

7.1 宏功能模块概述
7.1.2 使用MegaWizard Plug-In Manager
<输出文件>.bsf : Block Editor中使用的宏功能模块的符号(元件)。
<输出文件>.cmp: 组件申明文件。
<输出文件>.inc : 宏功能模块包装文件中模块的AHDL包含文件。
<输出文件>.tdf: 要在AHDL设计中实例化的宏功能模块包装文件。
<输出文件>.vhd: 要在VHDL设计中实例化的宏功能模块包装文件。
<输出文件>.v: 要在VerilogHDL设计中实例化的宏功能模块包装文件。
<输出文件>_bb.v: VerilogHDL设计所用宏功能模块包装文件中模块的空体或
black-box申明,用于在使用EDA 综合工具时指定端口方向。
<输出文件>_inst.tdf : 宏功能模块包装文件中子设计的AHDL例化示例。
<输出文件>_inst.vhd : 宏功能模块包装文件中实体的VHDL例化示例。
<输出文件>_inst.v: 宏功能模块包装文件中模块的VerilogHDL例化示例。
4 Kx ^{康芯科社}

7.2 宏模块应用	实例			
7.2.2 定制初始化数据文件				
	【例7-1】			
1. 建立.mif格式文件	WIDTH =	8;		
	DEPTH =	64;		
	ADDRESS	_RADIX =	HEX;	
	DATA_RA	DIX = HH	EX ;	
	CONTENT	BEGIN		
	0	:	FF;	
	1	:	FE;	
	2	:	FC;	
	3	:	F9;	
	4	:	F5;	
	(数据	略去)		
	3D	:	FC;	
	3E	:	FE;	
7	3F	:	FF;	▶ 廣芯科技
1	END;			Kx

Г

7.2 7.2	7.2 宏模块应用实例 7.2.2 定制初始化数据文件 2. 建立.hex格式文件										
	Addr	+0	+1	+2	+3	+4	+5	+6	+7		
	0	255	254	252	249	245	239	233	225		
	8	217	207	197	186	174	162	150	137		
	16	124	112	99	87	75	64	53	43		
	24	34	26	19	13	8	4	1	0		
	32	0	1	4	8	13	19	26	34		
	40	43	53	64	75	87	99	112	124		
	48	137	150	162	174	186	197	207	217		
	56	225	233	239	245	249	252	254	255		
9		图7	-2 将波	形数据均	真入mif	文件表中	Þ		Kx ^{康芯利}	¥技	

2 . 建立 .hex 格式文件	★ 情報 V2.00: 软件模拟器 (8031) [D:\Documents and Set 文件(E) 編編(E) 提案(S) 项目(E) 扶行(E) 窗口(W) 伪耳 (例) C) 目 (E) (編译(U)) F9
	DB 255, 254, 252, 249 DB 245, 239, 233, 225 DB 217, 207, 197, 186 DB 174, 162, 150, 137 DP 124, 112, 00, 97
	DB 124, 112, 27, 67 DB 75, 64, 53, 43 DB 34, 26, 19, 13 DB 8, 4, 1, 6 DB 8, 1, 4, 8
	DB 13 , 19 , 26 , 34 DB 43 , 53 , 64 , 75 DB 87 , 99 , 112 , 124 DB 137 , 150 , 162 , 174
图7-3 ASM格式建hex文件 10	DB 186 , 197 , 207 , 217 DB 225 , 233 , 239 , 245 DB 249 , 252 , 254 , 255 END

7.2 宏模块应用实	(例)
7.2.3 安相 РМ РОМ元件	
data rom data rom inderestion O pou want to specify O No. keese Blank inderestion data rom indexestion O rou want to specify O No. keese Blank indexestion data rom indexestion O rou want to specify O No. keese Blank indexestion Image: State of the specify indexestion O rou want to specify or noise Image: State of the specify indexestion O rou want to specify or noise Image: State of the specify indexestion O rou want to specify or noise Image: State of the specify indexestion O rou want to specify or noise Image: State of the specify indexestion O rou want to specify or noise Image: State of the specify indexestion O rou rou want to specify indexestion Image: State of the specify indexestion D rou math the specify indexestion	the initial context of the memory? y context data to XXX on power up in simulation the memory context data seadecimal [intel-format] File [hex] or a Memory ain_graftdataHEASDATA.HEX file should context the should context the should context the context data context data to capture and update context steremoteX is ROM i: ROMI Cancel < Book Meet > Ensith

【例7-3】
LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY altera mf;
USE altera mf.altera mf components.all;使用宏功能库中的所有元件
ENTITY data rom IS
PORT (address : IN STD LOGIC VECTOR (5 DOWNTO 0);
inclock : IN STD LOGIC ;
q : OUT STD LOGIC VECTOR (7 DOWNTO 0));
END data rom;
ARCHITECTURE SYN OF data rom IS
SIGNAL sub_wire0 : STD_LOGIC_VECTOR (7 DOWNTO 0);
COMPONENT altsyncram例化altsyncram元件,调用了LPM模块
altsyncram
intended device family : STRING;类属参量数据类
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
width a : NATURAL;
widthad a : NATURAL;
numwords a : NATURAL;
operation mode : STRING;
outdata reg a : STRING;
address aclr a : STRING; # The

7.2.4 完成顶层设计
【例7-4】 正弦信号发生器项层设计
LIBRARY IEEE;正弦信号发生器源文件
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;
ENTITY SINGT IS
PORT (CLK : IN STD_LOGIC; 信号源时钟
DOUT : OUT STD_LOGIC_VECTOR (7 DOWNTO 0));8位波形织结糊由
END;
ARCHITECTORE DACC OF SINGT IS
COMPONENT data_rom 调用彼沙致滑行调备LPM_ROM文件: data_rom.vnd户明
inglock · IN STD LOGIC · 他孙绪在时始
a : OUT STD LOGIC VECTOR (7 DOWNTO 0));
END COMPONENT:
SIGNAL 01 : STD LOGIC VECTOR (5 DOWNTO 0);设定内部节点作为地址计数器
BEGIN
PROCESS(CLK)LPM ROM地址发生器进程
BEGIN
IF CLK'EVENT AND CLK = '1' THEN Q1<=Q1+1;Q1作为地址发生器计数器
END IF;
END PROCESS;
ul : data_rom PORT MAP(address=>Q1, q => DOUT,inclock=>CLK);例化
END;
21 Kx ^{康迈科技}

	outdata_acir_a	: STRING;
	width_byteena_a	: NATURAL;
	init_file : SI	TRING;
	lpm_hint : SI	TRING;
	lpm_type : SI	TRING);
	PORT (clock0 : IN STD_LOGIC ;	altsyncram元件接口声明
	address_a : IN STD_L	OGIC_VECTOR (5 DOWNTO 0);
	ga : OUT STD	LOGIC VECTOR (7 DOWNTO 0));
	END COMPONENT ;	
BEGIN	······	
	$q \leq sub wire(7 DOWNTO 0)$:	
	altermeran component : altermer	r am
	GENERIC MAR (intended device i	family => "Cyclone"余数
At-120 min da	diminite mai (intended_device	
存进吠え		新提供学生。
	width_a => 8,	蚁焰线见皮0
	widthad_a => 6,	地址就 施度 6
	numwords_a $=> 64$,	叙诺叙重64
	operation_mode => "ROM",	LPM模式ROM
	outdata_reg_a => "UNREGI	[STERED",输出无锁存
	address_aclr_a => "NONE"	·,无异步地址清0
	outdata_aclr_a => "NONE"	,无输出锁存异步清0
	<pre>width_byteena_a => 1,</pre>	byteena_a 输入口宽度 1
	<pre>init_file => "./dataHEX/</pre>	SDATA.hex",ROM初始化数据文
件,此女	此已修改过	***

-	7.	4 编辑	‡Się	gna	lTa	pII伯	的触发	信号	
trigge	er: 2004	1/12/03 13:35:38 #1	Lock mode:	🔓 Allow all c	hanges	•		Signal	x
		Node	Incremental	Debug Port	Data Enable	Trigger Enable	Trigger Levels	Clock CLK	<u> </u>
Туре	Alias	Name	Route	Out	14/Auto	14/Auto	1 Basic -	-Data:	
6		. DOUT		-67	v	v	x Basic	Samla	-Nodes
Ø				-67	V	ম	****	1 K 💌	(€ Aut
29	9		ł	图 7-17;	选择高约	汲触发条 [,]	件	K "#Ö	科技

7.6流水线乘法累加器的混合输入设计
(1)用VHDL设计16位加法器。
【柳[7-5】
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;
ENTITY ADDER16B IS
PORT (CIN : IN STD_LOGIC;
<pre>A, B : IN STD_LOGIC_VECTOR(15 DOWNTO 0);</pre>
<pre>s : OUT STD_LOGIC_VECTOR(15 DOWNTO 0);</pre>
COUT : OUT STD_LOGIC);
END ADDER16B;
ARCHITECTURE behav OF ADDER16B IS
SIGNAL SINT : STD_LOGIC_VECTOR(16 DOWNTO 0);
<pre>SIGNAL AA,BB : STD_LOGIC_VECTOR(16 DOWNTO 0);</pre>
BEGIN
AA<='0'&A BB<='0'& B;
SINT <= AA + BB + CIN; S <= SINT(15 DOWNTO 0); COUT <= SINT(4);
END behav; 唐花秋林
36 K _x K _x

Simu	7.6济 (3) 仿	瓦水 组 真。 1115	线乘		累加	器	的剂	昆合	输入	、 ど	१ रो	Start
			ps 5	.12 us	10.24 us	11.02	. 36 us	20.48 us	25.6 v	15	30.72	us
	Nane	11 0 1	ns						I			
D	CLOCK	во				1	<u>л т т</u>			J		
	COUT	BO				0				4		~
	E DATAN	un H	0			5		2	o 1	÷		45
6	± s	vo C		0	X	45	X 690	с X	681	хÂ	672	
4	图7-27 muladd工程仿真波形 40 Kx ^{康芯科技}											

7.6流水线乘法累加器的混合输入设计 (4) 图7-28是对于图7-25在进行不同项目的选择后,编译报告给出的不同资 源利用情况。			
Total logic elements	224 / 4,608 (5%	Total logic elements	17 / 4,608 (< 1 %)
Total registers	110	Total registers	0
Total pins	34 / 89 (38 %)	Total pins	34 / 89 (38 %)
Total virtual pins	0	Total virtual pins	0
Total memory bits	0 / 119,808 (0 %	Total memory bits	0 / 119,808 (0%)
Embedded Multiplier 9-bit elements	0/26(0%)	Embedded Multiplier 9-bit elements	2 / 26 (8%)
Total PLLs	0/2(0%)	Total PLLs	0/2(0%)
图7-28 对乘法器选择不同设置后的编译报告			
41			Kx康芯科技

7.7 LPM嵌入式锁相环调用		
PLL20 Polio frequency: 20 000 Met general Quertion Multi: Komul Ck Insel in (dg) OC (3) di 11 0.00 (db 00) Cyclore II	Able to implement the requested RL Dynamic configuration Optimic configuration Optimal mosts for dynamic reconfiguration Optimal mosts Optimal mosts Optimal most to asketively enable the RL Optimal most to asketively enable the PL Optimal most to asketively enable the phase/freq. detector Lock output Optimal most folder output	
43]7-30 选择控制信号 Kx ^{康芯科技}	

	7.7 LPM嵌入式锁相环调用				
7.7.2 测试锁相环					
	inclkO				
	areset pllena				
٢	-0				
0	cl e0				
0	locked				
图7-32 PLL元件的仿真波形					
4	45	Kx康芯利技			

7.7.2 测试锁相环	
单频率输出的应用PLL的示例:	
ENTITY DDS VHDL IS	
PORT (CLKK : IN STD_LOGIC;此时钟进入锁相环	
<pre>FWORD : IN STD_LOGIC_VECTOR(7 DOWNTO 0);</pre>	
;	
ARCHITECTURE one OF DDS_VHDL IS	
COMPONENT PLLU调入PLL户明	
<pre>PORT (inclk0 : IN STD_LOGIC := '0';</pre>	
c0 : OUT STD_LOGIC);	
END COMPONENT;	
COMPONENT REG32B	
; BEGIN	
;	
u6 : SIN_ROM PORT MAP(address=>D32B(31 DOWNTO 22), q=	>POUT,
<pre>inclock=>CLK);</pre>	
u7 : PLL20 PORT MAP(inclk0=> CLKK, c0=>CLK);例化	
END; AG	芯科技
TU NX	

7.8 IP核NCO数控振荡器使用方法				
User Library Pathnames Add any nor-default librarie project. List the library n search them. Custon librari Include Files, and pre-compi Library	s that you will use in the mes in the order you wan to led WHDL packages.			
	Select Directory 重扰用图 ①: ① 11b □ asj_akq.cp a sj_akq.cp a sj_akq.cp a sj_akq.cp a sj_akqmcah.cp a sj_akqmcah.	× • ← ← ← ← ← ← ← ← • → osi_gan.v • → osi_gan.dv.v • → osi_gar.dv.v • → osi_gar.dv.v • → osi_gar.dv.v • → osi_no_aprid.dv.v • → • → •		
52 🕅	7-38 选中确定路径上的NCO库	Kx ^{康心科技}		

7.8	IP核NCO数控振荡器使用方法
	Add any non-default library names in the order you want to search them. Custom libraries can contain user-defined or Include Files, and pre-compiled WDL packages. Library Library Libraries: d:\megacore\nco-v2.2.1\lib Up Down
	OK
53	图7-39 加入NCO库 Kx ^{康芯科技}

		ORG GGGGH	
	MAIN :	MOV SP, #60 H	
		MOU 24H.#00H	
		MOU 36H #61H	
	ROUND :	LCALL DELAY1	
		MOV A.24H	
		INC A	
		MOV 24H,A	
		MOU P1.A	
		MOU A, 3 SH	
		RR A	
		MOV PS,A	
		MOV 36H,A	
		NOP	
		NOP	
		MOV A, PS	
		MOV <mark>B,</mark> P3	
		ADD A,B	
		MOV P2,A	
		LCALL DELAY1	
RIT 52 TECTI and		SJMP ROUND	
ET7-55 TESTLASHIL	DELAY:	MOV 20H,#OFFH	
编栏序	W1 :	MOV 21H,#OFFH	
	W2 :	DJNZ 21H,W2	
		DJNZ 20H,W1	
		RET	
	DELAY1:	MOV 22H,#08H	
	W3 :	LCALL DELAY	
		DJNZ 22H,W3	-1-11-11-11
67		RET	▶ 康芯科技
07		END	NX

实验与设计
7-1. 正弦信号发生器设计
(1)实验目的:进一步熟悉QuartusII及其LPM_ROM与FPGA硬件资源的 使用方法。
(2) 实验原理:参考本章相关内容。
(3) 实验内容1:根据例7-4,在Quartus II上完成正弦信号发生器设计,包 括仿真和资源利用情况了解(假设利用Cyclone器件)。最后在实验系统上 实测,包括SignalTap II测试、FPGA中ROM的在系统数据读写测试和利用 示波器测试。最后完成EPCSx配置器件的编程。
(4) 实验内容2: 按照图7-49所示,用原理图方法设计正弦信号发生器,要 调用3个LPM模块来构成: 1、PLL,输入频率20MHz,32MHz单频率输 出; 2、6位二进制计数器; 3、LPM ROM,加载的波形数据同上。注意, 硬件实现时可以通过SignalTapII观察波形,但不能用0832输出,波形必须 用 a zimo A c 金 h

п

A BAR

实验与设计

7-2.8位16进制频率计设计

(1) 实验目的:设计8位16进制频率计,学习较复杂的数字系统设计方法。

(2)实验原理:根据频率的定义和频率测量的基本原理,测定信号的频率必须有一个脉宽为1秒的输入信号脉冲计数允许的信号;1秒计数结束后,计数值被锁入锁存器,计数器清0,为下一测频计数周期作好准备。测频控制信号可以由一个独立的发生器来产生,即图7-57中的FTCTRL。根据测频原理,测频控制时序可以如图7-56所示。

设计要求是:FTCTRL的计数使能信号CNT_EN能产生一个1秒脉宽的周期信号,并 对频率计中的32位二进制计数器COUNTER32B(图7-57)的ENABL使能端进行同 步控制。当CNT_EN高电平时允许计数:低电平时停止计数,并保持其所计的脉冲 数。在停止计数期间,首先需要一个锁存信号LOAD的上跳沿将计数器在前1秒钟的 计数值锁存器REG32B中,并由外部的16进制7段译码器译出,显示计数值。 设置锁存器的好处是数据显示稳定,不会由于周期性的清0信号而不断闪烁。锁存信 号后,必须有一清0信号RST_CNT对计数器进行清零,为下1秒的计数操作作准备。 73

【例7-8】 LIBRARY IEEE;32位锁存器
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY REG32B IS
PORT (LK : IN STD_LOGIC;
DIN : IN STD_LOGIC_VECTOR(31
DOWNTO 0);
DOUT : OUT STD_LOGIC_VECTOR(31
DOWNTO 0));
END REG32B;
ARCHITECTURE behav OF REG32B IS
BEGIN
PROCESS(LK, DIN)
BEGIN
IF LK'EVENT AND LK = '1' THEN DOUT <= DIN;
END IF;
END PROCESS;
7週ND behav; K ^{康花科技}

CONDONIENT DEC 20D
COMPONENT REG32B
PORT (LK : IN STD_LOGIC;
DIN + IN STD_LOGIC_VECTOR(31 DOWNTO 0);
DOUT : OUT STD_LOGIC_VECTOR(31 DOWNTO 0));
END COMPONENT;
SIGNAL TSTEN1 : STD_LOGIC;
SIGNAL CLR_CNT1 : STD_LOGIC;
SIGNAL Load1 : STD LOGIC;
SIGNAL DTO1 : STD LOGIC VECTOR(31 DOWNTO 0);
SIGNAL CARRY OUT1 : STD LOGIC VECTOR (6 DOWNTO 0):
BEGIN
III · FTCTPL DOPT MAD(CLKK =>CLK1HZ CNT FN=>TSTFN1
PET (NT ->CIP (NT1 Load ->Load1):
NSI_CNI =>CDK_CNII, HOAU =>HOAUI);
UZ : REG32B PORT MAP(LK => LOADI, DIN=>DTOI, DOUT =>
DOUT);
U3 : COUNTER32B PORT MAP(FIN => FSIN, CLR => CLR_CNT1,
ENABL => TSTEN1, DOUT=>DTO1);
END struc;
79 Kx 康 芯科技

们的乘积。

82

Kx 康芯科技

【例7-11】	
WIDTH = 8 ;	
ADDRESS_RADIX = HEX ;	
DATA_RADIX = HEX ;	
CONTENT BEGIN	
00:00 ; 01:00 ; 02:00 ; 03:00 ; 04:00 ; 05:00 ; 06:00 ; 0	7:00; 08:00; 09:00;
20.00 + 21.02 + 22.04 + 23.06 + 24.08 + 25.10 + 26.12 + 2	7.07, 10.00, 19.09,
30:00 : 31:03 : 32:06 : 33:09 : 34:12 : 35:15 : 36:18 : 3	37:21 : 38:24 : 39:27:
40:00 ; 41:04 ; 42:08 ; 43:12 ; 44:16 ; 45:20 ; 46:24 ; 4	7:28 ; 48:32 ; 49:36;
50:00 ; 51:05 ; 52:10 ; 53:15 ; 54:20 ; 55:25 ; 56:30 ; 5	7:35 ; 58:40 ; 59:45;
60:00 ; 61:06 ; 62:12 ; 63:18 ; 64:24 ; 65:30 ; 66:36 ; 6	7:42; 68:48; 69:54;
70:00 ; 71:07 ; 72:14 ; 73:21 ; 74:28 ; 75:35 ; 76:42 ; 7	7:49; 78:56; 79:63;
00:00 ; 01:00 ; 02:10 ; 03:24 ; 04:32 ; 05:40 ; 00:40 ; 0 00:00 · 01:00 · 02:18 · 03:27 · 04:36 · 05:45 · 06:54 · 0	7:50; 88:04; 89:72;
50.00 , 51.05 , 52.10 , 55.27 , 54.30 , 55.45 , 50.54 , 5 END ·	7.03, 30.72, 33.01,
注意,以上"CONTENT BEGIN"下所示的数据格式只是为了	节省篇幅,实用中应该使
每一数据组(如01:00;)占一行。	
_	****
83	Kx Kx

	实验与设计
7-4. PF核应用实验 利用IP核完成如下2项 1、利用NCO核分别设 (1) FSK; (2) PSK 信号源; (6) 全数字5 2、利用NCO和FIR核 《SOPC技术实用教程》	设计: 计: ; (3) DDS; (4) 移相信号发生器; (5) 扫频 式锁相环。 设计数字正交调制解调器(参考清华大学出版社) 中的实验6-5)。
85	Kx ^{康艺科技}

