1

(1− t2)2
Pt(J(X))2

This is exactly what one would expect from the result in [19] (see also [5]).

We now describe the relationship with representation varieties. Fix p ∈ X, and let π = π1(X, p)

denote the fundamental group acting by deck transformations on the universal cover X̃ of X. Let

ωB2 denote the complete PU(2, 1)-invariant Kähler metric on the complex ball B2 ⊂ C2, normal-

ized to have constant holomorphic sectional curvature −1. Given ρ : π → PU(2, 1), choose a

ρ-equivariant map f : X̃ → B2. Then f∗ωB2 is a π-invariant form, and the Toledo invariant of ρ is

by definition

(1.7) τ(ρ) =
1

2π

∫
X
f∗ωB2

By [18], τ(ρ) is an integer that is constant on connected components of the representation variety,

and which satisfies the bound |τ(ρ)| ≤ 2g−2. Extend the definition of τ(ρ) to representations of π to

SU(2, 1) and U(2, 1) by projection to PU(2, 1). Let Homτ (π,G), G = SU(2, 1), U(2, 1), or PU(2, 1),

denote the subset of representations π → G with Toledo invariant = τ , and let Homτ (π,G)
//
G

be the corresponding moduli space of conjugacy classes of semisimple representations. By work of

Hitchin, Simpson, Corlette and Donaldson ([13, 6, 9, 16]; see also [5]) we have

Homτ (π,U(2, 1))
//
U(2, 1) 'M(d1, d2)

Homτ (π,SU(2, 1))
//
SU(2, 1) 'MΛ(d1, d2)
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as real algebraic varieties, where d1 +d2 = 0, and we have τ = τ(ρ) = τ(d1, d2). As explained in [8],

the results of this paper also compute the equivariant cohomology of these representation varieties

(in this paper we take rational coefficients unless otherwise indicated).

Theorem 1.4. Let d1 + d2 = 0 and τ = 2
3(2d1 − d2). Then there are isomorphisms of equivariant

cohomologies

H∗U(2,1)(Homτ (π,U(2, 1))) ' H∗G(Bss(d1, d2))

H∗SU(2,1)(Homτ (π,SU(2, 1))) ' H∗G0
(Bss

Λ (d1, d2))

Tensoring a rank-n bundle by the n-torsion points in the Jacobian variety J(M) leaves the

determinant unchanged. Hence, the group Γn = H1(M,Z/n) acts on fixed determinant moduli

spaces, and the study of its induced action on the cohomology of moduli spaces goes back to Harder-

Narasimhan [12]. In terms of representations, this action corresponds to the different possible lifts of

PU(n) bundles to SU(n). More precisely, in our situation MΛ(d1, d2) is a Γ3-covering of a connected

component of Hom(π,PU(2, 1))
//
PU(2, 1). Furthermore, by a theorem of Xia [22] the connected

components of the space of PU(2, 1) representations are in 1-1 correspondence with the mod 3

values of d = deg Λ and the possible values of the Toledo invariant |τ(d1, d2)| ≤ 2g − 2. As in the

theorem above we have

(1.8) H∗PU(2,1)(Homτ,d(π,PU(2, 1))) =
[
H∗G0

(Bss
Λ (d1, d2))

]Γ3

where d = d1 + d2, τ(d1, d2) = τ , and the superscript indicates the Γ3-invariant part of the

cohomology.

It was shown in Atiyah-Bott [1], and illustrated further in [7] for SL(2,C), that the action of Γn is

also the key to understanding Kirwan surjectivity, which we now define. Since the spaces B(d1, d2)

and BΛ(d1, d2) are contractible, the inclusions Bss(d1, d2) ↪→ B(d1, d2) and Bss
Λ (d1, d2) ↪→ BΛ(d1, d2)

give maps, which we call Kirwan maps,

κ : H∗(BG) −→ H∗G(Bss(d1, d2))

κ0 : H∗(BG0) −→ H∗G0
(Bss

Λ (d1, d2))
(1.9)

where BG and BG0 are the classifying spaces of G and G0, respectively. We say that Kirwan

surjectivity holds if κ (or κ0) is surjective. For U(n) and SU(n) bundles, it turns out that the

Kirwan maps are always surjective [1]. This is a consequence of the perfection of the Harder-

Narasimhan (and Morse) stratification. It is also the case that Γn acts trivially on H∗(BG0), and

so surjectivity implies the same for the cohomology of the representation varieties. On the other

hand, for SL(2,C) Higgs bundles, κ0 is not in general surjective (cf. [7]).

Continuing in this vein, we show in this paper that a certain modification of the Harder-

Narasimhan stratification for U(2, 1) Higgs bundles is G-equivariantly perfect (Theorem 2.6), and

hence Kirwan surjectivity holds in this case. We also show that Γ3 acts trivially on the equivariant

cohomology of the moduli space of SU(2, 1) Higgs bundles if and only if Kirwan surjectivity holds.

In the fixed determinant case, surjectivity holds for only about a third of the components.
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Theorem 1.5. Kirwan surjectivity holds for the moduli spaces of U(2, 1) and PU(2, 1) Higgs bun-

dles. Kirwan surjectivity holds for the moduli spaces of SU(2, 1) Higgs bundles if and only if the

Toledo invariant satisfies |τ | > 4
3(g − 1).

The action of Γn is also closely intertwined with the action of the Torelli group I(X), defined as

the subgroup of the mapping class group that acts trivially on the homology of X (see [8]). Since

I(X) is a subgroup of the outer automorphism group of π, it acts on representation varieties by

precomposition, and the induced action on equivariant cohomology commutes with Γn. On the other

hand, by results of Looijenga [15] characters of Γn give rise to projective unitary representations

of I(X) over cyclotomic fields. In Theorem 5.3, we explicitly determine the representations that

appear for the action of Γ3×I(X) on the moduli space of SU(2, 1) Higgs bundles. As a consequence,

we prove

Theorem 1.6. The group Γ3 × I(X) acts trivially on the equivariant cohomology of the moduli

spaces of U(2, 1) and PU(2, 1) representations of π. The Torelli group I(X) (resp. the group Γ3)

acts trivially on the equivariant cohomology of the moduli spaces of SU(2, 1) representations if and

only if the Toledo invariant satisfies |τ | ≥ 4
3(g − 1) (resp. |τ | > 4

3(g − 1)).

The borderline case τ = 4
3(g − 1) (which occurs only for g ≡ 1 mod 3) gives further examples in

higher genus of representation varieties where Kirwan surjectivity fails but where the Torelli group

nevertheless acts trivially on equivariant cohomology (this also occurs for SL(2,C) bundles, but

only when g = 2). Gothen also studies the action of Γ3 on the cohomology of the moduli space

and shows in [11, Proposition 4.2] that in general it acts non-trivially on H∗(MΛ(d1, d2)) in the

coprime case.

The method of proof for the results above is an extension of the equivariant Morse theory

techniques of Atiyah-Bott and Kirwan from [1] and [14] to the singular space of Higgs bundles.

This continues a program begun in [7, 8] (for rank 2 Higgs bundles) and [20] (for rank 2 stable

pairs), and we use these results as part of our calculations for the U(2, 1) case. The basic strategy

is to use the Yang-Mills-Higgs functional as an equivariant Morse function on the spaces of U(2, 1)

Higgs bundles (resp. SU(2, 1) Higgs bundles), where equivariance is defined with respect to the

group of gauge transformations in the maximal compact subgroup of U(2, 1) (resp. SU(2, 1)).

In Section 2 we describe the stratification of the space of Higgs bundles by the gradient flow of the

Yang-Mills-Higgs functional and assert that the gradient flow of the Yang-Mills-Higgs functional on

the space of U(2, 1) Higgs bundles induces a Morse stratification identical to the Harder-Narasimhan

stratification. Another result of this section is that the equivariant cohomology of the critical sets

can be computed inductively in terms of lower rank Higgs bundles.

The major subtlety induced by the singularities in the space of Higgs bundles occurs in the study

of the change in cohomology when attaching each of the Morse/Harder-Narasimhan strata to the

union of lower strata. The Morse index is not constant on each connected component of the set
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of critical points, and so instead of attaching a bundle over the critical set (as in the usual Morse-

Kirwan theory) one has to attach a more general space that fibers over the critical set. Section 3

contains a detailed analysis of these spaces and a calculation of their cohomology.

The Poincaré polynomial calculations are summarized in Section 4. The key point is that the

spaces described in the previous paragraph appear as extra terms in the Poincaré polynomials. In

Section 5 we prove Theorem 1.6 and describe the relationship between Kirwan surjectivity and the

action of the finite group Γ3 on the cohomology of the space of semistable points.

Acknowledgment. The authors thank the referee for a careful reading of the manuscript and for

suggesting improvements to the exposition.

2. Stratifications

2.1. Critical points of the Yang-Mills-Higgs functional. The goal of this section is to describe

the stratification of the space B(d1, d2). There are in fact two natural stratifications: the Morse

stratification given by the gradient flow of the Yang-Mills-Higgs functional which is detailed in this

subsection, and the algebraic stratification according to Harder-Narasimhan type which is discussed

in the next subsection. In Proposition 2.5 we claim that, as in [7] and [20], these stratifications

coincide.

We begin with the classification of the critical sets of the Yang-Mills-Higgs functional in the

general case. Fix smooth complex hermitian vector bundles Ep, Eq → X, with rankEp = p,

rankEq = q, degEi = di. Without loss of generality (see the remark in [11, p731]) we always assume

that pdq ≥ qdp. A U(p, q) Higgs bundle consists of a split holomorphic structure on V = Ep ⊕ Eq,
and a Higgs field of the type H0(E∗pEq ⊗K)⊕H0(E∗qEp ⊗K), where K is the canonical bundle of

X. In other words, a pair

(∂̄A,Φ) =

(
∂̄Ap ⊕ ∂̄Aq ,

(
0 c
b 0

))
Let A(Ei) denote the infinite dimensional affine space of ∂̄-operators on Ei. By the Chern connec-

tion, these spaces are identical to the space of unitary connections. Then the set of pairs (∂̄A,Φ)

as above is a subspace

(2.1) B(Ep, Eq) ⊂ (A(Ep)×A(Eq))× (Ω0(E∗pEq ⊗K)⊕ Ω0(E∗qEp ⊗K))

which we call the space of U(p, q) Higgs bundles (for more details, see [5]). The gauge group

G = G(Ep, Eq) of U(p)×U(q) and its complexification GC act on B(Ep, Eq). We note two facts that

are important for the discussion here: the first is that B(Ep, Eq) is G-equivariantly contractible. The

second is that B(Ep, Eq) is a singular space in general. To see this, we introduce the deformation

complex for Higgs bundles

(2.2) Ω0(EpE
∗
p ⊕ EqE∗q )

D′′−→ Ω0,1(EpE
∗
p ⊕ EqE∗q )⊕ Ω1,0(E∗pEq ⊕ E∗qEp)

D′′−→ Ω1,1(E∗pEq ⊕ E∗qEp)

where D′′ = ∂̄A + Φ. The Zariski tangent space to B(Ep, Eq)/G
C is given by H1 of the complex.

Singularities occur when H2 (or equivalently H0) of the complex is bigger than the generic value
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C. This happens, for example, when there is a nonzero endomorphism φ : Ep → Ep, rankφ ≤ p−q,
such that c(Eq) ⊂ kerφ⊗K.

Equivalently, one may view a U(p, q) Higgs bundle as a twisted quiver bundle, with diagram

(2.3) •Eq •Ep
c
))

b

ii

where b : Ep → Eq ⊗K and c : Eq → Ep ⊗K are holomorphic. The Yang-Mills-Higgs functional

on the space of Higgs bundles is defined by

YMH(∂̄A,Φ) = ‖FA + [Φ,Φ∗]‖2

where FA denotes the curvature of the Chern connection associated to ∂̄A and the hermitian struc-

ture on Ep⊕Eq, and ‖ · ‖ is the L2-norm taken with respect to a choice of conformal metric on X.

On restriction to the space B(Ep, Eq) this becomes

YMH(∂̄Ap , ∂̄Aq , b, c) =
∥∥FAp + bb∗ + c∗c

∥∥2
+
∥∥FAq + b∗b+ cc∗

∥∥2

Let Bmin(Ep, Eq) denote the set of absolute minima of YMH. We also study the non-minimal

critical sets of YMH, however the usual definition of critical point does not make sense due to the

singularities of B(Ep, Eq) and so we define the critical sets as follows. The singular space B(Ep, Eq)

is defined in (2.1) to be a subset of an infinite dimensional manifold defined by imposing the

holomorphicity condition on the Higgs field. The gradient flow of YMH is defined on this manifold,

and when the initial conditions are in B(Ep, Eq) the flow is generated by g(t) ∈ GC satisfying

(2.4)
∂g

∂t
g−1 = ∗(FA + [Φ,Φ∗])

(see [21]). Since GC preserves B, then the gradient flow also preserves B(Ep, Eq), and we define the

critical points of YMH to be the stationary points of the gradient flow. Equation (2.4) shows that

these are the pairs (∂̄A,Φ) for which the infinitesimal action of ∗(FA + [Φ,Φ∗]) ∈ Lie(GC) is trivial.

More precisely, the critical point equations for YMH on B(Ep, Eq) are

∂̄Aq ∗
(
FAq + bb∗ + c∗c

)
= 0(2.5)

∂̄Ap ∗
(
FAp + b∗b+ cc∗

)
= 0(2.6)

b ∗
(
FAp + b∗b+ cc∗

)
− ∗

(
FAq + bb∗ + c∗c

)
b = 0(2.7)

c ∗
(
FAq + bb∗ + c∗c

)
− ∗

(
FAp + b∗b+ cc∗

)
c = 0(2.8)

Using (2.5) and (2.6) and the same method of proof for holomorphic bundles in [1, Section 5], we

conclude that the eigenvalues of ∗
(
FAq + bb∗ + c∗c

)
and ∗

(
FAp + b∗b+ cc∗

)
are constant and the

holomorphic structures on Ep and Eq split according to these eigenvalues. We can therefore write
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∗
(
FAq + bb∗ + c∗c

)
and ∗

(
FAp + b∗b+ cc∗

)
in the following block-diagonal form

∗(FAq + bb∗ + c∗c) =


λq1 0 · · · 0
0 λq2 · · · 0
...

...
. . .

...
0 0 · · · λqnq

 and ∗
(
FAp + b∗b+ cc∗

)
=


λp1 0 · · · 0
0 λp2 · · · 0
...

...
. . .

...
0 0 · · · λpnp


(recall that these expressions are skew-Hermitian with respect to the metrics on Ep and Eq, and

hence diagonalizable). The bundles Ep and Eq then split with respect to this decomposition as

follows

Ep = E
(λp1)
p ⊕ · · · ⊕ E(λpnp )

p , Eq = E
(λq1)
q ⊕ · · · ⊕ E(λqnq )

q

where E
(λpk)
p (resp. E

(λqk)
q ) is the holomorphic sub-bundle of Ep (resp. Eq) corresponding to the

eigenvalue λpk (resp. λqk). The Higgs fields b and c also decompose with respect to this splitting,

and it follows from equations (2.7) and (2.8) that, if λpj 6= λqk, then the component of b mapping

E
(λpj )
p to E

(λqk)
q is zero and the component of c mapping E

(λqk)
q to E

(λqj )
p is zero.

Therefore, the critical point equations define a splitting of (∂̄Ap , ∂̄Aq , b, c) into U(p′, q′) sub-bundles

(2.9) (∂̄Ap , ∂̄Aq , b, c) =
⊕
`

(∂̄A`p , ∂̄A`q , b`, c`)

where ` ranges over the set of all eigenvalues of ∗
(
FAq + bb∗ + c∗c

)
and ∗

(
FAp + b∗b+ cc∗

)
, and

q′ = rank(E
(`)
q ), p′ = rank(E

(`)
p ) (note that it is possible for one of p′ or q′ to be zero). Moreover, the

usual Chern-Weil technique shows that the eigenvalues are determined by the slope of the bundles

E`p ⊕ E`q, and that (∂̄A`q , ∂̄A`p , b`, c`) minimizes the Yang-Mills-Higgs functional on B(E`p, E
`
q).

These results are summarized in the following proposition.

Proposition 2.1. A U(p, q) Higgs structure (∂̄Ap , ∂̄Aq , b, c) is a critical point for the Yang-Mills-

Higgs functional if and only if it splits into the direct sum of U(p′, q′) sub-bundles, each of which

is a minimizer for the associated Yang-Mills-Higgs functional on the sub-bundles. The splitting is

determined by the eigenvalues and eigenspaces of ∗
(
FAq + bb∗ + c∗c

)
and ∗

(
FAp + b∗b+ cc∗

)
.

We now specialize to the case p = 2 and q = 1, and use the notation B(d1, d2) for B(E2, E1), where

di = degEi. In this case, there are only three types of decomposition that can occur at nonminimal

critical points, one for each possible configuration of distinct eigenspaces for ∗
(
FAq + bb∗ + c∗c

)
and

∗
(
FAp + b∗b+ cc∗

)
. The first is where the Higgs field is zero and the bundle E2 is polystable. In

terms of Proposition 2.1, the bundles E1 and E2 are distinct eigenspaces for ∗
(
FAq + bb∗ + c∗c

)
and

∗
(
FAp + b∗b+ cc∗

)
and we have a splitting of the structure into a U(1) and a U(2) Higgs bundle.

Call these critical points Type A and let Ca denote the set of all critical points of Type A.

The second type of decomposition is where the Higgs field is zero and the structure splits into

three U(1) Higgs bundles. Call these critical points Type B. In this case, the bundle E2 is the direct

sum of holomorphic line bundles E2
∼= S ⊕Q and, in the language of Proposition 2.1, the bundles

E1, S and Q are distinct eigenspaces. Without loss of generality, assume that degS > degQ, and
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note that the Higgs field is necessarily zero when degS 6= d1. Also, use the notation dS = degS,

dQ = degQ.

For convenience, when dS = d1 we also include the possibility that the Higgs field can be nonzero

(see also Remark 2.3). The critical point equations imply that such a Higgs bundle must take the

following form

•S

•E1

•Q

c

��
b

]]

where b and c are related by ‖b‖2 = ‖c‖2.

The connected components of the space of Type B critical points are in one-to-one correspondence

with the range of values for dS . Moreover, there are three different cases for dS that lead to

different contributions to the Morse theory calculations of Section 3. For each value of ` in the

range 1
2d2 < ` < d1, let C`b1 denote the set of Type B critical points for which dS = `, define Cd1b2 to

be the set of Type B critical points for which dS = d1, and for d1 < ` define C`b3 to be the set of

Type B critical points for which dS = `.

The third type of decomposition is where the U(2, 1) structure splits into the direct sum of a

stable U(1, 1) structure and a U(1) structure. Equivalently, the bundle E2 splits into line bundles,

E2
∼= S⊕Q, and, depending on the degree of S and Q, the Higgs field takes on one of the following

forms.

(i) dS > 1
2(dQ + d1). In this case the maximal semistable subobject of the Higgs bundle

(E2 ⊕ E1, b, c) is a line subbundle of S, which does not interact with the Higgs field.

Define ` = dS . Since we have assumed that d2 ≤ 2d1 (see the Introduction), then the

condition ` > 1
2(dQ + d1) implies that d1 > d2 − ` = dQ. Minimality of the Yang-Mills-

Higgs functional on the subobject (Q ⊕ E1, b, c) then implies that b and c are related by
1
π

(
‖c‖2 − ‖b‖2

)
= d1 − dQ > 0 and therefore c 6= 0. Label these critical sets C`c1 . A

graphical representation of the Higgs field at these critical points is as follows.

•S

•E1

•Qc 6=0 00

bqq

The section c can only be nonzero if deg(E∗1Q⊗K) ≥ 0, and so these critical points only

exist for values of ` such that d2 − ` − d1 + 2g − 2 ≥ 0 and ` > 1
2(d2 − ` + d1). This is

equivalent to the condition that ` is in the range 1
3(d1 + d2) < ` ≤ d2 − d1 + 2g − 2.

(ii) dQ <
1
2(dS+d1) and d1 > dS . In this case the maximal semistable subobject of (E1, E2, b, c)

is (E1⊕S, b, c), and so we define ` = dS and dQ = d2− `. Then the same analysis as before
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shows that b and c are related by 1
π

(
‖c‖2 − ‖b‖2

)
= d1− dS > 0, and therefore c 6= 0. Call

these critical sets C`c2 . The corresponding picture is

•S

•E1

•Q

b

]] c 6=0

��

Critical sets of this type can only exist if c 6= 0, and so we must have deg(E∗1S ⊗K) ≥ 0.

Combining this with the conditions that dQ <
1
2(dS + d1) and d1 > dS gives

(2.10) max
(
d1 − 2g + 1, 1

3(2d2 − d1)
)
< ` < d1

The bound on the Toledo invariant 2d1 − d2 ≤ 3g − 3 is equivalent to d1 − (2g − 2) ≤
1
3(2d2 − d1). Therefore, the inequality (2.10) reduces to 1

3(2d2 − d1) < ` < d1.

(iii) dQ < 1
2(dS + d1) and d1 < dS . In this case the maximal semistable subobject of (E2 ⊕

E1, b, c) is (E1⊕S, b, c), and so we define ` = dS and dQ = d2−`. An analysis of the critical

point equations shows that now b 6= 0 and that b and c are related by 1
π

(
‖b‖2L2 − ‖c‖2L2

)
=

dS − d1 > 0. Call these critical sets C`c3 , and note that the quiver bundle picture reduces

to

•S

•E1

•Q

b 6=0

]] c

��

These critical sets can only exist if b 6= 0, and so deg(S∗E1 ⊗K) ≥ 0. Note that d1 < `

implies that dQ < 1
2(dS + d1), and so we have the inequalities d1 − ` + 2g − 2 ≥ 0 and

` > d1. Therefore d1 < ` ≤ d1 + 2g − 2.

Remark 2.2. From the above diagrams one can also read off the eigenspaces of ∗
(
FAq + bb∗ + c∗c

)
and ∗

(
FAp + b∗b+ cc∗

)
. For critical sets of type C`c1 , the bundles E1 ⊕Q and S form eigenspaces

of with distinct eigenvalues, and for critical sets of type C`c2 and C`c3 the bundles E1 ⊕ S and Q are

the distinct eigenspaces. The reason for the difference between the cases will become apparent in

the next section when we study the Harder-Narasimhan filtration: the bundle S always forms part

of the subobject of maximal slope, the bundle Q always forms part of the quotient and we take the

direct sum of E1 with either S or Q depending on the degrees of E1, S and Q.

Remark 2.3. Note that there are two possible values of ` that have not been included in the

above list. The first is ` = d1, for which the critical points have already been classified as type

Cd1b2 . The second is ` = 1
3(2d2−d1), in which case the critical point minimizes the Yang-Mills-Higgs

functional.
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Using the descriptions above, a standard calculation gives the following results for the equivari-

ant Poincaré polynomial of each nonminimal critical set. In Table 1 we have used the notation

Table 1. Classification of the critical sets and their topology

Critical set Range of values of ` Equivariant Poincaré polynomial

Ca n/a 1
(1−t2)2

Pt(J(X))P
G(E2)
t (Ass(E2))

C`b1
1
2d2 < ` < d1

1
(1−t2)3

Pt(J(X))3

C`b2 ` = d1
1

(1−t2)3
Pt(J(X))3

C`b3 d1 < ` 1
(1−t2)3

Pt(J(X))3

C`c1
1
3(d1 + d2) < ` ≤ d2 − d1 + 2g − 2 1

(1−t2)2
Pt(J(X))2Pt(S

`−d1+2g−2X)

C`c2
1
3(2d2 − d1) < ` < d1

1
(1−t2)2

Pt(J(X))2Pt(S
`−d1+2g−2X)

C`c3 d1 < ` ≤ d1 + 2g − 2 1
(1−t2)2

Pt(J(X))2Pt(S
d1−`+2g−2X)

Ass(E2) ⊂ A(E2) for the subset of semistable bundles. We denote the ordered set of possible values

in the labeling of the critical sets above by

(2.11) ∆d1,d2 = {1
2d2} ∪

{
` ∈ Z : ` > 1

3(2d2 − d1)
}

We will express the various components as Ca, C
`
b, and C`c.

2.2. Harder-Narasimhan and Morse stratifications. We now describe the algebraic stratifi-

cation of the space of U(2, 1) Higgs bundles. As in the previous section, let

V = E2 ⊕ E1 , Φ =

(
0 c
b 0

)
Recall that (V,Φ) is stable (resp. semistable) if

µ(F ) =
degF

rankF
< µ(V ) =

deg V

rankV
(resp. ≤)

for every Φ-invariant subsheaf 0 6= rankF 6= rankV . If (V,Φ) is not semistable, a maximally

destabilizing subbundle is a subsheaf 0 6= F ( V , satisfying the following:

• F is Φ-invariant;

• µ(F ) > µ(V );

• F is maximal in the sense that for any F ′ 6= F satisfying the first two conditions, then

µ(F ′) ≤ µ(F ), and if equality, then rankF ′ < rankF .

If F satisfies these conditions then F must be saturated, i.e. V/F is torsion-free. Unstable Higgs

bundles have a unique (Harder-Narasimhan) filtration by sub-Higgs bundles. The associated graded

of this filtration will be denoted by Gr(V,Φ).

Recall that by assumption, 2d1 ≥ d2. Below we determine all the possible Harder-Narasimhan

filtrations of unstable U(2, 1) Higgs bundles. Let F be a maximally destabilizing subbundle of

(V,Φ).
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Case I: rankF = 1. Let fi be the induced maps F → Ei. Then f2 ≡ 0 implies f1 is an isomorphism,

and f1 ≡ 0 implies f2 is everywhere injective, and we claim that one of these two possibilities occurs.

For suppose neither fi ≡ 0, and let F2 ⊂ E2 be the saturation of im f2. Then E1⊕F2 is a subbundle

with slope at least degF , contradicting the assumption that F is maximal. It follows that there

are two possibilities according to whether F lies in E1 or E2.

(i) If F = E1, then c ≡ 0. If E2 is semistable then the stratum is defined by the condition

c ≡ 0, and we label it by Sa. The quiver diagram in this case is

•E1 •E2
boo_ _ _ _

and the associated graded is (E2, 0)⊕(E1, 0) (In this diagram and the others below, we use

a dashed arrow to represent a component of the Higgs field that may or may not be zero

and a solid arrow to represent a component of the Higgs field that must be nonzero. If a

component of the Higgs field must be zero then there is no arrow between the vertices).

If the bundle E2 is unstable, let S ⊂ E2 be the maximal destabilizing line bundle, and

write 0 → S → E2 → Q → 0, with extension class [a] ∈ H1(X,Q∗S). Notice that

dS = degS < d1, since either S ⊂ ker b and S is a subobject of (V,Φ), or S is not in ker b

and S⊕E1 is a subobject. The associated graded Gr(V,Φ) = (E1, 0)⊕ (S, 0)⊕ (Q, 0), and

we label this stratum by S`b1 , where ` = degS. The quiver diagram for this case is

(S`b1)

•S

•E1

•Q

bS

ggO O O O O

bQ

wwo o o o o

a

���
�
�
�
�

(ii) If F = S ⊂ E2 with quotient Q, then S ⊂ ker b, E2 is unstable, and the graded object

of the Harder-Narasimhan filtration of E2 is precisely S ⊕ Q. If cQ ≡ 0, then we also

require dS > d1, for otherwise E1 would be invariant with slope at least dS . In this

case, Gr(V,Φ) = (S, 0) ⊕ (E1, 0) ⊕ (Q, 0). If cQ 6= 0, then the only requirement is that

dS >
1
3(d1+d2) (otherwise E1⊕Q would be invariant with slope at least dS), and Gr(V,Φ) =

(S, 0)⊕ (E1⊕Q, bQ, cQ), where (bQ, cQ) is the induced Higgs field on E1⊕Q coming from b

and the projection cQ of c to Q. We label the strata S`b3 and S`c1 , respectively. The quiver

diagrams for the two cases are

(S`b3)

•S

•E1

•Q
bQ

wwo o o o o

cS ''OOOOO a

���
�
�
�
�
�

(S`c1)

•S

•E1

•QcQ 6=0 11

bQqq

�
ztokf

cS ''OOOOO a

���
�
�
�
�
�

Case II: rankF = 2. The projection F → E1 cannot vanish. Indeed, if if did, then F = E2 and

d2/2 > (1/3)(d1 + d2). But this contradicts the assumption d2 ≤ 2d1. Let S be the kernel of the
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projection F → E1. Then deg(P = F/S) ≤ d1. We also have S ⊂ E2. Since E2/S is a subsheaf of

V/F which we assume to be torsion-free, we conclude that S is a subbundle of E2. Let [aF ] and

[a] denote the extension classes for the sequences

0 −→ S −→ F −→ P −→ 0(2.12)

0 −→ S −→ E2 −→ Q −→ 0(2.13)

In terms of the smooth splittings E2⊕E1 = S⊕Q⊕E1 and F = S⊕P , we can write the inclusion

F ↪→ V and the Higgs field as

f =

1 f1

0 f2

0 fP

 , Φ =

 0 0 cS
0 0 cQ
bS bQ 0


where fP : P → E1 is nonzero (since the projection of F to E1 cannot vanish), and f1 : P → S,

f2 : P → Q are induced by the projection from F to E2. Since f has everywhere rank 2, f2 and fP

have no common zeros. Holomorphicity of f implies f2, fP holomorphic, and f1 satisfies

(2.14) ∂̄f1 + af2 − aF = 0

where ∂̄ is the induced holomorphic structure on P ∗⊗S. On the other hand, since F is destabilizing

deg(QP ∗) = dQ − degP = d2 − dS − degP = d2 − degF

< d2 − 2
3(d1 + d2) = −1

3(2d1 − d2) ≤ 0

by the assumption on degrees. It follows that f2 ≡ 0, fP gives an isomorphism P ∼= E1, and by

(2.14) the sequence (2.12) splits. The condition that F ∼= E1 ⊕ S be invariant under the Higgs

field is equivalent to cQ ≡ 0. Moreover, S is invariant if and only if bS ≡ 0. These are the only

conditions coming from invariance.

A splitting of F ⊂ V gives a splitting of (2.13). In this case, Gr(V,Φ) = (E1 ⊕ S, bS , cS) ⊕
(Q, 0). and the condition on degrees is ` > 1

3(2d2 − d1). By the assumption that F is maximally

destabilizing, ` < d1 ⇒ cS 6= 0, and ` > d1 ⇒ bS 6= 0. We label the former case S`c2 and the latter

case S`c3 . When ` = d1 then there are no conditions on bS and cS . We label this stratum Sb2 . The

quiver diagrams for these strata are

(S`b2)

•S

•E1

•Q

a

���
�
�
�
�
�

cS

��

X T O J D
>

bQ

wwo o o o o

bS

^^

[XTOJ
D

> (S`c2)

•S

•E1

•Q

a

���
�
�
�
�
�

cS 6=0

��

bQ

wwo o o o o

bS

^^

[XTOJ
D

> (S`c3)

•S

•E1

•Q

bS 6=0

^^

bQ

wwo o o o o

cS

��

X T O J D
>

a

���
�
�
�
�
�

We conclude that there is a 1-1 correspondence between the associated graded objects listed

above and the critical sets of the YMH functional. The collection {Sa, S`b, S`c}, where ` ∈ ∆d1,d2

has its natural ordering, combine to form the Harder-Narasimhan stratification of B(d1, d2). As

in [20], however, it turns out that this stratification is too fine a structure for an equivariantly
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perfect Morse theory. The main reason is that unlike the situation in [7], we cannot prove the

Morse-Bott lemma for all critical sets (see Proposition 3.12). Instead, there is a cancellation that

occurs between certain B and C strata (cf. Remark 3.8) that makes the combination of these strata

more suitable for the Morse theory. For k ∈ ∆d1,d2 define

Xk =



Bss(d1, d2) ∪
⋃

`∈∆d1,d2
, `≤k

S`c k < d2/2

Bss(d1, d2) ∪ Sa ∪
⋃

`∈∆d1,d2
, `≤d2/2

S`c k = d2/2

Xss ∪ Sa ∪
⋃

`∈∆d1,d2
, `≤k

S`c ∪
⋃

`∈∆d1,d2
, `≤k

S`b k > d2/2

(2.15)

X∗k =


Bss(d1, d2) ∪

⋃
`∈∆d1,d2

, `<k

S`c k ≤ d2/2

Bss(d1, d2) ∪ Sa ∪
⋃

`∈∆d1,d2
, `<k

S`c ∪
⋃

`∈∆d1,d2
, `<k

S`b k > d2/2
(2.16)

In the notation above, S`c means the union over all possible C-strata with index `. This gives a

G-invariant stratification of B(d1, d2) which we refer to as the modified Harder-Narasimhan strati-

fication.

Remark 2.4. As in [20], the ordering of the set ∆d1,d2 does not in general coincide with the one

coming from values of the YMH functional. This is irrelevant for the calculations in this paper.

As in [21], we have

Proposition 2.5. The Morse stratification of the YMH flow coincides with the Harder-Narasimhan

stratification of B(d1, d2). In particular, the gradient flow of the YMH functional defines G-

equivariant deformation retractions Bmin(d1, d2) ↪→ Bss(d1, d2), Ca ↪→ Sa, C`b ↪→ S`b, and C`c ↪→ S`c.

We now state one of the main results of this paper. The proof occupies the next section.

Theorem 2.6 (Perfect stratification). The modified Harder-Narasimhan stratification {Xk}k∈∆d1,d2

of B(d1, d2) is G-equivariantly perfect in the sense that the inclusions Bss(d1, d2) ⊂ Xk ⊂ X` induce

surjections H∗G(Xk)→ H∗G(Bss(d1, d2)) and H∗G(X`)→ H∗G(Xk) for all k ≤ ` in ∆d1,d2.

Corollary 2.7 (Kirwan surjectivity). The Kirwan map κ in (1.9) is surjective.

In order to prove Theorem 2.6 we shall need to bootstrap an intermediary stratification lying

between the HN and modified HN strata. Define {X ′k}k∈∆d1,d2
by setting X ′k = X∗k ∪ Skc . There are

three crucial regions, essentially depending upon the number of C-strata. We refer to these by the

following:

(I) where 1
3(d1 + d2) < k ≤ d2 − d1 + 2g − 2;

(II) where 1
3(2d2 − d1) < k ≤ 1

3(d1 + d2), or where d2 − d1 + 2g − 2 < k ≤ d1 (if possible);

(III) where max{d1, d2 − d1 + 2g − 2} < k.
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3. Singular Morse Theory

In this section we develop the necessary machinery to perform the Morse theory calculations

on the singular space B(E1, E2). Recall Kirwan’s result [14]. For a Hamiltonian action of a

compact connected Lie group K on a compact smooth symplectic manifold M , there is a compatible

Riemannian structure such that induced Morse stratification {Sµ}µ∈I is smooth, where I is a

partially ordered set labeling the critical sets. Let

Xµ = ∪ν≤µSν , X∗µ = ∪ν<µSν

Then Kirwan shows that the long exact sequence

(3.1) · · · −→ Hp
K(Xµ, X

∗
µ)

αp−→ Hp
K(Xµ)

βp−→ Hp
K(X∗µ) −→ · · ·

splits into short exact sequences. Moreover, the Thom isomorphism implies that Hp
K(Xµ, X

∗
µ) ∼=

H
p−λµ
K (Cµ), where Cµ is the critical set at the minimum of the stratum Sµ and λµ is the Morse

index. The splitting of (3.1) is a consequence of the fact that αp is always injective, which in turn

follows from the Atiyah-Bott lemma [1]. Therefore, to compute the change in cohomology that

occurs when attaching the stratum Sµ, it is sufficient to know the cohomology and the Morse index

of each critical set. Moreover, αp injective for all p implies that βp is surjective for all p, and so

inclusion X∗µ ↪→ Xµ induces a surjective map H∗K(Xµ)→ H∗K(X∗µ).

When the ambient space is singular, the idea behind the calculation is an extension of the

one described above. We still study the long exact sequence (3.1), however the calculation of

Hp
K(Xµ, X

∗
µ) is much more complicated than an application of the Thom isomorphism, and in fact

αp is not always injective for SU(2, 1) Higgs bundles.

In order to compute H∗G(Xµ, X
∗
µ) from (3.1), we first compute the relative cohomology groups

H∗G(ν−µ , ν
−
µ \{0}) (where ν−µ denotes the negative normal space to the critical set Cµ). The strategy

is to compute these groups by a series of excisions and a diagram chase that reduces the problem to

computing the cohomology of lower-rank moduli spaces that are explicitly known (see for example

the proof of Lemma 3.6). The spaces Xµ (unions of strata) also have an analogous collection of

spaces defined using excision, where we construct the excisions using the algebraic characterization

of the strata by Harder-Narasimhan type (see for example the proof of Proposition 3.12), and to

complete the picture we need to compute the cohomology of these spaces using the explicit results

for the negative normal space to each critical set. This is the Morse-Bott isomorphism that is the

main result of Section 3.3. Once this process is complete then we can compute H∗G(Xµ, X
∗
µ) and

study the analog of (3.1) in our case.

An essential part of the above procedure is the result of Proposition 2.5, which gives us the

ability to switch between the algebraic description of the strata (which we use to define the spaces

constructed from the strata by excision) and the analytic description (which we use to relate the

computations on the strata to those on the critical sets).
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This section is divided into four subsections. In the first subsection we describe the negative

eigenspace of the Hessian at each critical point. In the second we compute the relevant cohomology

groups needed to compute H∗G(ν−µ , ν
−
µ \ {0}). In the third subsection we prove the isomorphism

H∗G(Xµ, X
∗
µ) ∼= H∗G(ν−µ , ν

−
µ \{0}) (in certain cases), and in the final section we show that the modified

Harder-Narasimhan stratification defined in the previous section is equivariantly perfect for U(2, 1)

Higgs bundles (i.e. our analog of (3.1) splits into short exact sequences).

Finally, it is worth mentioning here that a priori we should do our cohomology computations

on a small neighborhood of the zero section in the negative normal space ν−µ . The proofs of the

relevant results (e.g. Proposition 3.12) decompose all of the necessary calculations to calculations

where the ambient space is a manifold, which allows us to study the whole space ν−µ instead of a

neighborhood of the zero section. This observation simplifies some of the definitions and calculations

in this section.

3.1. Indices of critical sets. First, recall the following result for Higgs vector bundles.

Lemma 3.1. Let (A,Φ) be a critical point of YMH on the space of Higgs bundles. A pair (α,ϕ) ∈
Ω0,1(EndV )⊕ Ω1,0(EndV ) is in the negative eigenspace of the Hessian at (A,Φ) if

(i) The pair (α,ϕ) is orthogonal to the GC-orbit through (A,Φ). Equivalently, ∂̄∗Aα−∗̄[Φ, ∗̄ϕ] =

0.

(ii) The pair (A+ α,Φ + ϕ) is a Higgs pair. Equivalently, the following equation is satisfied

∂̄Aϕ+ [α,Φ] + [α,ϕ] = 0

(iii) The pair (α,ϕ) is an eigenvector for the operator i ad ∗(FA + [Φ,Φ∗]) with negative eigen-

value. Equivalently, the following equations are satisfied

i [∗(FA + [Φ,Φ∗]), α] = λα

i [∗(FA + [Φ,Φ∗]), ϕ] = λϕ

for some λ < 0. (Note that the eigenvalues are necessarily real since i ∗ (FA + [Φ,Φ∗]) is

self-adjoint.)

To translate this into a statement for U(p, q) Higgs bundles V = Ep ⊕ Eq, we use the following

inclusions

Ω0,1(EndEp)⊕ Ω0,1(EndEq) ↪→ Ω0,1(EndV )

Ω0(E∗pEq ⊗K)⊕ Ω0(E∗qEp ⊗K) ↪→ Ω0((EndV )⊗K)

Corollary 3.2. Let (Ap, Aq, b, c) be a critical point of YMH on B(Ep, Eq). Then

(αp, αq, β, γ) ∈ Ω0,1(EndEp)⊕ Ω0,1(EndEq)⊕ Ω0(E∗pEq ⊗K)⊕ Ω0(E∗qEp ⊗K)

is in the negative eigenspace of the Hessian at (Ap, Aq, b, c) if
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(i) (αp, αq, β, γ) is orthogonal to the GC-orbit through (Ap, Aq, b, c). Equivalently, the following

equations are satisfied

∂̄∗Aqαq − ∗̄(b(∗̄β))− ∗̄((∗̄γ)c) = 0

∂̄∗Apαp − ∗̄((∗̄β)b)− ∗̄(c(∗̄γ)) = 0

(ii) (Ap + αp, Aq + αq, b + β, c + γ) is a Higgs pair. Equivalently, the following equations are

satisfied

∂̄Aβ + (αq)(b+ β) + (b+ β)(αp) = 0

∂̄Aγ + (αp)(c+ γ) + (c+ γ)(αq) = 0

where ∂̄A denotes the holomorphic structure induced by ∂̄Ap and ∂̄Aq on both E∗pEq ⊗ K
and E∗qEp ⊗K.

(iii) The pair (α,ϕ) is an eigenvector for the operator i ad ∗(FA + [Φ,Φ∗]) with negative eigen-

value. Equivalently, the following equations are satisfied

i
[
∗(FAq + bb∗ + c∗c), αq

]
= λαq

i
[
∗(FAp + b∗b+ cc∗), αp

]
= λαp

i
(
∗(FAq + bb∗ + c∗c)β − β ∗ (FAp + b∗b+ cc∗)

)
= λβ

i
(
∗(FAp + b∗b+ cc∗)γ − γ ∗ (FAq + bb∗ + c∗c)

)
= λγ

for some λ < 0.

Now specialize again to U(2, 1), i.e. rankEi = i.

(1) Ca. The negative eigenspace ν−a of the Hessian consists of holomorphic sections

γ ∈ H0(E∗1E2 ⊗K)

and the quiver bundle picture is

(A) •E1 •E2

γ //____

(2) The critical points where E2 = S ⊕ Q and the Higgs field is zero have negative eigenspace as

follows.

(i) C`b3 . Since ` = dS > d1, then the negative eigenspace ν−` of the Hessian consists of sections

(α, βS , γQ) ∈ H0,1(S∗Q)⊕H0(S∗E1 ⊗K)⊕H0(E∗1Q⊗K).

These show up in the quiver bundle picture as dashed arrows in the diagram below

(B3)

•S

•E1

•Q

βS

ggO O O O O

γQ
77ooooo

α

OO�
�
�
�
�
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(ii) C`b1 . Since d2/2 < ` = dS < d1, then the negative eigenspace of the Hessian is as follows

ν−` =
{

(α, γS , γQ) ∈ H0,1(S∗Q)⊕H0(E∗1S ⊗K)⊕ Ω0(E∗1Q⊗K) : ∂̄AγQ + αγS = 0
}

The quiver bundle diagram is

(B1)

•S

•E1

•Q

γS ''OOOOO

γQ
77ooooo

α

OO�
�
�
�
�

This is the case where the negative eigenspace of the Hessian is a singular space, and not

a vector space.

As for the example of stable pairs (see for example [20, Lemma 8.3.12]), the idea is to

further decompose the negative eigenspace of the Hessian. We have the equations

(3.2) ∂̄∗A1
α = 0 , ∂̄AγQ + αγS = 0 , ∂̄AγS = 0.

Consider the projection from the solutions of (3.2) to the set {γS : ∂̄AγS = 0}. The

remaining two equations are linear in (α, γQ), and therefore the fibers of this projection

are vector spaces. The goal is to compute the dimension of these fibers (which will depend

on γS).

The case where γS = 0 is easy, since the equations decouple and the space of solutions is

H0,1(S∗Q)⊕H1,0(E∗1Q). When γS 6= 0 then the equations do not decouple, and we need

to consider the following deformation complex (cf. (2.2))

(3.3) Ω0,1(S∗Q)⊕ Ω1,0(E∗1Q)
D
−−−→ Ω0(S∗Q)⊕ Ω1,1(E∗1Q),

where D(α, γQ) = (∂̄∗Aα, ∂̄γQ + αγS). The adjoint is D∗(u, η) =
(
∂̄Au− ∗̄ (γS ∗̄η) , ∂̄∗Aη

)
.

We claim that the kernel of D∗ is trivial. To see this, note that (u, η) ∈ kerD∗ implies

that ∂̄∗Aη = 0, and ∂̄Au − ∗̄ (γS ∗̄η) = 0. The following calculation shows that this second

equation decouples〈
∂̄Au, ∗̄ (γS ∗̄η)

〉
=
〈
u, ∂̄∗A∗̄ (γS ∗̄η)

〉
=
〈
u,−∗̄∂̄A∗̄∗̄ ((γS)∗̄η)

〉
=
〈
u, ∗̄∂̄A (γS ∗̄η)

〉
=
〈
u, ∗̄

(
∂̄AγS ∗̄η − γS ∂̄A∗̄η

)〉
= 0

since ∂̄AγS = 0 and −∗̄∂̄A∗̄η = ∂̄∗Aη = 0 by assumption.

Therefore (u, η) ∈ kerD∗ implies that ∂̄Au = 0, ∗̄ (γS ∗̄η) = 0, and ∂̄∗Aη = 0. Since

degS∗Q = 0 then the first equation implies that u = 0. Since γS 6= 0 then the second

equation implies that η = 0, and together this shows that the kernel of D∗ is trivial.
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Therefore we can compute dimC kerD from the index of the complex and Riemann-Roch

dimC kerD = h0,1(S∗Q)− h0(S∗Q) + h1,0(S∗Q)− h1,1(E∗1Q)

= g − 1− deg(S∗Q) + h0,1(Q∗E1)− h0(Q∗E1)

= g − 1− deg(S∗Q) + g − 1− deg(Q∗E1)

= 2g − 2 + dS − d1

We have proven the following

Lemma 3.3. The projection map from the space of solutions to (3.2) to the set {γS :

∂̄AγS = 0} has linear fibers. The fiber over zero is isomorphic to H0,1(S∗Q)⊕H1,0(E∗1Q),

and the fiber over any nonzero point has dimension 2g − 2 + dS − d1.

(iii) When ` = d1 then the homomorphism γS in the diagram (B1) no longer corresponds to a

negative eigenvalue of the Hessian (the eigenvalue is now zero). Therefore we have

ν−` = H0,1(S∗Q)⊕H0(E∗1Q⊗K)

and the quiver bundle picture is

(B2)

•S

•E1

•Q
γQ

77ooooo
α

OO�
�
�
�
�

(3) The critical points where E2 = S ⊕Q and the Higgs field is nonzero have negative eigenspace

as follows.

(i) C`c1 . Since ` = dS >
1
2(dQ + d2) then the negative eigenspace η−` of the Hessian is

η−` = H0,1(S∗Q)⊕H0(S∗E1 ⊗K)

The quiver bundle picture is

(C1)

•S

•E1

•Q

βS

ggO O O O O

α

OO�
�
�
�
�

cQ
77ooooooooo

(ii) C`c2 . Since dQ <
1
2(dS +d1) then the negative eigenspace ζ−` of the Hessian consists of pairs

(α, γQ) ∈ Ω0,1(S∗Q)⊕ Ω0(E∗1Q⊗K) such that

∂̄∗A1
α− ∗̄(cS(∗̄γQ)) = 0 , ∂̄AγQ + αcS = 0



20 RICHARD A. WENTWORTH AND GRAEME WILKIN

The quiver bundle picture is

(C2)

•S

•E1

•Q
γQ

77ooooo
α

OO�
�
�
�
�cS ''OOOOOOOOO

Note that these equations are both linear in (α, γQ), and that they correspond to the

harmonic forms in the middle term of the following deformation complex

Ω0(S∗Q)
D1

−−−→ Ω0,1(S∗Q)⊕ Ω1,0(E∗1Q)
D2

−−−→ Ω1,1(E∗1Q)

where the maps D1 and D2 are

D1(u) =
(
∂̄Au,−ucS

)
, D2(α, γ) = ∂̄AγQ + αcS

(A calculation shows that D2 ◦D1 = 0.) The corresponding adjoints are

D∗1(α, γ) = ∂̄∗A1
α− ∗̄(cS ∗̄γQ) , D∗2(η) =

(
∗̄(cS ∗̄η), ∂̄∗Aη

)
If cS 6= 0, then the maps u 7→ −ucS and η 7→ ∗̄(cS ∗̄η) both have trivial kernel, and hence the

dimension of the harmonic forms in the middle term is equal to the index of the complex.

dimC (kerD∗1 ∩ kerD2) = h0,1(L∗1L2)− h0(L∗1L2) + h1,0(E∗1L2)− h1,1(E∗1L2)

= g − 1 + `− `2 + h0,1(L∗2E1)− h0(L∗2E1)

= g − 1 + `− `2 + g − 1 + `2 − d2

= 2g − 2 + `− d2

Therefore the negative eigenspace of the Hessian at these critical points has constant

(complex) dimension 2g − 2 + `− d2.

(iii) C`c3 . Since dQ <
1
2(dS +d2) then the negative eigenspace ζ−` of the Hessian consists of pairs

(α, γQ) ∈ Ω0,1(S∗Q) ⊕ Ω0(E∗1Q ⊗K) such that ∂̄∗A1
α = 0, ∂̄AγQ = 0, and so the space of

solutions is isomorphic to H0,1(S∗Q)⊕H0(E∗1Q⊗K). The quiver bundle picture is

(C3)

•S

•E1

•Q
γQ

77ooooo
α

OO�
�
�
�
�

bS

ggOOOOOOOOO

3.2. Cohomology of negative normal directions. We now compute the relative cohomology

groups of the negative normal spaces given in the previous section.

(1) Consider the case of the A-stratum, where ` = d2/2. Let

ν−a =
{

(E1, E2, 0, γ) : γ ∈ H0(E∗1E2 ⊗K) , E2 semistable
}

ν ′a =
{

(E1, E2, 0, γ) ∈ ν−a : γ 6= 0
}
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We also fix

(3.4) σmin := 2g − 2− d1 + d2/2 + 1/4

The important point is that 1
2 deg(E∗1E2 ⊗K) < σmin < b1

2 deg(E∗1E2 ⊗K)c+ 1.

Lemma 3.4. For the A stratum:

(i) H∗G(ν−a ) ' H∗G(A(E1)×Ass(E2))

(ii) If d2 is odd, then H∗G(ν ′a) ' H∗(Nσmin(E∗1E2 ⊗K))

(iii) If d2 is even, then

H∗G(ν ′a) ' H∗(Nσmin(E∗1E2 ⊗K))⊕H∗−2(2g−2−d1+d2/2)
S1×S1 (J(X)× J(X)× S2g−2−d1+d2/2X)

Proof. Part (i) follows by the deformation retraction γ 7→ 0. Let E = E∗1E2 ⊗K. Part (ii) follows

because G(E) acts freely with ν ′a/G = Nσmin(E). Part (iii) is slightly more subtle. A σmin-Bradlow

stable pair is a nonvanishing section γ ∈ H0(E) with the additional assumption, in case E is

strictly semistable, that γ does not lie in the maximally destabilizing subbundle. Hence, the space

ν ′a is obtained by attaching the first nonminimal stratum to the Bradlow semistable stratum in the

σmin-YMH stratification of the space of pairs given in [20, Section 8.2.1]. Then part (iii) follows

from the computation in [20, Theorem 8.4.1]. �

(2) 1
3(d1 + d2) < ` ≤ d2 − d1 + 2g − 2. This is the case of the C1-stratum; see the quiver diagram

(C1). Define the following spaces

η−` =
{

(α, βS) : ∂̄∗α = 0 , ∂̄βS = 0
}

η′` =
{

(α, βS) ∈ η−` : (α, βS) 6= 0
}

η′′` =
{

(α, βS) ∈ η−` : α 6= 0
}

Then by the argument in [7] we have

Lemma 3.5. For the C1 stratum,

H∗G(η−` , η
′′
` ) = H

∗−2(d2−2`+g−1)
S1×S1

(
J(X)× J(X)× S`−d1+2g−2X

)
(3.5)

H∗G(η′`, η
′′
` ) = H

∗−2(d2−2`+g−1)
S1

(
J(X)× Sd2−d1+2g−2−`X × Sd1−`+2g−2X

)
(3.6)

H∗G(η−` , η
′′
` ) = H∗G(η−` , η

′
`)⊕H∗G(η′`, η

′′
` )(3.7)

(3) 1
3(2d2− d1) < ` < d1. These are the B1 and C2 strata. Consider first the diagram (B1). Define

the following spaces

ν−` =
{

(α, γS , γQ) : ∂̄∗α = 0 , ∂̄γQ + αγS = 0 , ∂̄γS = 0
}

ν ′` =
{

(α, γS , γQ) ∈ ν−` : (α, γS , γQ) 6= 0
}

ν ′′` =
{

(α, γS , γQ) ∈ ν−` : α 6= 0
}

ω` =
{

(α, γS , γQ) ∈ ν−` : (α, γQ) 6= 0
}
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Lemma 3.6. For the B1 stratum, ` ≤ d2 − d1 + 2g − 2,

H∗G(ν−` , ν
′′
` ) = H

∗−2(2`−d2+g−1)
S1×S1×S1 (J(X)× J(X)× J(X))(3.8)

H∗G(ν ′`, ν
′′
` ) = H∗G(ν ′`, ω`)⊕H∗G(ω`, ν

′′
` )(3.9)

H∗G(ν ′`, ω`) = H
∗−2(`−d1+2g−2)
S1×S1

(
J(X)× J(X)× S`−d1+2g−2X

)
(3.10)

H∗G(ω`, ν
′′
` ) = H

∗−2(2`−d2+g−1)
S1×S1

(
J(X)× J(X)× Sd2−d1+2g−2−`X

)
(3.11)

If d2 − d1 + 2g − 2 < ` < d1, then (3.8) holds, with

H∗G(ν−` , ν
′′
` ) = H∗G(ν−` , ν

′
`)⊕H∗G(ν ′`, ν

′′
` )(3.12)

H∗G(ν ′`, ν
′′
` ) = H

∗−2(`−d1+2g−2)
S1×S1

(
J(X)× J(X)× S`−d1+2g−2X

)
(3.13)

Proof. Notice that (3.8) follows by retracting (γS , γQ) 7→ 0 and using the Atiyah-Bott argument.

Consider the following commutative diagram.

...

��
· · · // Hp

G(ν−` , ν
′
`)

//

��

Hp
G(ν−` ) // Hp

G(ν ′`)
// · · ·

Hp
G(ν−` , ν

′′
` )

��

ξ
88pppppppppp

ξ′′

&&NNNNNNNNNNN

· · · // Hp
G(ν ′`, ω`)

// Hp
G(ν ′`, ν

′′
` )

��

β // Hp
G(ω`, ν

′′
` ) // · · ·

...

(3.14)

By the argument in [7] and assuming (3.11), the map ξ′′ is surjective. It follows that the lower

horizontal exact sequence splits. Thus, (3.9) follows from (3.11). Define the following spaces

W` =
{

(α, γS , γQ) ∈ ν−` : γS = 0
}

W ′` = {(α, γS , γQ) ∈ ν` : γS = 0, (α, γQ) 6= 0}
W ′′` =

{
(α, γS , γQ) ∈ ν−` : γS = 0, α 6= 0

}
Z` =

{
(α, γS , γQ) ∈ ν−` : (γS , γQ) = 0, α 6= 0

}
R` =

{
(α, γS , γQ) ∈ ν−` : γQ 6= 0, (α, γS) = 0

}
Y ′′` =

{
(α, γS , γQ) ∈ ν−` : γS 6= 0, (α, γQ) 6= 0

}
T` =

{
(α, γS , γQ) ∈ ν−` : γS 6= 0, (α, γQ) = 0

}
Y ′` =

{
(α, γS , γQ) ∈ ν−` : γS 6= 0

}
Y ′′` =

{
(α, γS , γQ) ∈ ν−` : γS 6= 0, (α, γQ) 6= 0

}
T` =

{
(α, γS , γQ) ∈ ν−` : γS 6= 0, (α, γQ) = 0

}
Note that Y ′` = ν−` \ W` = ν ′` \ W ′` and Y ′′` = ω` \ W ′`. By the retraction γS 7→ 0, the pair

(ω`, ν
′′
` ) ' (W ′`,W

′′
` ). By excision,

H∗G(W ′`,W
′′
` ) ' H∗G(W ′` \ Z`,W ′′` \ Z`)

Now W ′`\Z` fibers over R` with fiber dimension dS−dQ+g−1. Hence, (3.11) follows from the Thom

isomorphism. Finally, for (3.10) we need the following lemma, whose proof is straightforward.
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Lemma 3.7. For fixed γS 6= 0, the space of solutions (α, γQ) to ∂̄∗α = 0, ∂̄γQ + αγS = 0, has

dimension = `− d1 + 2g − 2.

Excision of W ′` gives H∗G(ν ′`, ω`) ' H∗G(ν ′` \W ′`, ω` \W ′`) = H∗G(Y ′` , Y
′′
` ). Now by the lemma, Y ′` fibers

over T` with fiber dimension `− d1 + 2g − 2, and (3.10) again follows from Thom isomorphism. In

case d2−d1 + 2g−2 < ` < d1, then notice that W ′` is closed in ν ′′` . Hence, (3.13) follows by Lemma

3.7 and excision. Eq. (3.12) follows by the argument in [7]. �

For C2, the normal directions are given by

ζ−` =
{

(α, γQ) : ∂̄∗α = 0 , ∂̄γQ + αcS = 0
}

ζ ′` =
{

(α, γQ) ∈ ζ−` : (α, γQ) 6= 0
}

where cS 6= 0. It follows from Lemma 3.7 that

(3.15) H∗G(ζ−` , ζ
′
`) ' H

∗−2(`−d1+2g−2)
S1×S1 (J(X)× J(X)× S`−d1+2g−2X)

Remark 3.8. For the B1 and C2 strata, ` ≤ d2 − d1 + 2g − 2, H∗G(ν ′`, ω`) ' H∗G(ζ−` , ζ
′
`). In case

d2 − d1 + 2g − 2 < ` < d1, then H∗G(ν ′`, ν
′′
` ) ' H∗G(ζ−` , ζ

′
`).

(4) d1 ≤ `. These are the B2, B3, and C3 strata. Consider first the the (C3) diagram. Define the

following spaces

ζ−` =
{

(α, γQ) : ∂̄∗α = 0 , ∂̄γQ = 0
}

ζ ′` =
{

(α, γQ) ∈ ζ−` : (α, γQ) 6= 0
}

ζ ′′` =
{

(α, γQ) ∈ ζ−` : α 6= 0
}

Then by the argument in [7] we have

Lemma 3.9. For the C3 stratum, if ` ≤ d2 − d1 + 2g − 2 then

H∗G(ζ−` , ζ
′′
` ) = H

∗−2(2`−d2+g−1)
S1×S1

(
J(X)× J(X)× Sd1−`+2g−2X

)
(3.16)

H∗G(ζ ′`, ζ
′′
` ) = H

∗−2(2`−d2+g−1)
S1

(
J(X)× Sd2−d1−`+2g−2X × Sd1−`+2g−2X

)
(3.17)

H∗G(ζ−` , ζ
′′
` ) = H∗G(ζ−` , ζ

′
`)⊕H∗G(ζ ′`, ζ

′′
` )(3.18)

If d2 − d1 + 2g − 2 < ` ≤ d1 + 2g − 2 then

(3.19) H∗G(ζ−` , ζ
′
`) ' H

∗−2(2`−d2+2g−2)
S1×S1 (J(X)× J(X)× Sd1−`+2g−2X)

The B2 case is exactly the same as the C3 case. We define the spaces ν−d1 , ν ′d1 , and ν ′′d1 by analogy

to ζ−` , ζ ′`, and ζ ′′` above.

Lemma 3.10. For the B2 stratum, if d1 ≤ d2 − d1 + 2g − 2, then

H∗G(ν−d1 , ν
′′
d1) = H

∗−2(2d1−d2+g−1)
S1×S1 (J(X)× J(X)× J(X))(3.20)

H∗G(ν ′d1 , ν
′′
d1) = H

∗−2(2d1−d2+g−1)
S1

(
J(X)× J(X)× Sd2−2d1+2g−2X

)
(3.21)

H∗G(ν−d1 , ν
′′
d1) = H∗G(ν−d1 , ν

′
d1)⊕H∗G(ν ′d1 , ν

′′
d1)(3.22)
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If d2 − d1 + 2g − 2 < d1, then

(3.23) H∗G(ν−d1 , ν
′
d1) ' H∗−2(2d1−d2+d−1)

S1×S1×S1 (J(X)× J(X)× J(X))

Finally, consider the (B3) diagram. There are three cases. First, if d1 < ` ≤ d2 − d1 + 2g − 2,

define the following spaces

ν−` =
{

(α, βS , γQ) : ∂̄∗α = 0 , ∂̄βS = 0 , ∂̄γQ = 0
}

ν ′` =
{

(α, βS , γQ) ∈ ν−` : (α, βS , γQ) 6= 0
}

ν ′′` =
{

(α, βS , γQ) ∈ ν−` : α 6= 0
}

ω` =
{

(α, βS , γQ) ∈ ν−` : (a, γQ) 6= 0
}

Lemma 3.11. For the B3 stratum, d1 < ` ≤ d2 − d1 + 2g − 2,

H∗G(ν−` , ν
′′
` ) = H

∗−2(2`−d2+g−1)
S1×S1×S1 (J(X)× J(X)× J(X))(3.24)

H∗G(ν ′`, ν
′′
` ) = H∗G(ν ′`, ω`)⊕H∗G(ω`, ν

′′
` )(3.25)

H∗G(ν ′`, ω`) = H∗G(ζ−` , ζ
′
`)(3.26)

H∗G(ω`, ν
′′
` ) = H

∗−2(2`−d2+g−1)
S1×S1

(
J(X)× J(X)× Sd2−d1−`+2g−2X

)
(3.27)

Proof. (3.24) follows as before, and (3.25) follows from (3.27). For (3.26), use excision on the set

{βS = 0}. Finally, for (3.27), first retract βS 7→ 0 and then excise the set {γS = 0}. The rest fibers

over {γS 6= 0}, and the result follows from the Thom isomorphism. �

In case d2 − d1 + 2g − 2 < ` ≤ d1 + 2g − 2, then γQ ≡ 0. Eq. (3.24) holds as before, but now

H∗G(ν ′`, ν
′′
` ) = H∗G(ζ−` , ζ

′
`)

H∗G(ν−` , ν
′′
` ) = H∗G(ν−` , ν

′
`)⊕H∗G(ν ′`, ν

′′
` )

(3.28)

If d1 + 2g − 2 < `, then both β, γ ≡ 0, and by the Atiyah-Bott isomorphism

(3.29) H∗G(ν−` , ν
′
`) ' H

∗−2(2`−d2+g−1)
S1×S1×S1 (J(X)× J(X)× J(X))

3.3. The Morse-Bott Lemma. The goal of this section is prove the validity of the Morse-Bott

isomorphism, which relates the equivariant cohomology of the pair of successive strata to the

equivariant cohomology of the pair consisting of negative normal directions and nonzero negative

normal directions. Because of singularities, Bott’s argument in [2] does not apply, and as in [7] and

[20] we need to circumvent this. In fact, we do not prove the Morse-Bott lemma for all critical sets.

Nevertheless, the results below are sufficient for the cohomological calculations in the next section.

We begin with particular regions of the parameter ` ∈ ∆d1,d2 using the definition on page 14.

Proposition 3.12. For regions (II) and (III),

H∗G(X∗d2/2 ∪ Sa, X
∗
d2/2

) ' H∗G(ν−a , ν
′
a)(3.30)

H∗G(X`, X
′
`) ' H∗G(ν−` , ν

′
`)(3.31)

H∗G(X ′`, X
∗
` ) ' H∗G(ζ−` , ζ

′
`) (` ≤ d1 + 2g − 2)(3.32)
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Moreover, in these regions the inclusions X ′` ⊂ X` and X∗` ⊂ X ′` induce surjections H∗G(X`) −→
H∗G(X ′`) and H∗G(X ′`) −→ H∗G(X∗` ).

We will need the following result. Consider U(2, 1) bundles where b ≡ 0, i.e. quiver bundles of

the form

(3.33) •E1 •E2
c //

The data is clearly equivalent to a choice of holomorphic section (also denoted c) of the bundle

E∗1E2 ⊗K. We have the following

Lemma 3.13. For quivers of the type above, Higgs (semi)stability of (E2 ⊕ E1, 0, c) is equivalent

to Bradlow (semi)stability of the pair (E∗1E2 ⊗K, c) for σ = σ(d1, d2) as defined in (1.2).

Proof. Set Φ =

(
0 c
0 0

)
and E = E∗1E2 ⊗ K. Any line subbundle S ⊂ E2 is automatically Φ-

invariant, so Higgs semistability implies dS ≤ 1
3(d1 + d2). If moreover c(E1) ⊂ S ⊗K, then Higgs

semistability implies 1
2(dS + d1) ≤ 1

3(d1 + d2). On the other hand, S ⊂ E2 gives a line subbundle

E∗1S ⊗ K ⊂ E. Then σ-semistability implies deg(E∗1S ⊗ K) ≤ σ, or dS − d1 + 2g − 2 ≤ σ. If

c(E1) ⊂ S⊗K, then the corresponding section of E lies in E∗1S⊗K ⊂ E, so σ-semistability implies

σ ≤ degE − deg(E∗1S ⊗K ⊂ E) ≤ d2 − d1 − dS + 2g − 2

Now for the given choice σ = σ(d1, d2) as in (1.2), the conditions for Higgs and σ-semistability are

equivalent. �

Proof of Proposition 3.12. For the C2 stratum, the C3 stratum d2 − d1 + 2g − 2 < ` < d1 + 2g − 2,

the B3 stratum d1 + 2g− 2 < `, or the B2 stratum when d2− d1 + 2g− 2 < d1, the negative normal

directions are vector bundles. The result then follows from a standard argument. To prove (3.31)

for the portion of the B1 stratum where d2/2 < ` ≤ 1
3(d1 +d2) (or d2−d1 +2g−2 < ` < d1), define

the map pr : B(d1, d2)→ A(E2) by projection to the holomorphic structure on E2. Let

K` =
⋃
j>`

X` ∩ pr−1(Aj(E2))

where for a rank 2 bundle E2 → X of degree d and j > d/2, we let Aj(E) ⊂ A(E) be the subset of

unstable holomorphic structures on E2 whose maximally destabilizing line subbundle has degree j.

Then K` ⊂ X ′` is closed in X`. Hence, by excision,

H∗G(X`, X
′
`) ' H∗G(X` \K`, X

′
` \K`)

Moreover, the pair (X` \K`, X
′
` \K`) is invariant under the scaling b 7→ 0. The same is true of the

pair (ν−` , ν
′
`). Eq.’s (3.30) and (3.31) therefore reduce to the corresponding result for pairs (3.33),

and hence they follow from Lemma 3.13 and [20, eq. (8.28) and Sect. 8.3.6].

It remains to prove (3.31) for the portion of the B3 stratum where max{d1, d2 − d1 + 2g − 2} <
` ≤ d1 + 2g− 2. For all integers ` > d2/2, let X ′′` = X` \ pr−1(A`(E2)). Then it follows as in [7, eq.
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(21)] that

(3.34) H∗G(X`, X
′′
` ) ' H∗G(ν−` , ν

′′
` )

and by the Atiyah-Bott lemma, H∗G(X`, X
′′
` )→ H∗G(X`) is injective. We claim that for k > d2−d1 +

2g − 2, X ′′` = X∗` . Indeed, it suffices to show that if (E2 ⊕ E1, b, c) is semistable, then the Harder-

Narasimhan type of E2 is at most d2 − d1 + 2g− 2. Suppose not and let 0→ S → E2 → Q→ 0 be

the Harder-Narasimhan filtration with degS = `. Then if ` > d2 − d1 + 2g − 2, the induced map

c : E1 → Q vanishes and S ⊕ E1 is Φ-invariant. Hence,

1
2(`+ d1) ≤ 1

3(d1 + d2) =⇒ 1
2(d2 + 2g − 2) < 1

3(d1 + d2) =⇒ 2g − 2 < 1
3(2d1 − d2) ≤ g − 1

where the last inequality comes from the bound on the Toledo invariant. This contradicts the

assumption on the genus, and the claim follows. Now the proof of (3.31) follows from the fact that

H∗G(X ′`, X
∗
` ) ' H∗G(ν ′`, ν

′′
` ) by (3.28), and the Five Lemma applied to the long exact sequence of the

triple (X`, X
′
`, X

∗
` ). �

Corollary 3.14. For the B1 stratum in the portion of region (II) where d2/2 < ` ≤ 1
3(d1 + d2),

H∗G(X`, X
∗
` ) ' ker ξ′′. If d2 − d1 + 2g − 2 < ` < d1, H∗G(X`, X

∗
` ) ' H∗G(ν−` , ν

′′
` ).

Proof. By the exact sequence of the triple (X`, X
′
`, X

∗
` ), Remark 3.8, and Proposition 3.12,

· · · // H∗G(X`, X
′
`)

//

∼

��

H∗G(X`, X
∗
` )

��

// H∗G(X ′`, X
∗
` )

∼

��

// · · ·

· · · // H∗G(ν−` , ν
′
`)

// ker ξ′′ // H∗G(ν ′`, ω`)
// · · ·

The first statement follows from the Five Lemma. The proof of the second statement is similar. �

Now consider the region (I), which involves the C1 stratum. We have the following

Lemma 3.15. For all 1
3(d1 + d2) < ` ≤ d2 − d1 + 2g − 2, H∗G(X∗` , X

′′
` ) ' H∗G(η′`, η

′′
` ).

Proof. The argument is similar to the one in [7, Section 3.1]. Note that the set (X∗` \Bss(d1, d2)) ⊂
X ′′` is closed in X∗` . Hence, by excision

H∗G(X∗` , X
′′
` ) ' H∗G(Bss(d1, d2),Bss(d1, d2) \ pr−1(A`(E2)))

By [21], the YMH flow defines a G-equivariant deformation retraction of the pair

(Bss(d1, d2),Bss(d1, d2) \ pr−1(A`(E2)))

with (Bmin(d1, d2),Bmin(d1, d2) \ pr−1(A`(E2))). Note that Bmin(d1, d2)∩ pr−1(A`(E2)) lies in the

smooth locus on which G acts freely. Excision then reduces the computation to Gothen’s calculation

in [11]. �

By (3.34), Lemma 3.15, and (3.6), and the argument in [7], we have

Corollary 3.16. For all 1
3(d1 + d2) < ` ≤ d2 − d1 + 2g − 2, the map H∗G(X`, X

′′
` ) → H∗G(X∗` , X

′′
` )

is surjective.
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3.4. Proof of Theorem 2.6.

Lemma 3.17. The map H∗G(X∗d2/2 ∪ Sa, X
∗
d2/2

)→ H∗G(X∗d2/2) is injective.

Proof. By Proposition 3.12, it suffices to show that H∗G(ν−a , ν
′
a) → H∗G(ν−a ) is injective, or equiva-

lently, that H∗G(ν−a )→ H∗G(ν ′a) is surjective. Consider the following commutative diagram:

H∗(BG)

��

π∗

%%KKKKKKKKKK

H∗G(ν−a )
j // H∗G(ν ′a)

By Lemma 3.4 and [20], π∗ is surjective. Therefore j is surjective as well. �

Next, we need the following lemma.

Lemma 3.18. Let (A,B,C) be a triple of topological spaces with inclusions C ↪→ B ↪→ A and

suppose that the map H∗(A,C)→ H∗(A) is injective. Then Pt(A)−Pt(B) = Pt(A,C)−Pt(B,C).

Moreover, if we suppose in addition that the inclusion of pairs (B,C) ↪→ (A,C) induces a surjection

H∗(A,C)→ H∗(B,C) in cohomology, then the map H∗(A)→ H∗(B) is a surjection.

Remark 3.19. If the inclusions C ↪→ B ↪→ A are inclusions of G-spaces, then the above result is

also true in G-equivariant cohomology.

Proof. We have the following commutative diagram of exact sequences

(3.35) · · · // H∗(A,C) //

��

H∗(A) //

��

H∗(C) //

∼

��

· · ·

· · · // H∗(B,C) // H∗(B) // H∗(C) // · · ·

The assumption implies that the top horizontal sequence splits, and therefore the bottom horizontal

sequence also splits. The result follows immediately. �

Proof of Theorem 2.6. By Lemma 3.17 and Proposition 3.12, it suffices to consider region (I).

By the argument in [7, Sect. 3.1], the Atiyah-Bott lemma implies that H∗G(Xk, X
′′
k ) → H∗G(Xk)

is injective. By Corollary 3.16, we may then apply Lemma 3.18 to the triple (Xk, X
∗
k , X

′′
k ) and

conclude that H∗G(Xk) → H∗G(X∗k) surjects. This completes the proof. We also record that in this

case

(3.36) P G
t (X`)− P G

t (X∗` ) = P G
t (X`, X

′′
` )− P G

t (X∗` , X
′′
` )

�
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4. The Equivariant Betti Numbers

4.1. U(2, 1) bundles. The calculations in the previous sections lead to the following formula for

the equivariant Poincaré polynomial of B(d1, d2). The contributions of individual strata are as

follows.

(i) For the A-stratum, use Lemmas 3.4 and 3.17 to conclude

P G
t (X∗d2/2 ∪ Sa)− P G

t (X∗d2/2) =
1

(1− t2)2
Pt(J(X))P G

t (Ass(E2))

− 1

(1− t2)
Pt(Nσmin(E∗1E2 ⊗K))Pt(Jd1(X))

−


0 if d2 odd

t2(2g−2+d2/2−d1)

(1− t2)
Pt(J(X))2Pt(S

2g−2+d2/2−d1X) if d2 even

(ii) For 1
3(2d2 − d1) < ` ≤ d2/2, (3.32) and (3.15) imply

P G
t (X ′`)− P

G
t (X∗` ) =

t4g−4+2`−2d1

(1− t2)2
Pt(J(X))2Pt(S

`−d1+2g−2X)

(iii) For d2/2 < ` ≤ 1
3(d1+d2), Lemma 3.6 and Corollary 3.14 imply (recall that ξ′′ is surjective)

P G
t (X`)− P G

t (X∗` ) =
t2(g−1+2`−d2)

(1− t2)3
Pt(J(X))3 − t2(g−1+2`−d2)

(1− t2)2
Pt(J(X))2Pt(S

d2−d1+2g−2−`X)

(iv) For 1
3(d1 + d2) < ` ≤ d2 − d1 + 2g − 2, it follows from (3.36), Lemma 3.15, and (3.6) that

P G
t (X`)− P G

t (X∗` ) =
t2(g−1+2`−d2)

(1− t2)3
Pt(J(X))3

− t2(g−1+2`−d2)

(1− t2)
Pt(J(X))Pt(S

d2−d1+2g−2−`X)Pt(S
2g−2−`+d1X)

(v) For max{d1, d2− d1 + 2g− 2} < ` ≤ d1 + 2g− 2, it follows from Proposition 3.12 and eq.’s

(3.19), (3.28), and (3.20) that

P G
t (X ′`)− P

G
t (X∗` ) =

t2(g−1+2`−d2)

(1− t2)2
Pt(J(X))2Pt(S

d1−`+2g−2X)

P G
t (X`)− P G

t (X ′`) =
t2(g−1+2`−d2)

(1− t2)3
Pt(J(X))3 − t2(g−1+2`−d2)

(1− t2)2
Pt(J(X))2Pt(S

d1−`+2g−2X)

(vi) For d1 + 2g − 2 < `, or if d2 − d1 + 2g − 2 < ` ≤ d1, it follows from Proposition 3.12 and

(3.29), from (3.12) and Remark 3.8, or from (3.23), that

P G
t (X`)− P G

t (X∗` ) =
t2(g−1+2`−d2)

(1− t2)3
Pt(J(X))3

Applying Theorem 2.6, we compute

Pt(BG)− P G
t (Bss(d1, d2)) =

∑
`∈∆d1,d2

P G
t (X`)− P G

t (X∗` )
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Notice that the last term in (i), which occurs only when d2 is even, is exactly canceled by one of

the terms in (ii). Combining the remaining terms, we obtain

Proposition 4.1. The G-equivariant Poincaré polynomial of Bss(d1, d2) is given by

P G
t (Bss(d1, d2)) = Pt(BG)− 1

(1− t2)2
Pt(J(X))P G

t (Ass(E2))−
∑

d2/2<`

t2(g−1+2`−d2)

(1− t2)3
Pt(J(X))3

+
1

(1− t2)
Pt(Nσmin(E∗1E2 ⊗K))Pt(Jd1(X))

+
∑

d2/2<`≤ 1
3

(d1+d2)

t2(g−1+2`−d2)

(1− t2)2
Pt(J(X))2Pt(S

d2−`−d1+2g−2X)(4.1)

−
∑

1
3

(2d2−d1)<`<d2/2

t4g−4+2`−2d1

(1− t2)2
Pt(J(X))2Pt(S

`−d1+2g−2X)

+
∑

1
3

(d1+d2)<`≤d2−d1+2g−2

t2(g−1+2`−d2)

(1− t2)
Pt(J(X))Pt(S

2g−2+d2−`−d1X)Pt(S
2g−2−`+d1X)

Proof of Theorem 1.1. We need to show that the expression (4.1) agrees with (1.3) and (1.4). By

the result of Atiyah-Bott [1],

Pt(BG)− 1

(1− t2)2
Pt(J(X))P G

t (Ass(E2))−
∑

d2/2<`

t2(g−1+2`−d2)

(1− t2)3
Pt(J(X))3 = 0

eliminating the first line on the right hand side of (4.1). Let E = E∗1E2 ⊗ K, and recall the

definitions (1.2) and (3.4). By [20, Thm.’s 8.4.1 and 8.4.2],

P
G(E)
t (Cσ(d1,d2)(E))− Pt(Nσmin(E)) =

+
∑

d2/2<`<
1
3

(d1+d2)

t2(g−1+2`−d2) − t2(g−1+d2−d1−`)

(1− t2)
Pt(J(X))2Pt(S

d2−`−d1+2g−2X)

+


0 if d1 + d2 6≡ 0 mod 3

t2(g−1+ 1
3

(2d1−d2))

(1− t2)
Pt(J(X))2Pt(S

2g−2− 2
3

(2d1−d2)X) if d1 + d2 ≡ 0 mod 3

(4.2)

Using this, and substituting ` 7→ d2 − ` in the fourth line of (4.1), the result follows. �

Proof of Corollary 1.3. When the Toledo invariant 2
3(2d1 − d2) achieves its maximal value 2g − 2

then the Poincaré polynomial (1.3) simplifies further. Firstly, note that in this case 1
3(d1 + d2) =

d2−d1− (2g− 2), and so the summation on the right hand side of (1.3) vanishes. Secondly, for the

Bradlow space, degE = g − 1 = σ(d1, d2). Therefore, in the case of maximal Toledo invariant, the

stability parameter is maximal (and non-generic). By [20, Thm. 8.4.2], the first term on the right
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hand side of (1.3) is

1

(1− t2)
Pt(J(X))2Pt(CP 2g−3) +

t4g−4

(1− t2)2
Pt(J(X))2

=
1

(1− t2)
Pt(J(X))2

(
1 + · · ·+ t4g−6 + t4g−4(1 + t2 + · · · )

)
=

1

(1− t2)2
Pt(J(X))2

�

4.2. SU(2, 1) bundles. Many of the constructions for U(2, 1) Higgs bundles described above also

carry over to the space BΛ(d1, d2) of SU(2, 1) Higgs bundles. In particular, we have the same

indexing set for the stratification, and the index at a critical point can also be computed by an

analogous calculation to that in Section 3.2. The major difference between the two cases is that

the Kirwan map κ0 from (1.9) is no longer necessarily surjective. However, repeated application of

Lemma 3.18 allows us to compute the contributions from each critical set individually.

Due to the fixed determinant condition, some of the spaces that contribute to the Poincaré

polynomial are different to those that appear in the calculation of the previous section: they are

finite covers of known spaces (cf. [13], [10], [11]) and so we begin by describing their construction.

Let S̃(m1,m2) to be the 32g-fold cover of Sm1X × Sm2X defined as in the Introduction (see

[10, 11]). These spaces appear in (4.6). Recall that the construction is via pullback, as follows

S̃(m1,m2)
p2 //

p1

��

J(X)

g

��
Sm1X × Sm2X

f // J(X)

where S̃(m1,m2) ⊂ Sm1X×Sm2X×J(X), p1 is projection onto the first two factors, p2 is projection

onto the third factor, f maps (M1, ϕ1,M2, ϕ2) 7→ M∗1M2Λ and g is the three-fold covering map

L 7→ L3. Note that if M1 = L∗2L3 ⊗K = L∗1(L∗2)2Λ⊗K and M2 = L∗1L2 ⊗K, then M∗1M2Λ = L3
2,

and so S̃(m1,m2) is the space of bundles L1, L2 together with nonzero sections ϕ1 ∈ H0(L∗1L2⊗K)

and ϕ2 ∈ H0(L∗1(L∗2)2 ⊗K), where m1 = deg(L∗1L2 ⊗K) and m2 = deg(L∗1(L∗2)2 ⊗K).

As above, let E = E∗1E2⊗K. For the Type A stratum (see (4.3)), define Ñσ(E) to be the 32g-fold

cover of the Bradlow space Nσ(E), which is constructed via the following pullback diagram

Ñσ(E)
p2 //

p1

��

J(X)

g

��
Nσ(E)

f // J(X)

where p1(E1, E2, ϕ) = (E,ϕ), p2(E1, E2, ϕ) = E1, f(E,ϕ) = detE and g(L) = (L∗)3K2Λ. Note

that

f ◦ p1(E1, E2, ϕ) = g ◦ p2(E1, E2, ϕ) ⇐⇒ (E∗1)2(detE2)K2 = (E∗1)3K2Λ ⇐⇒ det(E2 ⊕ E1) = Λ
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The construction is analogous to [10, Proposition 2.9], but the underlying space is different, since

we use a different stability parameter in this calculation to that used in Gothen’s calculation (σmin

as opposed to σ(d1, d2)). Note, however, that by [11], or the methods of [20], it still follows that

Pt(Ñσmin(E)) = Pt(Nσmin(E))

The final case to consider is where there are three line bundles L1, L2, L3 satisfying L1L2L3 = Λ,

and one section ϕ ∈ H0(L∗jLk ⊗K) \ {0}, where j, k ∈ {1, 2, 3} and j 6= k. These spaces appear

in (4.4), (4.5) and (4.7) as the cohomology of the type C critical sets and also in (4.3) (when d2 is

even). Let i ∈ {1, 2, 3} \ {j, k}, and note that the fixed determinant condition L1L2L3 = Λ can be

resolved by setting Li = ΛL∗jL
∗
k. Then the space under consideration becomes{

(L1, L2, L3, ϕ) : L1L2L3 = Λ, ϕ ∈ H0(L∗jLk ⊗K) \ {0}
}

=
{

(Lj , Lk, ϕ) : ϕ ∈ H0(L∗jLk ⊗K) \ {0}
}

which fibers over J(X)× S2g−2+degLk−degLjX with fiber C∗. In particular, if S1 acts freely on the

C∗ factor, then the S1-equivariant Poincaré polynomial is Pt(J(X))Pt(S
2g−2+degLk−degLjX).

In the same way as for the U(2, 1) case, we can calculate the contributions of the individual

strata. These contributions are listed below.

(i) For the A-stratum

P G
t (X∗d2/2 ∪ Sa)− P G

t (X∗d2/2) =
1

1− t2
P G
t (Ass(E2))− Pt(Nσmin(E∗1E2 ⊗K))

−

{
0 if d2 odd

t2(2g−2+d2/2−d1)Pt(J(X))Pt(S
2g−2+d2/2−d1X) if d2 even

(4.3)

(ii) For 1
3(2d2 − d1) < ` ≤ d2/2

(4.4) P G
t (X ′`)− P

G
t (X∗` ) =

t4g−4+2`−2d1

(1− t2)2
Pt(J(X))Pt(S

`−d1+2g−2X)

(iii) For d2/2 < ` ≤ 1
3(d1 + d2) (or d2 − d1 + 2g − 2 < ` < d1)

(4.5) P G
t (X`)− P G

t (X∗` ) =
t2(g−1+2`−d2)

(1− t2)2
Pt(J(X))2 − t2(g−1+2`−d2)

1− t2
Pt(J(X))Pt(S

d2−`−d1+2g−2X)

(iv) For 1
3(d1 + d2) < ` ≤ d2 − d1 + 2g − 2

P G
t (X`)− P G

t (X∗` ) =
t2(g−1+2`−d2)

(1− t2)2
Pt(J(X))2

− t2(g−1+2`−d2)Pt(S̃(2g − 2 + d2 − `− d1, 2g − 2− `+ d1))

(4.6)

(v) For max{d1, d2 − d1 + 2g − 2} < ` ≤ d1 + 2g − 2

P G
t (X ′`)− P

G
t (X∗` ) =

t2(g−1+2`−d2)

1− t2
Pt(J(X))Pt(S

d1−`+2g−2X)

P G
t (X`)− P G

t (X ′`) =
t2(g−1+2`−d2)

(1− t2)2
Pt(J(X))2 − t2(g−1+2`−d2)

1− t2
Pt(J(X))Pt(S

d1−`+2g−2X)

(4.7)
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(vi) For d1 + 2g − 2 < `, or if d2 − d1 + 2g − 2 < ` ≤ d1,

(4.8) P G
t (X`)− P G

t (X∗` ) =
t2(g−1+2`−d2)

(1− t2)2
Pt(J(X))2

Theorem 1.2 then follows as in the non-fixed determinant case described in the previous section.

We omit the details.

5. Action of Γ3 and the Torelli group

We first fix the following notation. Recall that Γ3 = H1(M,Z/3). Then as elements of Γ3

are homomorphisms π → Z/3, Γ3 acts on Hom(π,SU(2, 1)) by multiplication. The Torelli group

I(M) acts on Hom(π,SU(2, 1))
//
SU(2, 1) by outer automorphisms of π. This induces an action on

equivariant cohomology which commutes with Γ3. In this section we compute the induced action

of Γ3 × I(M) on the SU(2, 1)-equivariant cohomology of Hom(π,SU(2, 1)).

Following [15], let Q(Γ3) = {cyclic quotients of Γ3}. Then C ∈ Q(Γ3) is either {0} or Z/3. A

choice of embedding C ↪→ Q gives a homomorphism Z[Γ3] → Q, and we let IC denote the kernel.

If RC = Z[Γ3]/IC and KC = Q ⊗ RC , then KC = Q if C = {0}, and otherwise KC
∼= Q(ξ), for ξ

a nontrivial third root of unity (though not canonically so). The field KC has a natural “complex

conjugation” induced by ∑
g∈Γ3

cgg =
∑
g∈Γ3

cgg
−1

If W is a KC-vector space, let W denote the vector space with the same underlying Q-structure,

but where multiplication by scalars λ ∈ KC is given by λ · w = λ̄w.

Every {0} 6= C ∈ Q(Γ3) gives rise to a connected, unramified 3-fold covering XC → X. Namely,

the choice of basepoint p gives an Abel mapping X ↪→ J(X). Let X̃3 be the Γ3-covering obtained

by pulling back the Γ3-covering J(X) → J(X) : L 7→ L3. Let XC be the quotient of X̃3 by the

kernel of Γ3 → C. Then Γ3 acts on XC by deck transformations, and there is a decomposition

H1(XC ,Q) ∼= H1(X,Q)⊕
{
RC ⊗Z[Γ3] H

1(XC ,Q)
}

where WC(X) = RC⊗Z[Γ3]H
1(XC ,Q) is a KC-vector space of dimension 2g−2. Lifting elements of

the Torelli group then gives a surjection of I(X) onto the group of projective unitary transformations

of WC(X), where the unitary structure is the extension by KC of the symplectic pairing (see [15]).

For integers m1,m2 ≥ 0, define the Q-vector space

(5.1) V (m1,m2) =
⊕

{0}6=C∈Q(Γ3)

∧m1WC(X)⊗KC ∧
m2WC(X)

(the exterior products are over KC). Also, recall the space S̃(m1,m2) from the previous section.

For SU(2, 1) representations of π, the Toledo invariant is an even integer, and so m1 ≡ m2 mod 3.

Hence, the diagonal action of Γ3 is trivial on the terms in V (m1,m2). In particular, the projective

representation of the Torelli group lifts to a linear one. With this notation we state
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Proposition 5.1. The Γ3 decomposition is given by

Hp(S̃(m1,m2)) = Hp(Sm1X × Sm2X)⊕

{
{0} if p 6= m1 +m2

V (m1,m2) if p = m1 +m2

Proof. Let S̃mX be the pull-back of the fibration SmX → J(X) under the 32g-fold covering J(X)→
J(X) : L 7→ L3. Then Γ3 acts on S̃mX, and by [15] we have

H∗(S̃mX,Q) ∼=
⊕

C∈Q(Γ3)

RC ⊗Z[Γ3] H
∗(S̃mX,Q)

For C = {0} this amounts to

RC ⊗Z[Γ3] H
∗(S̃mX,Q) =

[
H∗(S̃mX,Q)

]Γ3

= H∗(SmX,Q)

For C 6= {0}, we have an identification of KC-vector spaces

RC ⊗Z[Γ3] H
∗(S̃mX,Q) ∼= H∗(SmX,F

(m)
C )

where F
(m)
C → SmX is a rank-1 local system. It follows exactly as in Hitchin [13] that there is a

rank-1 local system FC → X, such that

Hp(X,FC) ∼=

{
{0} p = 0, 2

WC(X) p = 1

Hp(SmX,F
(m)
C ) ∼=

{
{0} p 6= m

∧mH1(X,FC) p = m

Explicitly, if pr : XC → X is the covering, the presheaf FC(U) is given by locally constant functions

ϕ : pr−1(U) → KC satisfying ϕ(gx) = gϕ(x) for all x ∈ XC , g ∈ Γ3. In the case where the map

SmX → J(X) is factored through L 7→ L∗, then

Hm(SmX,F
(m)
C ) ∼= ∧mH1(X,F∗C)

and clearly H1(X,F∗C) ∼= WC(X). Applying this argument to S(m1,m2), we have

H∗(S(m1,m2),Q) = H∗(Sm1X × Sm2X,Q)⊕
⊕

{0}6=C∈Q(Γ3)

RC ⊗Z[Γ3] H
∗(S(m1,m2),Q)

Now by the Kunneth formula, for C 6= {0},

RC ⊗Z[Γ3] H
p(S(m1,m2),Q) = Hp(Sm1X × Sm2X,F

(m1)
C � F

(m2)
C )

=
⊕
j+k=p

Hj(Sm1X,F
(m1)
C )⊗KC H

k(Sm2X,F
(m2)
C )

=

{
{0} p 6= m1 +m2

V (m1,m2) p = m1 +m2

�

Since [KC : Q] = 2 for C 6= {0}, and #Q(Γ3) = 1 + 1
2(32g − 1), we have the following
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Corollary 5.2 ([10, Proposition 3.11]). If either m1 or m2 > 2g − 2, then

Pt(S̃(m1,m2)) = Pt(S
m1X)Pt(S

m2X)

If 0 ≤ m1,m2 ≤ 2g − 2, then

Pt(S̃(m1,m2)) = Pt(S
m1X)Pt(S

m2X) + (32g − 1)

(
2g − 2

m1

)(
2g − 2

m2

)
tm1+m2

We now state the result on the action of the Torelli group.

Theorem 5.3. Fix a Toledo invariant 0 ≤ τ ≤ 2g − 2. Let

Sτ = {6g − 6 + τ/2 + 2` : ` ∈ Z , max{1, τ/2} ≤ ` ≤ 2g − 2− τ}

Then the following hold.

(i) The SU(2, 1)-equivariant cohomology of Homτ (π1(X), SU(2, 1)) is Γ3 × I(X)-invariant in

all dimensions p 6∈ Sτ .

(ii) For p = 6g−6+τ/2+2` ∈ Sτ , the nontrivial part of the action of Γ3×I(X) on the SU(2, 1)-

equivariant cohomology of Homτ (π1(X),SU(2, 1)) in dimension p is precisely V (m1,m2),

where m1 = 2g − 2− τ − `, m2 = 2g − 2 + τ/2− `.

Proof. Using the stratification {X`}, the argument is the same as in [8]. Note that the action on the

cohomology of the Bradlow spaces is trivial, since Kirwan surjectivity holds for these by [20]. �

Proof of Theorem 1.5. Kirwan surjectivity for U(2, 1) is the content of Corollary 2.7. In the fixed

determinant case it follows in exactly the same way as in [7] that Kirwan surjectivity also holds

on the Γ3-invariant part of the equivariant cohomology. Hence, the assertion for PU(2, 1) Higgs

bundles follows from the expression (1.8). Finally, note that by Theorem 5.3, if |τ | > 4
3(g− 1) then

the equivariant cohomology for SU(2, 1) Higgs bundles is Γ3 invariant, and so Kirwan surjectivity

follows in this case as well. �

Proof of Theorem 1.6. For |τ | > 4
3(g − 1), the statement follows as above. In the borderline case

|τ | = 4
3(g− 1), note that Γ3 does not act trivially but rather by permutation of the factors in (5.1);

however m1 = 0 and m2 = 2g − 2 in this case, so the representation of the Torelli group in (5.1) is

trivial. �
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