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Recent speciation in the Indo-West Pacific:
rapid evolution of gamete recognition and sperm
morphology in cryptic species of sea urchin
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The rich species diversity of the marine Indo-West Pacific (IWP) has been explained largely on the basis
of historical observation of large-scale diversity gradients. Careful study of divergence among closely
related species can reveal important new information about the pace and mechanisms of their formation,
and can illuminate the genesis of biogeographic patterns. Young species inhabiting the IWP include
urchins of the genus Echinometra, which diverged over the past 1-5 Myr. Here, we report the most recent
divergence of two cryptic species of Echinometra inhabiting this region. Mitochondrial cytochrome oxidase
1 (CO1) sequence data show that in Echinometra oblonga, species-level divergence in sperm morphology,
gamete recognition proteins and gamete compatibility arose between central and western Pacific popu-
lations in the past 250 000 years. Divergence in sperm attachment proteins suggests rapid evolution of
the fertilization system. Divergence of sperm morphology may be a common feature of free-spawning
animals, and offers opportunities to simultaneously understand genetic divergence, changes in protein

expression patterns and morphological evolution in traits directly related to reproductive isolation.
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1. INTRODUCTION

The tropical shelf waters of the Indo-West Pacific IWP)
house a rich species diversity that has its zenith around
the East Indies. Species richness of many taxa increases
from the eastern Pacific and the Indian Ocean towards the
Indonesian Archipelago (reviewed in Briggs 1999;
Bellwood & Hughes 2001). Although previous investi-
gations of the genesis of this diversity emphasized the slow
accumulation of species over long periods of time
(Springer & Williams 1990), recent genetic evidence sug-
gests that many of the reef species in this diverse area are
relatively new, having originated since the beginning of the
Pleistocene (Palumbi 1996; McMillan ez al. 1999; Barber
et al. 2002). These recent speciation events provide a lab-
oratory in which to understand the speciation process of
marine taxa, and allow a combination of genetic, morpho-
logical, behavioural and biogeographic data to be used to
answer questions about speciation mechanisms. Among
others, allopatry, peripheral speciation and divergence
after secondary range contact have been proposed as driv-
ers of species diversity in the IWP (Palumbi 1997;
Bellwood & Hughes 2001), but as yet there have been very
few clear reconstructions of speciation history of marine
taxa in this area.

Footprints of species formation are most likely to be
identified when comparing recently diverged species,
initial differentiation of which can be correlated with the
different proposed speciation processes. Molecular tools
have helped to uncover closely related and still diverging
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species from a wide variety of taxa and have provided
insight into the mechanisms, pace and geography of mar-
ine speciation (Knowlton 1993; Palumbi 1997; Lessios ez
al. 2001). Coupled with information about geological his-
tory of regions, faunistic affiliations of species found in
particular regions, and the oceanic currents that may pro-
vide dispersal corridors, molecular data can greatly help
document the geographic pattern and relative timing of
species formation.

Among the closely related species that help contribute
to the richness of the IWP are the sea urchins of the genus
Echinometra. Pan-tropical sea urchins of the genus Echino-
metra diverged into two different evolutionary lineages
3.3-4.5 Myr ago when the Indo-Pacific (IP) lineage separ-
ated from the one leading to the neotropical species
(McCartney et al. 2000). Since then, the IP species lineage
has undergone several speciation events. Molecular phylo-
genetic analyses, morphological studies and fertilization
experiments have been combined to map the boundaries
of four closely related Echinometra species common
throughout the tropical Pacific (see Mortensen 1943;
Uehara et al. 1986; Matsuoka & Hatanaka 1991; Pal-
umbi & Metz 1991; Metz et al. 1994; Palumbi 1996;
Arakaki et al. 1998a,b).

Among these is Echinometra oblonga, a black species that
occupies reefs from Mauritius in the Indian Ocean to Isla
del Coco in the eastern Pacific (figure 1). Typically, this
species inhabits burrows above the mean low water level,
in microhabitats that are highly exposed to wave action
(Keslo 1970; Nishihira ez al. 1991). This habitat prefer-
ence correlates with species-specific physiological adap-
tations providing resistance to extreme conditions such as
high and low temperatures, salinity changes (Arakaki &
Uehara 1991) and strong shearing action of waves on
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Figure 1. Schematic representation of collecting localities in the Pacific Ocean for Echinometra oblonga populations. Western
Pacific: Bali (Indonesia), Okinawa (Japan) and Papua New Guinea; central Pacific: Guam (US), Hawaii (US) and Isla del

Coco (Costa Rica).

gametes (Mead 1996). This species has been described
from Japan and Hawaii on the basis of monophyletic mito-
chondrial DNA (mtDNA) lineages (Palumbi & Metz
1991), allozyme differences (Matsuoka & Hatanaka
1991), reproductive incompatibility with sister species
(Uehara er al. 1990; Palumbi & Metz 1991; Metz et al.
1994) and large differences in the sperm protein bindin
that attaches sperm to eggs before fertilization (Metz &
Palumbi 1996). This species is among a complex of at
least three other species that occur commonly throughout
the IWDP, and have been examined closely for population
structure (Palumbi ez al. 1997) and mechanisms of speci-
ation (Palumbi 1999).

Careful analysis of data on E. oblonga from numerous
localities throughout its range has shown marked polymor-
phism. For instance, individuals from Mauritius, Okin-
awa, Bonin, Guam and Hawaii differ slightly, although
not diagnostically, in the number of pore pairs, as well as
the shape of the spicules of the gonads and tube feet
(Arakaki & Uehara 1999). Furthermore, these character-
istics are not consistent with each other within E. oblonga:
some characteristics cluster populations of Okinawa and
Hawaii together and Indonesia and Guam together,
whereas others differentiate the Hawaiian population from
the rest of the Pacific (Arakaki & Uehara 1999). Another
difference across the Pacific is sperm morphology: western
Pacific populations have a sperm head that is twice as long
as those from the central Pacific (figure 4; Arakaki &
Uehara 1999). Recently, some central and western Pacific
populations have been shown to be differentiated at
bindin, a sperm—egg recognition protein (Geyer & Pal-
umbi 2003). These results suggest that populations of E.
oblonga may actually represent diverging species that differ
in reproductive characteristics such as bindin sequence
and sperm morphology. However, genetics, sperm mor-
phology and gamete attachment features have never been
examined in the same suite of populations, making delin-
eation of biogeographic boundaries for these potential
species difficult, and obscuring potential insights into the
process of speciation.

In this study, our aims are to characterize populations
of E. oblonga for two genetic loci and for sperm mor-
phology to test if the differences observed reflect the
reproductive isolation of these populations and to discuss
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the history and the geography of this diversification. We
investigate the phylogenetic relationship among E. oblonga
populations from the western and central Pacific and com-
pare genetic data with morphological differences. Because
of their large population size and their recent divergence,
Echinometra species are expected to be monophyletic at
very few of their loci. However, mitochondrial genomes
are expected to drift faster than nuclear genes and are then
expected to show a signal of differentiation earlier in the
speciation process (Palumbi er al. 2001). Previous work
on mitochondrial sequences provided only slight evidence
of genetic separation between E. oblonga populations
based on the segregation of a single polymorphic site
(Palumbi ez al. 1997). Here, we increase the sequence
length to provide more resolving power, and include
additional populations that have been investigated for
both sperm and bindin features. To put mtDNA diversity
data within species into a larger perspective, we also
include in our analysis other closely related species found
in the IP (E. mathaer, E. sp. C and E. sp. A) and a sister
species endemic to Easter Island (E. insularis). Echinometra
vanbrunti, a congeneric species found in the eastern Pacific
is used as an outgroup.

2. METHODS

Populations of E. oblonga were sampled from Isla del Coco
(n=2), Hawaii (n=5), Guam (n=5), Okinawa (n=11), Bali
(n=11) and Papua New Guinea (n = 3). We included 15 samples
of E. mathaei, three of E. sp. A, 14 of E. sp. C and 10 of E.
insularis. DNA was extracted from tube feet, gonad or spine mus-
cle tissue by proteinase K digestion and phenol/chloroform
extraction, or by using NucleoSpin columns (BD, Biosciences,
Clonetech).

Two overlapping fragments of the cytochrome oxidase 1
(CO1) gene corresponding to the interval between sites 5851 to
7013 of Strongylocentrotus purpurarus mitochondrial genome were
sequenced for each individual. Samples corresponded in part to
the samples analysed for bindin by Geyer & Palumbi (2003).
The 3’ fragment was amplified and sequenced by using primers
CO1f and CO1d according to Palumbi ez al. (1997). The 5’
fragment was obtained by wusing primers LCO1490 and
HCO02198 (Folmer ez al. 1994) by using the same chemistry and
the following cycles: 94 °C 30 s; 50 °C 45 s; and 72 °C 1 min,
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Figure 2. Rooted NJ tree of CO1 sequences (K, distance). Bootstraps were carried out by resampling all nucleotide positions
1000 times. The first one or two first letters of the sample names represent the sampling locality. (F, Fiji; OK, Okinawa; NG,
Papua New Guinea; B, Bali; H, Hawaii; Co, Isla del Coco; M, Midway, Hawaii; N, Nieu; EJN, Japan; INS, Easter Island).
Sperm morphologies are schematized and lengths (micrometres) are from Arakaki ez al. (1998b) and Arakaki & Uehara

(1999).

and a final elongation of 5 min at 72 °C. Including the primers,
the two fragments overlap by 66 bp. Polymerase chain reaction
(PCR) products were prepared for sequencing by using Exonu-
clease I and shrimp alkaline phosphatase digestion and were
then sequenced on a 3100 ABI automated sequencer (Applied
Biosystems, CA, USA). Sequences were aligned by hand.
Within-species and among-species polymorphisms of COI1
sequences were estimated by using Meca (Kumar ez al. 2001).
The net average distance corresponds to the average distance
minus the average within-species polymorphism. The phylogen-
etic relationship of the samples was drawn by using the
neighbour-joining (NJ]) algorithm from PAUP v. 4.0
(Swofford 2001).

Bindin alleles were amplified, cloned and sequenced as pre-
viously described (Palumbi 1999; Geyer & Palumbi 2003) from
individuals collected in Okinawa (n=4), Bali (n=14), Guam
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(n=6), Hawaii (n=11) and Niue (z = 8). A total of three to five
clones from each individual were sequenced. When two alleles
were encountered, both were included in the analysis. Other-
wise, a single allele was analysed from each individual.

3. RESULTS

A portion of the mitochondrial CO1 gene correspond-
ing to bases 5851 to ca. 6550 of the S. purpurarus complete
mitochondrial genome was obtained for 79 individuals of
five putative IWP species of Echinometra (GenBank
accession numbers AY262861-AY262940). When added
to sequences already available for these individuals, our
dataset comprises 1164 bp of the CO1 gene.

Most of the substitutions within Echinomerra are at
silent sites in this coding sequence, and the
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Table 1. Between-species average K, distance (below the diagonal) at all sites (pairwise deletion) and net average distance (above
the diagonal). Average intraspecific nucleotide diversity (1) is shown on the diagonal (in italics).

1 3 4 5 6 7

Echinometra oblonga western Pacific 0.004 0.009 0.033 0.027 0.022 0.034 0.132
E. oblonga central Pacific 0.013 0.003 0.034 0.027 0.019 0.036 0.133
E sp. C 0.039 0.039 0.007 0.030 0.030 0.015 0.127
E. sp. A 0.040 0.040 0.046 0.021 0.021 0.029 0.127
E. mathaei 0.027 0.024 0.037 0.034 0.006 0.030 0.126
E. wmsularis 0.037 0.038 0.019 0.040 0.034 0.002 0.129
E. vanbrunti 0.135 0.134 0.131 0.138 0.129 0.130 0

transition/transversion ratio is about 11 : 1. We observed
two amino acid changes in two sequences. Phylogenetic
analysis of mtDNA sequences from 80 individuals
revealed five major clades (figure 2) defined by high boots-
trap values (90-100%). Four of these clades correspond
to the four currently recognized IP species of Echinometra
(Palumbi 1996). The clade including E. oblonga shows
two additional, well-defined sub-clades, corresponding to
E. oblonga from the central Pacific (Hawaii, Isla del Coco
and Guam) and those from western Pacific populations
(Indonesia, Okinawa and Papua New Guinea). These two
clades are differentiated by seven fixed transition substi-
tutions. The same organization among clades was
obtained by using a parsimony analysis (C. Landry,
unpublished data).

Using E. vanbrunti as an outgroup (McCartney et al.
2000), the IP Echinomerra fall into two multi-species
clades. One contains E. sp. C, a species found among few
Pacific island archipelagoes (Palumbi 1996), and E. insu-
laris, which is endemic to Easter Island. The other clades
contain the widely distributed E. mathaet, E. oblonga and
E. sp. A. Bootstrap support for the branching order of
these three species is poor, but data from both mor-
phology and bindin sequences suggest a sister-species
relationship between E. mathae: and E. sp. A. Within this
cluster, the two clades of E. oblonga are derived sister taxa
(figure 2).

Average K, parameter distance (where K, is the silent
rate at twofold degenerate nucleotide positions; Kumar ez
al. 2001) among IWP Echinometra species considering all
the sites (pairwise deletion) ranges from 1.3% to 4.6%,
which is very similar to the distances measured using only
the CO1f-a gene fragment (Palumbi 1996; McCartney et
al. 2000). Mean K, parameter distances to the eastern
Pacific E. vanbrunti vary between 12.9% and 13.8%,
which is slightly higher than was calculated by McCartney
et al. (2000) for the smaller gene segment. Variation
within species ranges from 0.2% to 2.1% for these samples
(table 1).

The average genetic distance between the two groups
of E. oblonga (1.3%; net distance: 0.9%) is low compared
with the 4.0-4.8% difference between E. sp. A, E. sp. C
and E. insularis, but is comparable to the distance between
E. sp. C and the endemic E. nsularis (1.9%). Under the
assumption of constant rates of CO1 evolution, it is poss-
ible to use divergence data between mitochondrial
sequences to estimate the time of the split between E.
oblonga clades. Using the average sequence divergence at
CO1 between species of Echinometra found on both sides
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of the Isthmus of Panama, McCartney er al. (2000)
derived an estimate of 3.49% Kimura-corrected sequence
divergence per million years, with a range that spans 24%
of this mean. Using this rate, we estimated a divergence
time between the two types of E. oblonga (net K, =0.9%,
s.e.m. 0.5%) of ca. 250 000 years.

(a) Bindin sequences

Central and western Pacific populations of E. oblonga
are characterized by very divergent bindin alleles. Bindin
sequence diversity among all E. oblonga populations com-
bined is much higher (2.5%, average corrected p-distance)
than in any of the other IP Echinomerra species (1.6%, E.
mathaei; 0.9% E. sp. A, 0.8% E. sp. C). Division of the
data into central and western Pacific populations explains
55% of the variation observed. Central Pacific E. oblonga
(Nieu, Guam, Hawaii) have bindin sequences that fall into
three major clades (clades one, two and four; figure 3).
By contrast, bindin from western Pacific E. oblonga
(Indonesia, Okinawa and Papua New Guinea) fall in a
distinct clade separated from the rest by unique insertion
and deletion events, plus amino acid substitutions (clades
three a and three b; figure 3). Clade three alleles are found
almost exclusively in the west Pacific (Bali, Okinawa, New
Guinea). The only exception was a single individual from
Niue which was homozygous for this allele, but carried a
central Pacific CO1 haplotype.

(b) Sperm morphology

Two different morphologies typify sperm from western
and central Pacific populations. The western Pacific type
has a slender sperm head, with a ratio of length over width
of about six, whereas the central Pacific type has a shape
more compact, with a ratio of length over width of about
three (figure 4). The primary difference lies in the tip of
the sperm head and the shape of the nucleus (Arakaki ez
al. 1998a,b). Populations of E. oblonga from Okinawa
show the sperm morphology of western Pacific popu-
lations. Populations in Guam and Hawaii both have the
shorter, stouter sperm morphology.

4. DISCUSSION

The species E. oblonga appears to have recently diverged
into two species distinguishable by sequences of mito-
chondrial genes, genes for gamete recognition, and by
sperm morphology. Data from CO1 show that the species
E. oblonga contains two major monophyletic clades that
differ from one another by 0.9% and that divide the
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Figure 3. Divergence of bindin sequences in western and central Pacific populations of Echinometra oblonga. Sequences from
the central Pacific fall into three major clades, all of which differ from the bindins seen in western Pacific populations. The
branch leading to the western Pacific clades shows amino acid substitutions and insertions and deletions in the region of the
protein implicated in functional sperm—egg attachment differences.

tropical Pacific into central and western areas. However,
other sea urchin species in this genus harbour old mito-
chondrial lineages (Palumbi 1996), and so the mere exist-
ence of a significant split between central and western
populations in CO1 does not guarantee species distinc-
tion. Instead, corroborative data are needed from other
loci or organismal features before these data can be used
to confirm species status of central versus western Pacific
populations. Data from three other sources show agree-
ment with this geographic pattern.

Proc. R. Soc. Lond. B (2003)

(a) Bindin gene sequences and fertilization
barriers

The genetic differentiation seen in mtDNA is paralleled
by differences at the gamete recognition locus bindin.
Central Pacific populations differ strongly in bindin
sequence from western Pacific populations, including
amino acid and insertion/deletion changes in the protein
coding region. The region of the bindin gene where these
changes occur is the previously identified evolutionary
hotspot where the action of positive diversifying selection
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Figure 4. Electron micrograph of sperm of Echinometra
oblonga from (a) Guam and (b) Okinawa showing the
difference in sperm length and shape.

has been observed (Metz & Palumbi 1996; Palumbi
1999). Bindin is involved in the attachment of the sperm
to the egg, before its entrance into the egg, and initiates
the first steps of fertilization (Vacquier & Moy 1977). This
protein has been shown to influence fertilization success
within species and has been proposed to participate in
reproductive isolation among species (Metz et al. 1994;
Palumbi 1999). As a result, these bindin gene changes are
likely to have functional significance and could change
egg—sperm attachment properties.

In fact, a reproductive barrier was suggested by recently
reported cross-fertilization experiments between E.
oblonga from Okinawa versus Guam and Okinawa versus
Hawaii. Fertilization rates were high in control crosses,
but were near zero for crosses between central and western
populations (Arakaki 2000). Experiments with Indonesian
or Papua New Guinean individuals have not been perfor-
med, and more extensive cross-fertilization work between
populations should be completed. However, within-spec-
ies and between-species variation in fertilization success
owing to bindin differences has been demonstrated in
other Echinometra species (Palumbi 1999) and as the west-
ern and central Pacific do not share bindin alleles, the
same mechanism could explain the fertilization differences
between E. oblonga populations.

(b) Sperm morphology

Sperm morphology among most species of Echinometra
is highly conserved, with sperm heads about twice as long
as wide, and central Pacific E. oblonga (Hawaii and Guam)
have a typical Echinometra sperm shape (figures 2 and 4).

Proc. R. Soc. Lond. B (2003)

In marked contrast, spermatozoa of western Pacific popu-
lations (Okinawa, Indonesia and Mauritius) have a long
anterior process, and are up to six times longer than they
are wide (figure 4; Arakaki & Uehara 1989; Arakaki
2000). As with other mass-spawning invertebrates, sea
urchins are known to have little premating behaviour or
communication (e.g. Lamare & Stewart 1998). Especially
when habitats and spawning seasons may overlap such as
in Echinomerra (Arakaki & Uehara 1991), gametic incom-
patibility is likely to be an important prezygotic mech-
anism of isolation (Palumbi 1992). Accordingly, the
properties of sperm and eggs may often diverge during
species formation, or function as the most proximal
characteristics, ensuring the integrity of the species bound-
aries after secondary contact following allopatric diver-
gence (Geyer & Palumbi 2003).

Sperm size in sea urchins can be polymorphic among
populations within species (as in S. droebachiensis; C. Bier-
mann, personal communication) but variation in length
more than twofold usually represents differences among
species (Chia ez al. 1975; Amy 1983; Raff ez al. 1990). In
the present case, the two divergent sperm morphologies
occur across the same geographical boundaries as genetic
differences in mtDNA and bindin, and have not been
reported to be polymorphic within populations (Arakaki
2000). The unique sperm morphology of the western
Pacific E. oblonga suggests that this population exhibits a
derived state that evolved in this region.

(¢) Gamete divergence and sympatry

These concordant results of mtDNA differences, bindin
sequence divergence, sperm morphology and fertilization
suggest that the two populations of E. oblonga in the cen-
tral and western Pacific have diverged into two sibling
species. Although they each deserve a species name, the
origin of the E. oblonga type specimen is not clearly known
and therefore attributing a new species name to either the
central or western Pacific populations will require more
investigation.

The state of the genetic and morphological traits of the
western Pacific E. oblonga suggests that it is the derived
species. Factors driving the divergence of western Pacific
E. oblonga are as yet unclear. However, the occurrence of
slender sperm morphology and bindin sequence differ-
ences are correlated with the presence of E. sp. C, a spec-
ies that generally occupies similar habitats on the western
Pacific reefs (Nishihira ez al. 1991; Uehara et al. 1996;
Geyer & Palumbi 2003). This pattern is clearest in Guam.
Guam is closer to Okinawa than Hawaii (ca. 2200 km ver-
sus ca. 7500 km), and shares many marine species (such
as acroporid corals) with Okinawa and the rest of the IP
that are absent in Hawaii. Even the echinometrid E. sp.
A is shared between Guam and Okinawa, but is absent in
Hawaii. On this basis, the black urchin in Guam was
expected to be the western Pacific E. oblonga, but genetic
and sperm traits consistently place it within the central
Pacific E. oblonga. Despite the overall biogeographic simi-
larity of Guam and Okinawa, Guam and Hawaii also share
at least one biogeographic feature: they both lack E. sp. C.

When they co-occur, E. oblonga has been reported to
occupy stronger wave action areas than E. sp. C
(Arakaki & Uehara 1991). The derived sperm morphology
might then be an adaptation to this habitat of higher wave
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action. This hypothesis is supported by the similar elon-
gated sperm morphology encountered in Colobocentrotus
mertensii (Arakaki & Uehara 1989), another member of
the family Echinometridae inhabiting high wave-action
areas. It is also interesting that the sperm head of
Okinawan Echinometra species increases in length in the
order of E. sp. A < E. mathaei < E. sp. C < western
Pacific E. oblonga but decreases in width in the same
order, which correlates with the relative exposure of these
species to wave action (Nishihira ez al. 1991; Arakaki ez al.
1998a,b; Mita et al. 2002). Longer sperm may not directly
perform better in higher wave action but could be better
at fertilizing bigger eggs, as proposed by Raff ez al. (1990),
which in turn could be better and more resistant in higher
wave action. Data on egg size have not been reported for
all the species but E. sp. A has been reported to have a
smaller egg diameter than E. sp. C, which has a smaller
egg diameter than western Pacific E. oblonga
(66.9+1.3um versus 71.8+1.4um versus 74.0%+0.9
um) (Aslan er al. 1999; Rahman er al. 2001).

(d) Speciation in Echinometra

Along with previous reports, our results allow us to pro-
pose a history of this recent speciation event. Based on
the derived genetic state of western Pacific E. oblonga,
combined with derived sperm type, it appears that E.
oblonga evolved in allopatry in the central Pacific, diverg-
ing from an ancestral stock common in the western Pacific
within the past 0.5-1.0 Myr. Echinometra oblonga sub-
sequently reinvaded the western Pacific, where it encoun-
tered the ancestral species E. sp. C, causing rapid changes
in sperm morphology and gamete binding proteins. These
changes resulted in gametic differences and reproductive
barriers between E. oblonga currently found in the central
Pacific and the new species in the western Pacific. Mol-
ecular clock estimates of divergence suggest that this rein-
vasion and speciation has taken place within the past
250 000 years.

(e) Sperm and speciation

Sex and speciation have been bound intimately in the
definition of the biological species concept. Evidence is
now accumulating that sexual selection might be acting
when species are diverging and that within-species sexual
selection may drive the development of reproductive iso-
lation (reviewed in Panhuis er al. (2001)). Furthermore,
there is ample evidence that sex-related genes are evolving
quickly in a broad range of organisms (e.g. Drosophila,
Civetta & Singh 1995; Chlamydomonas, Ferris et al. 1997;
primates, Wyckoff er al. 2000; Arabidopsis, Mayfield er al.
2001; and marine invertebrates, Metz & Palumbi 1996).
These rapidly changing genes may be correlated with the
rapid evolution of genitalia and gamete morphology
reported in many species. Some evidence suggests that
sperm and reproductive organs are indeed rapidly evolv-
ing. For instance, in insects, genitalia are often the first
morphological characters to change, which is why they are
often used in systematics for the differentiation of closely
related species (reviewed in Shapiro & Porter 1989).
Sperm shape is also known to be rapidly evolving (e.g.
Joly et al. 1991). In many species, sperm size has been
shown to be related to male fitness (see, for example,
Radwan 1996) and to respond to selection (e.g.
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Gomendio & Roldan 1991; LaMunyon & Ward 2002).
Spermatozoa in broadcast spawners are simultaneously
both gametes and unicellular genitalia and therefore are
expected to evolve quickly as well. Direct attempts to test
this hypothesis have seldom been done but indirect evi-
dence suggests that sperm may be coevolving with egg size
(Raff er al. 1990; Levitan 1996; Levintan & Irvine 2001).
Other evidence of rapid evolution comes from the phylo-
genetic analysis of sperm characteristics, which often sug-
gests rampant secondary loss or reappearance of sperm
structures (Rouse 1999; Koufopanou ez al. 1999; Keys &
Healy 2000). Further work is needed to clarify the role of
sperm morphology in speciation and how quickly these
traits change evolutionarily. This approach may make it
possible to investigate the role of specific genes in the evol-
ution of sperm morphology, and thereby elucidate some
of the genetic mechanisms by which species evolve.
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