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This work describes the modeling and simulation of planar electrowetting on dielectric (EWOD)
devices that move fluid droplets by modulating surface tension effects. The fluid dynamics are
modeled by Hele-Shaw type equations with a focus on including the relevant boundary phenomena.
Specifically, we include contact angle saturation and a contact line force threshold model that can
account for hysteresis and pinning effects. These extra boundary effects are needed to make reason-
able predictions of the correct shape and time scale of liquid motion. Without them the simulations
can predict droplet motion that is much faster than in experiments (up to 10-20 times faster). We
present a variational method for our model, and a corresponding finite element discretization, that
is able to handle surface tension, conservation of mass, and the non-linear contact line pinning in a
straightforward and numerically robust way. In particular, the contact line pinning is captured by
a variational inequality. We note that all the parameters in our model are derived from first princi-
ples or from independent experiments except one (the parameter Dyisc that accounts for the extra
resistive effect of contact angle hysteresis and is difficult to measure directly). We quantitatively
compare our simulation to available experimental data for five different cases of droplet motion that

include splitting and joining of droplets and find good agreement with experiments.

PACS numbers: Valid PACS appear here

I. INTRODUCTION

Electrowetting refers to the local modification of sur-
face tension by applied electric actuation to precisely ma-
nipulate 2-phase flows on the micro-scale’ 1°. By ap-
plying electric fields via actuating electrodes (see Figure
1), surface tension and electrical effects compete 1617
and this competition can create spatially and temporally
varying forces that are used to shape, move, split, merge,
and mix fluids in micro-scale devices. Applications
of electrowetting include reprogrammable lab-on-a-chip
systems®!!, auto-focus cell phone lenses', and colored
oil pixels for laptops and video-speed smart paper%-10.

This paper is concerned with modeling and simu-
lating fluid motion in planar electrowetting on dielec-
tric (EWOD) systems, such as the UCLA electrowetting
system?17 19 against which the numerical results in this
paper are compared. It focuses on device length (pum)
and device time scale (ms) simulations and it addresses
the next major item required to better predict electrowet-
ting behavior: the inclusion of contact line pinning and
de-pinning behavior in a experimentally motivated phe-
nomenological and numerically sound manner.

The subject of this paper, modeling and simulation

of electrowetting, is needed to further understand the
physics and to design, optimize, and better control
next generation devices. For instance, our results on
feedback flow control to steer and sort single particles
in planar electrowetting systems, a new capability for
electrowetting?®, was predicated on and would not have
been possible without our prior electrowetting modeling
work?!. Modeling for design and control must strike a
balance between model accuracy (the model must suf-
ficiently predict the experimental behavior) and model
complexity. To enable design, optimization, and control,
the models created must be small enough to fit within
design, optimization, and control tools, e.g. control anal-
ysis and synthesis methods??23 which can handle tens to
tens of thousands of states, but not millions.

Effectively modeling electrowetting at device length
and time scales is challenging. Electrowetting includes a
complex set of physical phenomena, and aspects related
to fine-scale fluid dynamics and chemistry are still under
debate in the literature. Nevertheless, the key modeling
issues and necessary tasks have become clear (see, for
example, our previous work!"21:24726 and the review®).
The following are crucial and recognized modeling issues
that must be included.

1. In electrowetting, liquid packets are held together by
surface tension and are actuated by electric fields, so
any model must include surface tension and electrical
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FIG. 1: An example of electrowetting (schematic). The activated electrode (red pad) effectively and locally decreases the
surface tension of the liquid touching it, causing it to move to the right. (Figure courtesy Jeong-Yeal Yoon at UCLA.)

phenomena.

2. For fast motion, which certainly occurs in electrowet-
ting systems (millisecond splitting of droplets, video-
speed actuation of colored oils), fluid dynamic effects
must be included.

3. Liquid/gas interfaces must be tracked accurately
and successfully through large deformations including
topological changes such as split and join events. Such
events are central to the operation of laboratory-on-
a-chip electrowetting systems that aim to manipulate,
combine, and partition small packets of liquid to carry
out precision chemical and biological reactions on chip.

4. Loss  mechanisms, such  as angle
saturation®!718:2737  and  hysteresis which
are two major phenomena in electrowetting systems,
can severely limit device performance and must be
included.

contact
38-47
)

The current status of electrowetting physical modeling
can be summarized as follows. We know the dominant
physics that must be included to characterize the bulk
flow. Equilibrium behavior, of sessile (isolated) drops
is understood!'6:17:33:40:48 = The bulk fluid dynamics of
electrowetting has been addressed by us as well as by
others. Our prior work?' developed a model in 2 di-
mensions that successfully tracked moving and splitting
interfaces by the level-set method and, to the best of
our knowledge, was the first to predict electrowetting dy-
namics from physical first principles (see also Lu et al’s
model®*). We compared that model?! to the UCLA ex-
periments and showed that it captures the leading order
effects (i.e. it is quantitatively correct in most cases, for
example, it correctly predicts bulk flow splitting times).

Numerical advances for tracking the dynamic 2-phase
micro-scale flows that occur in electrowetting devices
include our prior research in?'2%26  as well as the re-
sults of others3*49-52_ Earlier work on electrowetting fo-
cused mainly on equilibrium and quasi-static behavior of
droplets?®0 (i.e. no internal fluid dynamics). More re-
cent methods simulate the full dynamics of electrowetting
driven motion in various physical settings34°152. How-
ever, none of these methods/models account for the ef-
fects of contact line pinning or hysteresis. It is also not
apparent how to generalize the above listed numerical
techniques to include these two phenomena.

In summary, this paper presents a PDE model of
EWOD fluid dynamics that is able to approximately cap-
ture the evolution of the fluid’s liquid-gas interface in two

dimensions. In our prior modeling work we had correctly
accounted for the internal fluid dynamics, the boundary
conditions due to surface tension and electrowetting ac-
tuation, but we had only a heuristic model for contact
line pinning and hysteresis?!. Now we include a phe-
nomenological force threshold model for line-pinning and
de-pinning as motivated by the experiments described
in®4593 Tt is simply not feasible to include atomistic or
molecular dynamic descriptions for contact line dynam-
ics explicitly as their length and time scales are dramat-
ically smaller (i.e. 10,000 and 100 times smaller than
device length and time scales respectively), but we do in-
clude insights from them in our formulation (see Section
IID and® 7). We combine sophisticated numerics, a
semi-implicit front-tracking method for the interface mo-
tion and a variational /weak formulation of the governing
PDE, which we discretize by finite elements®”. The vari-
ational method is key to implementing our contact line
pinning model in a clean and robust manner, as well as
providing a stable calculation of curvature, and ensuring
accurate mass conservation. Our simulation tool is able
to handle pinching and merging of droplets?®, which is
central to the operation of electrowetting systems. Our
simulations with the added contact line physics and new
numerical methods provide a better match to experimen-
tal data than those in?"3452 and they still run in between
5 and 15 minutes on a laptop. We show direct compar-
ison between our simulation and experiments conducted
at UCLA in Section IV.

II. ELECTROWETTING MODEL

This section describes our modeling approach. A list
of physical parameters for the device geometry and other
symbols used in the text are given in Table I.

A. Description of the EWOD System

Figure 2 shows a schematic of an EWOD device.
EWOD actuation relies on a competition between surface
tension and dielectric energy storage in an underlying
solid dielectric layer®!7. This effectively allows each elec-
trode to change the surface tension properties immedi-
ately above it. This change can be used to move droplets
from electrode to electrode, to split droplets (by pulling
on either side using three electrodes), to join droplets



FIG. 2: Schematic of sample EWOD device (courtesy of CJ
Kim at UCLA). This EWOD system consists of two parallel
plates with the top plate (transparent) acting as a ground
electrode and the bottom plate containing a grid of embedded
electrodes. The bottom plate also contains an extra dielectric
layer to enhance device performance (not shown). A single
droplet is shown in blue, but there may be many droplets of
arbitrary shape between the two plates. Note that the height
of each droplet is small compared to its horizontal size (these
droplets are very thin puddles).

by making them collide, and to mix fluid in droplets by
making the droplets execute complex paths.

B. Base Fluid Model
1. Hele-Shaw

The flow of liquid between two narrowly spaced parallel
plates, surrounded by air, is governed by the Hele-Shaw
equations®®®?, with a pressure boundary condition given
by the Young-Laplace relation at the liquid-gas interface.
Therefore, the 2 dimensional fluid equations inside (pos-
sibly many) droplets actuated by EWOD are given in
non-dimensional form as (see?!:?® for details)

Ou

ot

a— + fu+ Vp =0, in Q,

1
e (1
Vp =10, in Q,

where € is the domain of the fluid (liquid-phase, see Fig-
ure 3), bold-face u is the vector velocity field (in the
plane of the device), and p is the pressure. The non-
dimensional constants « and 8 depend on the fluid pa-
rameters and geometry of the device:

2
o= (pLUO>Ca, 6=12 (£> Ca, CazM—UO,
o H

Ulg

where p is fluid density, H is the height between the
parallel plates, L is the planar liquid length scale, Uy is
the velocity scale, ;1 is the dynamic viscosity, Ca is the
capillary number, and oy, is the surface tension of the
liquid-gas interface (here denoted by I')%!.
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FIG. 3: Example EWOD device geometry (see?). The coor-
dinate axes are defined such that the top and bottom plates
of the device lie in planes parallel to the xz-y plane. In this
example, a 3x3 grid of electrodes is shown, each with side
length Lgiec, with one electrode active (the shaded square).
Two liquid droplets are shown moving towards the active elec-
trode to merge into one droplet. The domain of the liquid is
denoted by €2 and the liquid-gas interface is labeled I'. The
bolded parts of I' indicate ‘pinned’ parts of the boundary due
to contact line pinning. Note that only a subset of the bound-
ary may be pinned; other parts may still move. A side view
of the device is shown at the bottom (note: ‘Droplet #2’ is
not shown here). The contact angles of the droplet, measured
through the liquid, are denoted 6; and 6, (top and bottom).
The physical parameters of the device, for each experimental
setup, are listed in Tables I and III.

2. Interface Motion

We need an equation to describe the motion of the two-
phase droplet boundary I'. In particular, the droplet may
deform into an arbitrary shape. The change in droplet
shape is only due to the normal component of velocity
u - n; the tangential component only reparametrizes the
interface. Thus, for each point x on the boundary the
change in position is given by

Orx = (u(x7 t) - n(x, t)) n(x,t), (2)

where n is the unit outer normal vector of the boundary.
However, it is convenient in our implementation to use
the full velocity to advance the interface position:

Ox = u(x,t). (3)

This makes no difference for the droplet evolution and
simplifies our numerical method. In the numerical imple-



TABLE I: Nomenclature: List of important symbols used in
the text. The physical parameters of the UCLA EWOD de-
vice for the experiments described in Section IV are given in

Table II1.

Parameter

Symbol Definition

Surface Tension Olg
Dynamic Viscosity m
Density p
Channel Height H
Electrode Length LElec
Length Scale
Velocity Scale Uy
Time Scale to = L/Uy
Pressure Scale Py =o01,/L
Reynolds Number Re = pUoH /1
Capillary Number Ca = ulo/oig
Momentum Equation Coefficients a, B
Vector Velocity u
Pressure P
Pinning Variable A
Convex Set (for \) A
Curvature of I’ K
Unit Normal and Tangent Vectors of I' n, t
EWOD Force E
Maximum Pinning Pressure Poin
Viscous Interface Drag Dyisc
Numerical Time Step ot
2-D Fluid Domain Q
1-D Liquid-Gas Interface r
Surface Gradient Operator Vr
Laplace-Beltrami Operator Ar

mentation of our model (see Section IIIF), we have an
explicit representation of the liquid domain 2 by a mesh
of triangles. This naturally contains a mesh of the liquid-
gas interface I' (i.e. the boundary of Q), which allows for
easily enforcing boundary conditions and computing sur-
face tension forces (see Section III). Hence, our method
falls into the category of semi-implicit front-tracking.

C. Boundary Conditions for the Liquid

We now discuss the physical phenomena occurring at
the liquid-gas interface, how these effects are modeled
and how they affect the boundary conditions.

1. Surface Tension

We first review the pressure boundary conditions for
pure surface tension driven flow, and then show how elec-
trowetting actuation is introduced (details are given in
our prior paper?!).

The Young-Laplace relation®® for the pressure in (1)
gives the boundary condition on the liquid-gas interface
I in dimensional form (denoted by ~):

p= Ulg(fﬂ + 1%2), on I (4)

where %1, &2 are the principle curvatures®® of the 2 di-
mensional liquid-gas surface. Following?!, the principle
directions of curvature are taken to be orthogonal, with
one direction in the plane of the device and the other
along the channel height. Therefore, the boundary con-
dition can be decomposed as:

p=oig(F + k), onT, (5)

where K is the curvature in the plane of the device and &,
is along the height. Since our fluid model is in 2 dimen-
sions, we have no information on the liquid-gas interface
shape along the channel height. Ergo, we assume that &
only depends on the shape of the 1 dimensional boundary
T', and we estimate £, by assuming the liquid-gas inter-
face profile is circular along the channel height. This is a
reasonable assumption so long as the horizontal extent of
the droplet is large compared to the height of the EWOD
device. This is certainly the case in the UCLA devices
where droplets usually span at least one electrode (1.4-1.5
mm length) while the device height is 70-100 pgm. Then
knowing the contact angles that the droplet makes with
the top and bottom plates, at each point x on T, fully
determines %, as a function on I'?'. The contact angle
only depends on a local force balance®™%2, so it does not
depend on the channel height. Therefore, &, = k,/H
where k. is the non-dimensional z curvature given by:

Ky, = —(cos(f:) + cos(6p)), on T, (6)

where 6; and 0, are the top and bottom contact angles
(see Figure 3). The dimensional curvature of I' is given
by & = /L, where k is non-dimensional. Hence, the
non-dimensional pressure is given by

L
p:H—FEIiZ, onT, (7)

where p = p/ Py and Py = 015/ is the pressure scale.

2. EWOD Forcing

The contact angle of the liquid (on the bottom plate)
depends on the voltage of the electrode pad directly un-
derneath (see Figure 3). Meaning the contact angle at a
point x, on the interface I'; only depends on the electrode
voltage at position x17, i.e. 6,(x) = 6,(V(x)). Hence,
kx(x) = k,(V(x)) is voltage dependent.

Let E be the EWOD force coming from the z curvature
component of the Laplace pressure on the interface. The
above implies

B(x) 1= poh-(V(), 0
which rewrites (7) as
p=rk+FE, onT. 9)

Computing F requires evaluating the voltage in the plane
of the device. In our model, the voltage V(x) is interpo-
lated between electrode gaps to ensure a smooth variation
of the bottom contact angle along the interface I'.



TABLE II: Available contact angle versus voltage data for the
experiments in Sections IV A, IV D, and IV E.

Contact Angle (degrees)

Voltage (V) Glycerin® Water®
0 107.35 111.62
50 68.46 -¢
65 64.32 70.01

%Used in Sections IV A and IV D.
bUsed in Section IV E.
¢This data is not needed.

3. Contact Angle versus Voltage; Saturation

The initial model of contact angle variations versus
voltage is the Young-Lippmann equation®’, which pre-
dicts a parabolic curve relating contact angle to the ca-
pacitive voltage V across the bottom plate (see Figure
4), i.e.

cosf =

Osg — Osl + C(cap\/V2/2

O']g

(10)

where 6 is the contact angle, oy, and oy are the sur-
face tensions of the solid-gas and solid-liquid layers (re-
spectively), and Cqyp is the capacitance per unit area for
the charging layer underneath the electrode. However,
in real electrowetting applications there are loss mech-
anisms that lead to contact angle saturation®17-18:27-37,
These limit the amount of contact angle variation (i.e.
Afy) that can be actuated, which in turn limits the
range of values of the EWOD forcing E. If the Young-
Lippmann model is used, simulated droplet speeds far
exceed what is actually seen in experiments?'. The satu-
ration effect is subtle and non-obvious, and its root causes
are the subject of vigorous debate in the electrowetting
community. See the previous references for more infor-
mation on contact angle saturation.

In Figure 4, we show a contact angle versus voltage
curve for a particular type of EWOD device?. The solid
curve is used in our simulations and comparisons to ex-
periments in Sections IV B and IV C. The moving droplet
experiment in Section IV B has a voltage time sequence
with values ranging from 0V to 25V; hence, here we re-
quire the entire fitted solid curve in Figure 4. As for
the experiments shown in Sections IV A, IVD, and IVE
we only need the experimental contact angle versus volt-
age data given in Table II; no intermediate voltages are
applied in those experiments.

D. Contact Line Force Threshold Model

Contact line pinning (or sticking) is a readily observed
phenomenon in most wetting applications38 4463769 Tt
is not a fluid viscous effect but rather a kind of molecu-
lar adhesion that occurs at the three-phase contact line
of the droplet. Line pinning is also related to an effect
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FIG. 4: Contact angle versus voltage data: theoretical and ex-
perimental data for contact angle variations using electrowet-
ting on dielectric. The light dotted line denoting the Young-
Lippmann (Y-L) curve is theoretical?”3%3%. The single plate
saturation curve has six experimental data points (given in?)
with a piecewise interpolating polynomial (see dashed line
and ‘o’ data points). The two plate saturation curve has two
experimental data points (also fr0m2) with an interpolating
curve derived from the single plate case by using a linear
map?! (see solid line and ‘o’ data points). Note the ‘satura-
tion’ effect as the voltage increases. The solid curve is used
in computing the pressure boundary conditions, via equations
(6), (8), and (9). Specifically, this data is used in simulating
the experiments in Sections IVB and IV C. If the Young-
Lippmann curve was used, then the simulated droplet speed
would be significantly higher than in experiment? (figure re-
produced from?!).

called contact angle hysteresis which acts to retard in-
terface motion. Ignoring pinning and hysteresis leads to
simulations that predict droplet motion up to 10 times
faster than is seen in experiments?!.

As of today, the nature of pinning and hysteresis is
still controversial. Most modeling of contact line pin-
ning uses molecular dynamics simulations® %%, which are
computationally very expensive (state-of-the-art simula-
tions are restricted to ~ 10* atoms, and/or nanometer
length scales and (at best) nanosecond time periods).
The following sections describe a modification of the pres-
sure boundary conditions to account for both contact line
pinning and the retardation effect of hysteresis in a phys-
ically meaningful way. This is in contrast to our prior
work?!, which had no pinning model and used an ad-hoc
model of contact angle hysteresis.

1. Phenomenological Approach

Macroscopic experiments®41:53 of droplet motion on

an inclined plane indicate that the net line pinning force
acting on a droplet has a threshold value. In other words,
the contact line exerts a force, equal and opposite to a
body force (e.g. gravity), that prevents the droplet from
moving, but only up to a threshold value. If the body



force exceeds the threshold, then motion does occur. This
behavior is very reminiscent of mechanical (Coulombic)
friction, in which case the friction force always opposes
motion and cannot exceed a certain threshold value. It
was also found®>*#! that the maximum total pinning forces
on the droplet scales with the length of the contact line,
ie.

Fmax = Cpil’lLC17 (11)

where F.x is the maximum total force that can resist
motion of the droplet, L is the total contact line length,
and cpiy is the line pinning coefficient with units of force
per length (units of surface tension). So the constant
Cpin Tepresents the maximum force per unit length that
a piece of contact line can exert against the droplet to
prevent its motion. In view of equation (11), we model
line pinning as a local effect, meaning that a local piece of
contact line only resists the local motion of that portion
of the liquid-gas interface, but will assume that the max-
imum threshold force on that piece of contact line cannot
exceed its length times the coefficient cpin. For our setup,
this is achieved by modifying the pressure boundary con-
ditions (see Section IID 2 for more details).

Our model is a rough approximation of the actual
physics at the three-phase contact line, but it does cap-
ture some insights from fine scale modeling of interfaces,
such as in®* 7, on moving contact lines. In particular,’*
shows a discontinuous jump in the local applied force
versus local interface velocity. The essential contribu-
tion of our work is to develop a modeling and numerical
framework that will allow inclusion of such results into
electrowetting modeling of entire devices for design and
optimization. To do this it is necessary to use a phe-
nomenological approach to incorporate the pinning ef-
fect into our continuum model. This is done to avoid a
molecular /atomistic description. Recently®%7% 7! some
new models for contact line dynamics have been pro-
posed that avoid a purely atomistic description and are
designed to be incorporated into a continuum model;
these also make note of insights from molecular dynam-
ics. As noted by us and others, it is clearly desirable
to have tractable contact line models at device/system
length and time scales.

2. Including Line Pinning into the Governing Equations

Since the EWOD governing equations are posed in 2
dimensions, we must average the above line force thresh-
old model over the device height in order to incorporate
it into the pressure boundary conditions. This is done by
averaging the maximal line pinning coefficient cpi, over
the channel height H of the EWOD device (see Figure 5).

This gives a maximal ‘pinning pressure’ ﬁpin = 2¢pin/H
(in dimensional form), which represents the maximum
opposing force per liquid-gas interface area that the con-
tact line can apply against motion of the interface. The
factor of ‘2" accounts for the interface contact line pin-
ning at the floor and ceiling of the EWOD device. The

Top Plate

Bottom Plate

FIG. 5: Contact line force averaging (cross-sectional slice of
EWOD device shown; z-axis is in the vertical direction). Con-
tact line friction is a force that is active along the three-phase
contact line. On the left, the contact line pinning force is
shown concentrated at the contact line (at both the floor
and ceiling). On the right, the pinning force has been redis-
tributed over the channel height. Since the governing EWOD
fluid equations have been averaged along the channel height,
we average the contact line pinning force across the channel
height also. This redistributes the force from a length of con-
tact line (at floor and ceiling) to a vertical strip along the
liquid-gas interface. This allows the line pinning force to be
included in the pressure boundary conditions as an additional
pressure term (see equation (13)).

non-dimensional pinning pressure is then given by

o 1 ZCpin

Pin— )
P Py H

(12)
where P, is the dimensional reference pressure scale
(force per unit of area).

This allows us to introduce a locally defined pin-
ning pressure A into the boundary conditions (in non-
dimensional form)

p=kKk+E+ A (13)
A = Pyin sgn(u - n)

In other words, if the normal velocity of the liquid-gas
interface is positive, then the pinning pressure will push
back with maximum positive pressure + P, to limit the
motion. Likewise, if the normal velocity is negative, the
pinning pressure will push back in the opposite direction
—Ppin. And if the normal velocity is zero, then A takes on
a value between £P,;, and acts as a Lagrange multiplier
to enforce the constraint that the interface does not move
(also see Figure 6). This definition of A ensures |A\| < Ppin
and so is consistent with the experimental observation in
Section IID 1.

Numerical implementation of this simple phenomeno-
logical model is difficult because of the discontinuity (the
sign function of equation (13), see Figure 7). This dis-
continuity, however, is essential. If it was replaced by a
smooth function then no droplet could ever be pinned in
a non-circular shape, something that does occur in the
experiments (see Figure 14). To show this, we argue by
contradiction. Assume no EWOD forcing, so the bound-
ary pressure is given by p = k + A (from equation (13)).
Suppose the droplet has become completely pinned in
a non-circular shape but the function relating A to the
normal front velocity u - n is smooth. Any symmetric
smoothed version f of the sign function ‘sgn’ must have
A = P,inf(0) = 0, which implies p = k by equation (13).
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FIG. 6: A 2 dimensional droplet (top view) with parts of the
boundary pinned (electrode grid not shown). The pinned re-
gions are denoted by a solid line; unpinned regions are shown
as a dashed line with velocity arrows indicating direction of
motion. An outward motion is considered positive (u-n > 0),
and an inward motion is negative (u-n < 0). The pinning
variable A is defined on the boundary I' of the droplet. On
the unpinned regions, the value of A\ saturates to +Ppin. On
the pinned regions (u-n = 0), A varies between —Ppi, and
+Ppin (see Figure 7). In our simulations, |A| < Ppin is used
to indicate where the boundary is pinned.

But if the droplet is pinned in a non-circular shape, then
k will not be constant around the droplets circumfer-
ence, hence the pressure field inside the droplet will not
be constant”™. By equation (1), the velocity u will not
be zero which contradicts the droplet being pinned. Note
that a smooth but steep function f will lead to a slowly
creeping liquid, but only a discontinuous f can truly pin
the liquid. Moreover, our model with the sgn function is
a physically motivated description®38-44,63-68

Our model, with equation (13), is non-linear and in-
troduces the velocity into the pressure boundary condi-
tions. Moreover, it is local, meaning that multiple parts
of the boundary I' can be pinned and unpinned simulta-
neously. Furthermore, the regions where the droplet is
pinned/unpinned are not known a priori; this must be
determined as part of the solution. Our pinning model
is similar to the Signorini problem in elasticity”® which
models the deformation of an elastic body against a rigid
obstacle and utilizes a contact variable to enforce the
rigid constraint similarly to our \. Our model can be in-
creased in complexity (see Section IID 3) to account for
more interesting contact line dynamics®°7. We are able
to include this model into our variational formulation of
Section III, and we have a method of solving for the veloc-
ity, pressure, and A\2>74. Knowing A immediately yields
where the boundary is pinned/unpinned.

One important issue here is the three-phase line
singularity” 77, which originates because of an appar-
ent paradox between the no-slip boundary condition on
the walls of the device and the fact that the contact line

FIG. 7: A more realistic relationship between the resistive
pressure at the interface and the normal velocity. Here, [\ +
Dyiscu - n] is plotted as the thick line. Note how the interface
pressure increases with increasing velocity. The dashed line
depicts a slightly more non-linear relationship [A+ Dyiscu-n+
Gpic(u - n)] (see equation (16)). The qualitative form of the
dashed line has been shown in the work of®*®7. Note: the
dashed line asymptotes towards the thin line Dyigcu - n.

moves. Our formulation is only a 2 dimensional descrip-
tion, as appropriate for planar devices. We do not track
the location of the three-phase line in our model in 3
dimensions; we only have an ‘averaged’ description of
the liquid-gas interface. Recall that the velocity field in
the z direction is parabolic; a fundamental assumption
in Hele-Shaw flow. Thus, in our model the contact line
singularity is not present. Other explanations have been
posed recently that resolve the paradox and imply that
there is no singularity%267.68,70,71

3. Including Hysteresis Into Contact Line Dynamics

Our model can be extended to include more interesting
contact line dynamics. Contact angle hysteresis, which
refers to the difference in contact angles between the ad-
vancing and receding fronts, acts as an additional type
of resistance to interface motion?'. It is a direct con-
sequence of contact line pinning, and can be seen when
water droplets stick to the side of a solid surface. For
more information see3® 44,

The main effect of contact angle hysteresis is to limit
the speed of motion of droplets moving on substrates.
If only contact line pinning is assumed, with experimen-
tally measured values for cpin, then our model predicts
EWOD driven droplet motion up to 10 times faster than
in experiment?!. In our prior work?', this was compen-
sated by introducing an ad-hoc ‘hysteresis constant’.

In the present paper, we can account for hysteresis by
adding another term to the pressure boundary conditions

p=rk+ E+ X+ Dyjscu - n, (14)

where Dyisc > 0 is a constant. The Dyjcu - n term
is a straightforward modification of the interface force
threshold model in the previous section (see Figure 7).
Increasing Dyisc locally reduces the speed of droplet in-
terface motion. This can account for the extra resistive



effect of contact angle hysteresis. Moreover, we can mod-
ify the linear term to be slightly non-linear, e.g.

p= [§;+E+ [/\+DViSCU.'n+Gfric(u'n)]7 (15)

where, for example, G is a monotone decreasing func-
tion:

L Ppin Dvisc
Gpic(u-n) : - arctan (Ppin/%
This type of force versus velocity relationship for contact
line motion can incorporate insights from atomistic or
molecular dynamic studies, such as in the work of* 7. It
introduces a ‘damping’ effect that retards local interface
motion. Choosing Dyis. properly captures the correct
time-scale of interface motion. This is the only fitting
parameter in our model; the value of cpi, for the line
pinning was obtained independently through an in-house
inclined plane droplet experiment (see Table III). We
emphasize that available data for cpin and Dy is not
readily available in the literature.

wn) (6

E. Final Equation Summary

We rewrite the governing equations in an equivalent
form, which will be convenient for our numerical imple-
mentation:

adiu+ pPu+Vp=0, in €,
V-u=0, inQ, (17)

pn — kn — An — Dyjc(u-n)n = En, on T

where the first equation is conservation of momentum
and the second is conservation of mass; F is the elec-
trowetting forcing from Section ITC2. The third equa-
tion is the pressure boundary condition multiplied by the
outward pointing unit normal vector n; this will be use-
ful in the next section. For simplicity, we omit the extra
Ghric term. As noted previously, the pinning variable A
is defined by

A= Pynsgn(u-n), onT. (18)

Note that Laplace’s equation for pressure (see equation
(1)) has been replaced by the second equation in (17)
(incompressibility)"™®. The equations in (17) are more
convenient because they give rise to a mixed variational
formulation of the PDE model that allows the pressure
boundary condition to be included as a natural boundary
condition, which permits computing the curvature x im-
plicitly (see Section IIIB). Lastly, we recall the interface
motion equation (3) from Section II B 2:

Ox = u(x,t), onT. (19)

IIT. VARIATIONAL FORMULATION

We present a time-discretization of the EWOD fluid
equations with contact line pinning followed by a vari-
ational formulation of the governing PDE. Variational

forms appear in elasticity under the name of virtual dis-
placements. They are standard”® and allow the use of
finite element methods™®" which are among the most
efficient, flexible, and accurate numerical techniques in
science and engineering for solving PDEs.

A. Time-Discrete EWOD Equations

Next, we derive the time-discrete version of (17) and
(19) by first partitioning the time axis into time-steps dt;,
for 4 in some finite index set. Let Q¢ and I'* be the fluid
domain and liquid-gas interface at time ¢;, respectively
(see Figures 3 and 6, and the nomenclature in Table I).
Then the semi-implicit, time-discrete version of (17) is
listed as

at! i . } }
a—— + put Tt 4 Vpitt = 0, in Q°,
Otiva
V-utt =0, in ', (20)
pitini — gitini — \itlpi

—Dyise(u'™ - nY)n’ = E'n’, on I',

where u’ is the (known) vector velocity at time index
t;, and n’ is the outward pointing normal vector of I'%,
Here, we have used a backward Euler finite difference
approximation of the time derivative term d;u. The ge-
ometry is kept explicit in (20) and the solution variables
(w1t pt Tt ALY are implicit. The curvature £**! is an
approximation of the curvature of I'"*! and is treated
semi-implicitly (see Section III B).

Treating the solution variables implicitly while keeping
the domain explicit is called a semi-implicit method. We
chose this because it is more convenient to compute on
the current domain Q* than the future unknown domain
Qi1 If there is no pinning (i.e. A = 0), then it leads to
a linear set of equations that describes the velocity and
pressure at each time-step. This is useful in our iterative
method when solving the system with pinning A # 0 (see
Section IITF). Keeping the solution variables implicit
ensures numerical stability, while avoiding an unneces-
sarily small time-step®"#2. This is especially true for the
curvatured? 85,

Now we can approximate how a point on the interface
moves using a time-discrete version of (19):

xThi=x" 4 0t ut (xD), (21)

where ut! is the velocity (defined on ) at the next time
index, x" is a point on I'*, and x'*1 is the corresponding
point on I'+1,

B. Implicit Curvature Calculation

The curvature x*! is treated in an implicit way to
avoid an unnecessarily small time-step restriction to
guarantee stability®®. In the following, we show how to
discretize (in time) the vector curvature x**1n’.



First, we  briefly review some differential
geometry5%-86:87  The ‘surface gradient’ on a sur-
face I' is denoted Vr and is a vector operator. If I' is a
1 dimensional curve, Vp = tds (i.e. Js is the derivative
with respect to arc-length, t is the unit tangent vector).
The Laplace-Beltrami operator or ‘surface Laplacian’
is defined as Ar = Vr - Vpr, and is just the second
derivative with respect to arc-length in the case of a 1
dimensional curve. The vector curvature k! = k‘n? of I'*
satisfies

k' = —Apix’, (22)

treating x’ as a parametrization of the interface I'!, with
n’ being the outward pointing unit normal vector of "%,
Equation (22) is general in that it is true for curves and
surfaces.

For the purpose of our time-discrete problem, we need
to calculate x'T'n’ because it appears in the pressure
boundary condition. This is accomplished by defining an
appropriate approximation®® and using (21):

Kt nt = —Apxitl,
= —AF'L (Xi + 5ti+1ui+1), (23)
= k'n’ — 6ti+1Al"iui+1,

which is semi-implicit because everything is computed on
the current boundary I'.

C. Variational Form

We proceed to derive a variational formulation of the
PDE by the standard means™®°, as that will facilitate
the use of a finite element method. Let v be an arbi-
trary smooth vector field test function for the velocity u.
Multiply the first equation in (20) by v and integrate:

« /»(ui-i-l_ui).v_i_ﬁ ui+1-v—|—

Vpitt.v = 0.
Otiy1 Qi Qi

(24)
Next, integrate the pressure gradient term by parts, plug
in the boundary condition in (20), and rearrange to get

o .
+ 5) / utl.v
(6ti+1 Qi
_/ p’iJrlv v +/ Ai+1n’i v
Qi ri

_(uiJr1 -n')(v-n") (25)
Fl

v sitniy
Fi
o . . .
= u-v-— E'v-n'.
Otit1 Jai ri

The semi-implicit curvature is rewritten by using (23)

+ Dvisc

/» Klnt .y = — » Api(xi + 5ti+1uu+1) v,
ri ri (26)

= vl"i (Xi + 6ti+1uu+1) . vFiV,
T

and integration by parts on I'V of Ap: = Vi -Vpi. Hence,
the momentum equation becomes

(ﬁ-l—ﬁ)/muﬁl-v

—/ piHV-v—l-/ Aty . n
Qi I

v(uiJrl . ni)(v . nz’)
. (27)
+ 5ti+1 / Vriuu+1 . VFiV
Ti

@ i
=—— [ u-v
Otiv1 Joi

—/ Eiv.n' —/ Vpixt - Viiv.
ri ri

The variational form of the second (conservation of
mass) equation in (20) is obtained simply by multiplying
by an arbitrary smooth test function ¢ and integrating:

+ Dvisc

/g, gV -uth =0 (28)

In the following sections, we define u°¥ := u’ and we

drop the time-index ¢ notation to simplify the presenta-
tion.

D. Variational Inequality for Pinning

The variational formulation provides a natural way to
include the contact line pinning model. This is a cru-
cial instance where the variational technique is able to
improve on our previous level set method?'. It is not
known, to the best of our knowledge, how to implement
the discontinuous switch (see Figure 7) in a stable and
accurate way within the level set method.

In our framework, we treat A as an extra unknown that
must be solved for and acts as an inequality constraint on
the velocity u. Hence, an additional equation to (27) and
(28) is required to close the system. Therefore, we ap-
pend a variational inequality to our previous variational
form788:89  The derivation is as follows.

First, let A be the set of functions on I' defined by

A={p:|pl < Pon}, (29)

which is a convex set. Physically, it is the set of (non-
dimensional) pressure functions on the interface with ab-
solute value limited to Ppin. Assume that the pinning
relation is true (i.e. A = Pyipsgn(u-n)). Then the fol-
lowing inequality

(w-n)u < (u-n)A (30)

is true for all 4 in A for the following reason. If u-n =0,
(30) is clearly satisfied. If u-n > 0, then A = Py, so

<A, (31)



because p is in A. Multiplying (31) by u-n > 0 gives
(30). If u-n < 0, then A = — Py, thus

= A (32)

because p is in A. Multiplying (32) by u-n < 0 gives
(30). Equation (30) is called a complementarity condition
between the normal velocity and the pinning variable.
Upon rearranging (30) and integrating, we get

/(u ‘n)(p—N) <0, for all g in A, (33)
r

which is the wvariational inequality we need to complete
our formulation. The preceding argument shows that
assuming the pinning model A = P,i,sgn(u - n) implies
equation (33). It is also true that (33) implies the pinning
model™ 88 so they are equivalent. We omit the details.

The variational inequality allows us to treat A as an
additional unknown, and embeds the relation (18) into
the act of solving the weak formulation. This is advanta-
geous because it avoids introducing a discontinuous func-
tion into our method and it captures the inequality con-
straint exactly.

E. Variational Equations

For convenience, we introduce the following notation.
We define the bilinear and linear forms:

a(u,v)z(%—i—ﬁ)/ﬂu-v

(34)
+5t/vpu-vrv+DviSC/(u-n)(v-n)a
T I

b(v,q) = — /Q qV - v, (35)

X(v):g/u01d~v —/Ev-n —/VFX-VFV. (36)
ot Jo r r

With (34), (35), and (36), we can rewrite the variational
form more concisely: find a solution (u,p, ) such that

a(u,v) + b(v,p) + / A(v ) = X(v),

for all smooth test functions v and ¢ defined on € and
all 4 in A. This is called a mixed variational formula-
tion and falls into the framework of"®%. Thus, our al-
gorithm consists of solving (37) to obtain the velocity, at
each time-step t;, followed by using the update equation
(21) to move the droplet domain 2. The proper function
spaces to use in (37) and its well-posedness are discussed
in?° and a future publication.
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F. Finite Element Method
1. Solving the Variational Equations

The variational setting that we have transformed
our model into naturally facilitates the use of finite
elements™8%90 In solving (37), we use a finite ele-
ment discretization. This involves expanding the solution
variables (u,p, A) and the test functions (v, ¢, ) using a
finite-dimensional set of basis functions. This translates
(37) into a finite dimensional linear system that must be
solved at each time-step. In our case, there is an inequal-
ity constraint on part of the solution vector due to the
third equation in (37). This requires the use of an itera-
tive method to solve the system in order to compute the
pinning model correctly?®.

The finite-dimensional basis functions are obtained by
first partitioning the domain € (and T') into a set of tri-
angles (and sides). On each triangle, we represent the
velocity u with quadratic polynomials for each compo-
nent, and a linear polynomial for the pressure p; the
piecewise polynomials for u and p are globally continuous
(Taylor-Hood elements”®9?). On each side of the polyg-
onal boundary, A is represented by a constant value. In
addition, we use piecewise quadratic curves to represent
the interface I' (i.e. the triangles on I' have a curved side
onT"). For the ‘curved’ triangles, iso-parametric elements
are used"80:90; this is done to ensure accurate computa-
tion of surface tension forces (i.e. the curvature)?®.

2. Updating the Interface

Updating the domain mesh can be done using u and
equation (21) evaluated at the mesh node positions.
However, if the droplet develops a thin neck region, then
the gradient of velocity can be quite large across the neck.
Updating the mesh with this velocity would lead to se-
vere mesh distortion. A simple remedy for this is to use
a smooth extension of u‘ to a new vector function Uey
defined on all of € for updating the domain. This can
be done by letting ueyt solve the following vector Laplace
equation (harmonic extension)?:

_vzucxt = 0; in Qa

Uext = 1, on I

(38)

This guarantees that the shape of the domain will update
the same (because uex; = u on I'). It is a classical result
that the solution of (38) minimizes [, |[Vuext|*™, which
is desirable because large gradients in the velocity cause
mesh distortion?®. This allows for smoothly updating the
mesh node positions at each time step. Of course, in the
case of large deformations even this method will fail, and
a remedy for this is discussed in the next section.



3. Handling Large Deformations and Topological Changes

One of the drawbacks of using the front tracking
method is the presence of the mesh. Because the in-
terface is moving, the underlying mesh must move with
it. If the droplet is undergoing a large deformation,
such as a splitting motion, this can cause mesh distor-
tion (i.e. elongated triangles in the droplet triangulation
and/or inverted triangles). It is known that distorted
meshes can adversely affect the accuracy of the finite ele-
ment solution”?!. Therefore, any explicit front tracking
method must also have a mechanism to correct severe
mesh distortion.

We handle large mesh deformations by using har-
monic extension (see the previous section), mesh smooth-
ing, and periodic re-meshing. Allowing for topological
changes requires a more advanced method. In this paper,
we use a hybrid variational/level-set method developed
in?®, which hinges on the fact that topological changes
are rare events in time and local in space - we use the
level-set method only when and where we need it. The
hybrid method, to be reported in a future publication,
exploits the best characteristics of both the level set and
variational front tracking methods. We give some high-
lights of the algorithm in the following list. For more

details, see?6.

e Mesh smoothing and re-meshing. We use stan-
dard techniques, such as optimization based mesh
smoothing®® and re-meshing with the program
‘Triangle’?3.

e Updating mesh topology. We use the level set
method during just one time step to guide the evo-
lution of the explicit finite element mesh through a
topological change.

e Mesh reconstruction after the topological change.
We use an active contour-based minimization ap-
proach to adjust the mesh in the local region of
the topological change and conform to the zero level
contour of the level set function. This provides a
new numerically-sound Lagrangian mesh for contin-
uation of the variational front-tracking finite element
method.

IV. RESULTS

We present direct visual comparisons and quantitative
error measurements between our simulation method and
five different experiments available from our collabora-
tors at UCLA. In each section, we describe the experi-
mental setup and the corresponding simulation results.
The inclusion of contact line pinning and de-pinning in
our model is required to predict the experimentally ob-
served fluid shapes. Without it, the simulated fluid would
always return to perfectly circular shapes under the ac-
tion of surface tension, something that does not happen
in experiments (see especially Figure 14). Simulations
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for all experiments were run using the parameters listed
in Table III.

A physical parameter D.isc was fit to the cases that
we compare to. Accurate data for Dyis for realistic
substrates/liquids is not easily available thus we experi-
mented with different values for D,;s.. For example, the
splitting water droplet experiment in Section IV C splits
at time t = 131.4 ms for Dy = 0.359 N s / m? (see
Table III). Increasing Dyisc by 20% increases the time
to split by 16.8%. Decreasing Dyisc by 20% decreases
the time to split by 16.7%. This suggests a reasonable
sensitivity for this parameter. We note that the general
shape evolution looks visually the same (disregarding the
time-scale) when varying Dyisc.

We illustrate where the interface is pinned and not
pinned in the visual comparisons by evaluating the be-
havior of A\ and plotting the pinned portion of that
boundary in gray. If || < P, on some region of the
interface, then we say that region is pinned since this
guarantees that u-n = 0 (recall Section ITI D). However,
if |\| = Ppin, this does not imply that u-n # 0. It is
still possible that u - n = 0 which is consistent with our
formulation. In other words, a droplet could have zero
velocity everywhere but certain portions of the bound-
ary may barely overcome the pinning force yet not have
enough force left to move.

For experiments exhibiting topological changes, a nu-
merical tolerance was used in allowing pinch-off of thin
neck regions. Since the assumed vertically-averaged Hele-
Shaw model is meaningless for horizontal length scales
much smaller than the channel height H, setting this
pinch-off tolerance to H/2 is reasonable (recall that the
device height H is approximately 20 times smaller than
the electrode pitch and typical droplet size).

The error between the experiment and simulation, at
each time, is defined as the area of the liquid domain
mismatch (left panel in Figure 8) divided by the sum
of the areas of the experimental and simulated domains
(center and right panels in Figure 8)

_ |QeXp (t) U Qsim(t) B QeXP (t) N Qsim (t)l

Error(t) =
|Qexp (8] + [sim ()]
(39)
Here Qeyp and Qi denote the measured and simulated
liquid regions, |- | denotes the area of each region, and U,

N, and — denote set union, intersection, and difference
(respectively). If the experiment and simulation match
perfectly, then Error = 0; if they are completely disjoint,
Error = 1. We computed (39) via image processing tools
contained in MATLAB, in addition to using a level set ac-
tive contour algorithm® to extract a closed polygon rep-
resenting the experimental droplet’s boundary. With this
definition, the quantitative error between the experiment
and our simulation, for all the experiments, is shown in
Figure 9.

The order of cases is organized from the easiest to the
most difficult to model. We start with motion of just
one droplet on a simple and then a more complex path
(Sections IV A and IV B); then we consider splitting of a
single droplet, of water and then glycerin (Sections IV C



FIG. 8: Visual description of our error metric (39). Experi-
mental and simulated droplet boundaries are taken from the
last frame of Figure 10 and are re-plotted 3 times above for
clarity. The shaded region in the left panel corresponds to
the numerator of (39), i.e. the set of points denoted by
Qexp U Qsim — Qexp N Qsim. The center panel highlights the
experimental droplet (shaded region). The right panel high-
lights the simulated droplet.

and IVD); and we end with the joining of two water
droplets that leads to a final combined droplet that re-
mains pinned in a significantly non-circular shape (Sec-
tion IVE), a shape that could not be modeled without
the inclusion of pinning.

A. Moving Glycerin Droplet

The EWOD device in this experiment has only two
electrodes arranged in a horizontal fashion with a droplet
of glycerin being actuated. A voltage of 50 volts is first
applied to the left electrode with 0 volts on the right.
This causes the droplet to flow to the left electrode. The
voltage actuation is kept constant for two seconds when
it switches to 0 volts on the left, 50 volts on the right,
which causes the droplet to switch direction of motion.
Again, the voltage actuation is kept constant until after
two seconds it switches back, causing the droplet to also
switch its direction of travel. This process repeats.

Figure 10 shows a comparison between the simulation
and the experiment. There is some uncertainty in the
physical parameters of the fluid in this case. Glycerin
is highly hygroscopic?® and, in particular, its viscosity
varies significantly with only a small volume fraction of
water?S; viscosity values vary by a factor of 20 for water
percentages of 0% to 20%. Moreover, temperature also
has a large effect; a 10 degree Celsius change (for low
water volume fraction) can affect its viscosity by a factor
of 2. The experiments were not performed in a humidity
controlled environment, thus there is some uncertainty
in the actual viscosity of the fluid. After discussing the
details of the experiments with our UCLA collaborators,
we found it reasonable to assume a water percentage be-
tween 20% and 10% at 20 degrees Celsius. Because there
is no way of ascertaining the exact composition of the
fluid, we had no other choice.

The pinning coefficient ¢pin = 3.0 mN / m was taken
to be the same as for water. We do not have data for the
pinning coefficient of glycerin, but we do have data for
water (from our past inclined plane experiments which
were conducted with a range of liquids that included wa-
ter but not glycerin). The drag coefficient Dyisc = 5.0
N s / m? was fit to ensure that the simulated droplet
moved with the same speed as in the experiment. The
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value of Dyig. is much higher than for water (see Sections
IVB and IV C). This is reasonable given the higher vis-
cosity of glycerin. Also recall that viscosity affects the
time-scale of motion, which varies considerably with wa-
ter volume fraction. In this case, we assumed a 90%/10%
glycerin/water mixture. Assuming a higher water per-
centage produces significantly higher values for Dy;gc, but
this does not significantly affect the shape evolution of
the droplet.

B. Moving Water Droplet

The EWOD device shown in this example has eight
electrodes arranged in a square-like pattern. A predeter-
mined voltage sequence was used to actuate the droplet.
The time-varying voltages act to modulate the pressure
boundary conditions such that the droplet moves to the
right first, then up, to the left, and finally downwards.
In our simulation, the value of Dy was not fit to this
experiment. Instead, we set the viscous damping to be
the same as for the case in Section IV C (Dyise = 0.359
N s/m?, see Table III). Thus, the physical parameters
for this case and in Section IV C are exactly the same.
Note that the physical constants for water are very stable
across a wide range of experimental conditions.

Figure 11 shows the moving droplet experiment with
our simulation results overlayed. It is evident that the
simulation follows the experiment fairly well; the over-
all motion and time scale are correct. The match is not
exact, however, and this is because of parametric uncer-
tainty and because our contact line pinning model only
approximates the true physics.

C. Splitting Water Droplet

In Figure 12, an overhead view of an EWOD device
with three electrodes running left to right is depicted
with a splitting droplet. The construction of this de-
vice is exactly the same as in Section IV B, except the
electrode grid pattern is different. The voltage actua-
tion, from left to right, is 25 volts, 0 volts, 25 volts and
is constant throughout the split. In the first frame, an
initial near-circular droplet is shown just before voltage
activation. After the voltage is turned on, the liquid-gas
interface over the left and right electrodes deforms and
induces a low pressure region there. The regions where
no voltage is activated remain at high pressure. In the
subsequent frames, the droplet is pulled from the left and
right sides, while it is pushed in from the top and bot-
tom. The droplet elongates along the horizontal dimen-
sion and is being pinched in the vertical direction. This
causes two daughter droplets to form on the left and right
sides, with a thin neck joining them. The neck eventu-
ally gets so thin that it snaps due to capillary instability.
The two smaller droplets then continue moving to the
left and right electrodes because of the pressure differ-
ential created from the voltage actuation. Finally, the
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TABLE III: Simulation parameters for all experiments in Section IV. Note the large viscosity of glycerin, which varies signifi-
cantly with the volume fraction of water. 0y ov, 0y 50v, Ob,65v are the contact angles on the bottom plate of the EWOD device
at 0, 50, and 65 volts, respectively. Each simulation uses a different value of Uy so the maximum non-dimensional velocity is
close to unity. This also causes Re, Ca, «a, (3, and to to differ.

Moving Glycerin® Moving Water? Splitting Water® Splitting Glycerin? Joining Water® Units
Olg 0.06422 0.07199 0.07199 0.0657 0.07199 J/ m?
7 384.467 0.89 0.89 59.9 0.89 g/ms
p 1240.40 996.93 996.93 1208.5 996.93 kg / m?
H 0.1 0.07 0.07 0.1 0.1 mm
Lgiec 1.5 1.4 14 1.5 1.5 mm
L 3.0 4.2 4.2 4.5 4.5 mm
Uy 0.8 50 20 2 15 mm / sec
to 3750 84 210 2250 300 ms
Py 21.41 17.14 17.14 14.6 15.998 N/ m?
Cpin 0.003 0.003 0.003 0.003 0.003 J/ m?
Dyisc 5.000 0.359 0.359 5.100 1.995 Ns/ m?
Re 2.5810E-4 3.92 1.57 4.0351E-3 1.6802 non-dim.
Ca 4.7894E-3 6.1814E-4 2.4726E-4 1.8234E-3 1.8544E-4 non-dim.
« 3.7085E-5 0.145406 2.3265E-2 3.3110E-4 1.4021E-2 non-dim.
1] 51.725 26.7037 10.6815 44.310 4.5063 non-dim.
Ov,0v 107.35 - - 107.35 111.62 degrees
Ob,50v 68.46 - - - - degrees
Ob,65v - - - 64.32 70.01 degrees

2Section IV A, 90%/10% glycerin/water mixture.
bSection IV B.
¢Section IV C.
dSection IV D 80%/20% glycerin/water mixture.
“Section IV E.

— Pig. 10
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FIG. 9: Error between experimental droplet shape and simulated shape versus normalized time for all experiments. The
error was measured using equation (39). Not all experiments have the same number of video frames (i.e. the experiment
corresponding to Figure 12 has only 6 video frames for the whole experiment). The overall error is reasonable. We also
measured the frame-to-frame error for all experiments except Figure 12. The frame-to-frame error is defined as the difference,
via (39), between the extracted polygonal representation of the experimental drop in consecutive video frames. The average
frame-to-frame error (over each experiment) for extracting a polygonal representation of the experimental droplet boundary is
less than 0.7%. The maximum frame-to-frame error is less than 2%.

two droplets come to rest on the two 25 volt electrodes. found to be cpin = 3 mN / m. The interface drag con-
The total time of this experiment is approximately 167 stant is chosen to make the simulation time-scale match
milliseconds. the experiment: D5 = 0.359 N s/m?. See Figure 12 for

The contact line pinning coefficient is taken from our an overlay of the variational simulation with the experi-
past, independent inclined-plane experiments and was ment. The value of Dys. is reasonable and is comparable
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7800.0 ms

FIG. 10: Moving glycerin droplet experimental results with simulation overlay. The solid curve represents the simulated droplet
boundary with small grayed regions (near the electrode edge) denoting pinned portions of the boundary. Frames show video
snapshots of the experiment (courtesy of CJ Kim and Jian Gong at UCLA). The applied voltage (50 volts) switches between
the left and right electrodes every two seconds. Each electrode is square with a side length of 1.5 mm. Simulation and device
parameters are given in Table III. Note the large time-scale because glycerin is highly viscous. The simulation follows the

experiment fairly well, except there is some lagging in the ‘tail’ region (enhanced online).

to the values listed in”® for a column of fluid comprised of

deionized water between two parylene coated electrodes.

D. Splitting Glycerin Droplet

The EWOD device in this experiment has three elec-
trodes arranged in a horizontal fashion with a glycerin
droplet being actuated to split apart. The device con-
struction is not the same as in the previous cases (see
Table IIT). A voltage of 65 volts is applied to the left and
right electrodes, with 0 volts applied on the center elec-
trode which causes the droplet to pull apart. The voltage
actuation is constant throughout the experiment. Even-
tually, a thin neck develops between two smaller droplets
and the neck pinches.

Figure 13 shows a comparison between the simulation
and the experiment. Just as in Section IV A, there is
some uncertainty in the physical parameters of the fluid.
Here, we assume an 80%/20% glycerin/water mixture
with similar values for the pinning coefficient and vis-
cous damping as in Section IV A (¢pin = 3 mN / m and
Dyiscc = 5.1 N S/m2). The value of cpin, was taken to be
the same as for water and D,y was fit to match the time-
scale of this experiment. If we assumed the same glyc-
erin/water mixture as in Section IV A (i.e. 90%/10%),
then even with setting cpin = 0 and Dy = 0 the simu-
lated droplet moved significantly slower than the exper-
iment. In other words, the viscosity was over estimated.
Therefore, we thought it reasonable to assume a higher
water percentage in this case (lower effective viscosity).
This experiment was not run simultaneously with the ex-
periment in Section IV A, so there is no reason to assume

the fluid parameters to be the same.

E. Joining Water Droplets

This experiment uses the same EWOD device as in
Section IV D, except that two droplets of water are be-
ing actuated to join together. A voltage of 65 volts is ap-
plied to the center electrode, with 0 volts applied to the
left and right electrodes, which causes the two droplets to
flow together. The voltage actuation is constant through-
out the experiment. Eventually, the two droplets connect
and merge together. Figure 14 shows a comparison be-
tween our simulation and the experiment. The grayed
regions of the solid curve in the figure represent pinned
portions of the boundary (i.e. these regions of the inter-
face do not move in the normal direction). In the last
frame, the droplet has essentially come to rest. The lack
of pinned regions is because the droplet is asymptotically
approaching a pinned state. Running the simulation to
a time level of ¢ = 2.8 s shows a more completely pinned
droplet. However, the experimental recording was termi-
nated much earlier. The difference between the simulated
droplet in the last frame of Figure 14 and the pinned state
at t = 2.8 s is on the order of micro-meters.

V. CONCLUSION

We have presented a model of fluid droplet motion
in planar electrowetting on dielectric (EWOD) devices.
Our model is derived from first principles where possi-
ble, is based on independent experimental data where



FIG. 11: Moving water droplet motion experimental results with simulation overlay (solid curve is the simulation). Six frames
show video snapshots of the experiment (courtesy of CJ Kim and Jian Gong at UCLA). A time-varying sequence of voltages is
applied to the eight electrode pattern so as to make the droplet move right, up, left, then down. Each electrode is square with a
side length of 1.4 mm. All physical parameters here are the same as for the splitting experiment shown in Figure 12 except the
electrode pattern is different. The gray regions of the simulated droplet boundary represent pinned portions of the liquid-gas
interface, meaning they do not move in the normal direction. Note that we do not specify where the droplet is pinned; this is
obtained from solving the variational inequality. As can be seen, the simulated droplet follows the real droplet fairly closely

(enhanced online).

first-principle descriptions are not feasible, and it con-
tains only one fitting parameter. The fluid dynamics is
modeled by Hele-Shaw type equations with a focus on in-
cluding the relevant boundary phenomena. Specifically,
we have included a physically meaningful contact line
force-threshold pinning model which was motivated by
experimental observations in the literature. This descrip-
tion is sufficiently simple to be incorporated into device
length and time scale simulations yet it enables much
improved predictions of device behavior.

We have also presented a semi-implicit variational
front-tracking method that is able to handle surface ten-
sion, conservation of mass, our non-linear contact line
pinning description, and viscous interface damping in
a straightforward manner. The model was discretized
via the finite element method using MATLAB/C++ and
yields simulations that evaluate between 5 and 15 min-
utes on a laptop and that compared very well to experi-
ments. Specifically, we have compared our simulations to
prior available experimental data for five different cases of

droplet motion that include splitting, joining, and partial
pinning of droplets and have observed good agreement.
Our model is fast but accurate. To our best knowledge,
it is the only model currently available that can simulate
total system dynamics, on device length and time scales,
but includes key loss effects due to both contact angle
saturation and line pinning. The model better predicts
experimentally observed electrowetting behavior and is
appropriate for system design, optimization, and control.
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FIG. 12: Splitting water droplet experimental results with simulation overlay (solid curve is the simulation). Six frames show
video snapshots of the experiment (courtesy of CJ Kim and Sung Kwon Cho at UCLA). The three electrodes shown in each
frame have activation voltages (from left to right) of 25, 0, and 25 volts. Each electrode is approximately square with a side
length of 1.4 mm. The gray regions of the simulated boundary indicate where the interface is pinned (i.e. cannot move in the
normal direction). Only one parameter Dyisc was fit to the simulation in order to match the time-scale of the experiment.
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FIG. 13: Splitting Glycerin droplet experimental results with simulation overlay (solid curve is the simulation). Frames show
video snapshots of the experiment (courtesy of CJ Kim and Jian Gong at UCLA). The applied voltage (65 volts on the left and
right electrodes) causes the droplet to be pulled apart and eventually split. Each electrode is approximately square with a side
length of 1.5 mm. The match between the simulation and experiment is very good. In particular, note the relaxation of the
interface immediately after pinch-off (¢ = 1100 milliseconds). The only difference is that, in the experiment, slightly more fluid
flows into the left satellite droplet than into the right droplet (as compared to the simulation). Also note the grayed regions of
the boundary indicating pinned portions of the interface (enhanced online).
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FIG. 14: Joining water droplets experimental results with simulation overlay (solid curve is the simulation). Frames show
video snapshots of the experiment (courtesy of CJ Kim and Jian Gong at UCLA). The applied voltage (65 volts on the center
electrode only) causes the two side droplets to flow together and eventually merge. Each electrode is approximately square
with a side length of 1.5 mm. The simulation matches the experiment fairly well in the first four frames. However, the pinning
behavior in the experiment is significantly different than the simulation in the last two frames. We believe that the sharp
snap-together of the droplets during coalescence makes this case more sensitive to modeling uncertainties than the move or
split cases (enhanced online).
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