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Abstract. It is known that the energy technique for a posteriori error analysis
of finite element discretizations of parabolic problems yields suboptimal rates
in the norm L∞(0, T ; L2(Ω)). In this paper we combine energy techniques
with an appropriate pointwise representation of the error based on an elliptic
reconstruction operator which restores the optimal order (and regularity for
piecewise polynomials of degree higher than one). This technique may be
regarded as the “dual a posteriori” counterpart of Wheeler’s elliptic projection
method in the a priori error analysis.

1. Introduction

A posteriori error estimation and adaptivity are in many cases very successful
tools for efficient numerical computations of linear as well as nonlinear PDEs. In
particular, a posteriori error control provides a practical, as well as mathematically
sound, means of detecting multiscale phenomena and doing reliable computations.
Although the a posteriori error analysis of elliptic problems is now mature [2, 3, 6,
7, 18, 23], the time dependent case is still under development. Many papers have
appeared for the discontinuous Galerkin method [9, 10, 11, 13, 14, 15, 20, 19], and
other schemes [1, 4, 17, 21, 24, 25], mainly for linear parabolic problems.

One of the outstanding issues related to a posteriori estimation of (linear) time
dependent problems is the known fact that the energy technique for a posteriori er-
ror analysis of finite element discretizations of parabolic problems yields suboptimal
rates in the norm L∞(0, T ; L2(Ω)). Since the energy method is the most elementary
technique for estimating the error in the a priori analysis, the question whether or
not this method can be successfully applied in the a posteriori error analysis is very
natural. In addition, we hope that examining this and related issues will enable us
to increase our understanding on the important subject of error control for time
dependent problems in general.

We will work with the following linear parabolic equation as a model:

ut + Au = f in Ω× [0, T ],

u(·, 0) = u0(·) in Ω,

u = 0 on ∂Ω× [0, T ].
(1.1)
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Here A is a linear, symmetric, second order positive definite elliptic operator and
Ω a bounded domain of Rd (d ≥ 1) with sufficiently smooth boundary for our
purposes. Let H := L2(Ω), V := H1

0 (Ω) and V ? := H−1(Ω) be the dual of V . If
a(·, ·) is the bilinear form that corresponds to A, our assumptions on A imply that

‖v‖V := a(v, v)1/2

defines a norm on V. We denote the norms on H and V ? by ‖ · ‖V ? and ‖ · ‖H ,
respectively, and we indicate with 〈·, ·〉 the duality pairing either in H or V ∗ − V .

We assume that f ∈ L2(0, T ;V ?) and u0 ∈ H, so that (1.1) admits a unique
weak solution satisfying

〈ut(t), v〉+ a(u(t), v) = 〈f, v〉 for all v ∈ V , a.e. t ∈ [0, T ] .

In this paper we consider semidiscrete finite element discretizations of arbitrary
degree. We combine energy techniques with an appropriate pointwise representation
of the error based on a novel elliptic reconstruction operator which restores the
optimal order in L∞(0, T ; L2(Ω)). This technique may be regarded as the dual
counterpart of Wheeler’s elliptic projection method in the a priori error analysis
[27]. In particular, for uh being the finite element approximation, our estimates
exhibit the following properties:
• the estimator is a computable quantity in terms of the approximate solution uh

and the data f, u0 and Ω, but its actual form and quality depends only on the
elliptic estimator at our disposal;

• the order is optimal in L∞(0, T ; L2(Ω)) for any polynomial degree ≥ 1, and the
regularity is the lowest compatible with (1.1) for polynomial degree > 1;

• the a posteriori estimates mimic completely the corresponding a priori estimates.
Here, we use the term “optimal order of convergence” following the classical termi-
nology in approximation theory. Meaning the maximum exponent r for which the
error is O(hr) where h is the maximum diameter of the elements in the partition;
“optimal regularity” refers to the regularity which is the lowest compatible with
our problem that permits the error to be O(hr).
Finite Element Approximation. For Th being a shape-regular partition of Ω consider
the finite element space

Vh = {χ ∈ H1
0 (Ω) : χ|K ∈ Pk(K) ∀K ∈ Th},

where Pk(K) is the space of polynomials of degree ≤ k over K. The finite element
approximation uh : [0, T ] → Vh of u is defined to satisfy the following linear ODE

〈uh,t, χ〉+ a(uh, χ) = 〈f, χ〉 for all χ ∈ Vh, a.e. t ∈ [0, T ],

uh(·, 0) = u0
h ∈ Vh .

(1.2)

A Posteriori Error Estimation. Residual based a posteriori estimates are usually
proved by estimating the linear functional R ∈ V ?, so-called residual,

−〈R, v〉 =
∫ T

0

(
〈uh,t, v〉+ a(uh, v)− 〈f, v〉

)
dt

=
∫ T

0

(
〈uh,t, v − Ihv〉+ a(uh, v − Ihv)− 〈f, v − Ihv〉

)
dt,

(1.3)

in appropriate norms. Here in the second equality we have used the definition of
the semidiscrete scheme (1.2), and an interpolation operator Ih : V → Vh stable
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in V (e.g., Clement’s interpolant). Then, for e = u − uh being the error to be
estimated, we have

1
2
‖e (T )‖2H +

∫ T

0

a(e, e)dt =
1
2
‖e (0)‖2H + 〈R, e〉. (1.4)

Due to the presence of
∫ T

0
a(uh, e − Ihe)dt, which gives rise to the integral of

an H1 elliptic residual, the ensuing a posteriori estimate is of optimal order in
L2(0, T ;H1

0 (Ω)), as corresponds to an estimate of
∫ T

0
a(e, e)dt, but suboptimal in

L∞(0, T ;L2(Ω)). It is well known that an analogous phenomenon occurs in the a
priori analysis, and that the use of an elliptic projection operator overcomes the
difficulty [27]. This is now a standard tool in the finite element analysis.

In this paper we introduce an elliptic reconstruction operator which restores the
optimal order in the a posteriori error estimation in L∞(0, T ;L2(Ω)). The key
properties of the elliptic reconstruction U, cf. Definition 2.1, are (i) u− U satisfies
an appropriate pointwise equation, cf. (3.2), that can be used to derive estimates
in terms of uh,t−Ut and (ii) uh is the finite element solution of an elliptic problem
whose exact solution is U, and therefore uh−U (as well as uh,t−Ut) can be estimated
in various norms by any given a posteriori elliptic estimator. Note that a similar
function U was introduced in [12] for a different purpose.

For clarity of exposition we present the method in the simplest framework. The
ideas of the present paper might be useful for linear problems of non-dissipative
character, as well as for nonlinear dissipative problems. In this direction they should
be explored together with the recent a posteriori results of time discretization of
nonlinear problems [17, 19]. The a posteriori analysis of [17, 19] is based on the same
principles as in the present paper, namely an appropriate pointwise representation
of the error and energy arguments.

Although it is possible to derive quasi-optimal order-regularity estimators in
L∞(0, T ;L2(Ω)) via parabolic duality [9, 22], this technique hinges on the parabolic
regularizing effect which is not valid for estimates in L2(0, T ; H1

0 (Ω)). For the lat-
ter, duality leads invariably to estimators similar to those obtained with the energy
approach, and which also bound the error in L∞(0, T ;L2(Ω)) but with suboptimal
order. In contrast, several contributions over the last few years are devoted to
estimates that are based on the (forward) energy approach. Picasso [21] derives a
posteriori error estimates of residual type that are optimal in L2(0, T ; H1

0 (Ω)) for
piecewise linear elements for space discretization and backward Euler for time dis-
cretization. Towards overcoming the barrier described above, Babuška, Feistauer
and Šoĺın [4] derive estimates in L2(0, T ; L2(Ω)) for (1.2) by a double integra-
tion in time; see also [1, 5]. In [24, 25] Verfürth proves a posteriori estimates in
Lr(0, T ; Lρ(Ω)), with 1 < r, ρ < ∞, for fully discrete approximations of quasilinear
parabolic equations.

The paper is organized as follows. We introduce the elliptic reconstruction oper-
ator in section 2, and we derive abstract a posteriori error estimates in section 3. In
particular our estimator of Theorem 3.1 depends on an abstract elliptic estimator
function for elliptic problems; any such estimator can be used. In section 4 we
specify the form of the estimates for the classical residual type elliptic estimators.
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2. Elliptic Reconstruction

We now introduce the elliptic reconstruction operator R : Vh → V . To this end,
let P 1

h : V → Vh be the elliptic projection operator, i.e.,

a(P 1
hw, χ) = a(w, χ) for all χ ∈ Vh, (2.1)

and let P 0
h : H → Vh be the L2-projection operator, i.e.,

(P 0
hw, χ) = 〈w,χ〉 for all χ ∈ Vh. (2.2)

Let w ∈ V satisfy the elliptic problem Aw = g ∈ V ∗, or in weak form,

w ∈ V : a(w, v) = 〈g, v〉 for all v ∈ V . (2.3)

Let wh ∈ Vh be the corresponding finite element solution

wh ∈ Vh : a(wh, χ) = 〈g, χ〉 for all χ ∈ Vh; (2.4)

hence wh = P 1
hw. We assume that we have at our disposal a posteriori estimators

that control the error ‖w − wh‖X in the spaces X = H, V, or V ? .

Assumption 2.1. Let w and wh be the exact solution and its finite element ap-
proximation given in (2.3) and (2.4) above. We assume that there exists an a pos-
teriori estimator function E = E(wh, g;X), which depends on wh, g and the space
X = H, V, or V ? such that

‖w − wh‖X ≤ E(wh, g;X). (2.5)

Let Ah : Vh → Vh be the following discrete version of A:

〈Ahv, χ〉 = a(v, χ) for all χ ∈ Vh. (2.6)

Then we have:

Definition 2.1. Let uh be the finite element solution of (1.2) and fh := P 0
hf . We

define the elliptic reconstruction U = Ruh ∈ H1
0 (Ω) of uh to be the solution of the

elliptic problem in weak form

a(U(t), v) = 〈gh(t), v〉 for all v ∈ H1
0 (Ω), a.e. t ∈ [0, T ], (2.7)

where
gh := Ahuh − fh + f. (2.8)

We note that a similar function U was defined at the final time T in [12] in a
different context, i.e., in post-processing the Galerkin method at T with the aim of
improving the order of convergence. We observe that U satisfies the strong form

AU = Ahuh − fh + f, (2.9)

as well as

a(U,ϕ) = a(uh, ϕ)− 〈fh − f, ϕ〉 = a(uh, ϕ) for all ϕ ∈ Vh, (2.10)

because fh = P 0
hf . This relation implies that uh is the finite element solution of

the elliptic problem whose exact solution is the elliptic reconstruction U , namely,

uh = P 1
hU. (2.11)

Assume that f ∈ H1(0, T ; V ∗). Since a(·, ·) is independent of t there holds a(Ut, ϕ) =
a(uh,t, ϕ) for all ϕ ∈ Vh, or

uh,t = P 1
hUt. (2.12)



ELLIPTIC RECONSTRUCTION FOR PARABOLIC PROBLEMS 5

In addition

a(Ut, v) = 〈gh,t, v〉 for all v ∈ V . (2.13)

3. Abstract A Posteriori Error Analysis

In this section we establish the improved a posteriori error estimate in H, and
make several comments about its optimality regarding both order and regularity.

Theorem 3.1. Assume that u is the solution of (1.1) and uh is its finite element
approximation (1.2). Let U be the elliptic reconstruction of uh and E be as defined
in Assumption 2.1. Then the following a posteriori error bounds hold

max
(

max
0≤t≤T

‖u−U‖2H ,

∫ T

0

‖u−U‖2V dt
)
≤ ‖u(0)−U(0)‖2H+

∫ T

0

E(uh,t, gh,t;V ?)2dt ,

and

max
0≤t≤T

‖u−uh‖H ≤ ‖u0−u0
h‖H+

( ∫ T

0

E(uh,t, gh,t; V ?)2dt
)1/2

+2 max
0≤t≤T

E(uh, gh;H).

Proof. By virtue of definitions (1.2) and (2.9) of uh and U , we have

uh,t + AU = f ,

whence U satisfies the following pointwise equation

Ut + AU = f + (U − uh)t . (3.1)

Thus the error equation for u− U reads

(u− U)t + A(u− U) = (uh − U)t . (3.2)

Multiplying by u− U , and using standard energy arguments, yields

‖(u− U)(t)‖2H +
∫ t

0

‖(u− U)(s)‖2V ds ≤ ‖u(0)− U(0)‖2H

+
∫ t

0

‖(uh,t − Ut)(s)‖2V ?ds .

(3.3)

Relations (2.12) and (2.13), in conjunction with Assumption 2.1, imply

‖uht − Ut‖V ? ≤ E(uh,t, gh,t; V ?) ,

which in turn leads to the first assertion of Theorem 3.1. To show the second one
it suffices to note that (2.11) and Assumption 2.1 yield

‖(uh − U)(t)‖H ≤ E(uh(t), gh(t); H) for all 0 ≤ t ≤ T , (3.4)

which, together with

‖u(0)− U(0)‖H ≤ ‖u(0)− uh(0)‖H + ‖P 1
hU(0)− U(0)‖H

≤ ‖u0 − u0
h‖H + E(uh(0), gh(0);H),

concludes the proof. ¤
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Remark 3.1. (L2-based estimate). An alternative estimate that follows from the
proof of Theorem 3.1 is

max
0≤t≤T

‖u− U‖2H ≤ ‖u(0)− U(0)‖2H + max
0≤t≤T

‖u− U‖H

∫ T

0

‖uh,t − Ut‖Hdt

≤ max
0≤t≤T

‖u− U‖H

(
‖u(0)− U(0)‖H +

∫ T

0

‖uh,t − Ut‖Hdt
)
.

Therefore, (2.5) and (3.4) imply

max
0≤t≤T

‖u− U‖H ≤ ‖u(0)− U(0)‖H +
∫ T

0

E(uh,t, gh,t; H)dt ,

along with the corresponding a posteriori error bound

max
0≤t≤T

‖u− uh‖H ≤ ‖u0 − u0
h‖H + E(uh(0), gh(0);H) + 2

∫ T

0

E(uh,t, gh,t; H)dt.

Remark 3.2. (A priori vs a posteriori bounds). Note that the elliptic reconstruction
is an “a posteriori dual” to the elliptic projection [22, 27]. Furthermore the two
results in Theorem 3.1 are indeed an a posteriori dual to the classical a priori
estimate for semidiscrete linear parabolic problems [22, 27]

max
(

max
0≤t≤T

‖uh − P 1
hu‖2H ,

∫ T

0

‖uh − P 1
hu‖2V dt

)

≤ ‖uh(0)− P 1
hu(0)‖2H +

∫ T

0

‖ut − P 1
hut‖2V ?dt

(3.5)

and
max

0≤t≤T
‖u− uh‖H ≤ max

0≤t≤T
‖u− P 1

hu‖H

+
(
‖uh(0)− P 1

hu(0)‖2H +
∫ T

0

‖ut − P 1
hut‖2V ?dt

)1/2

.
(3.6)

Remark 3.3. (Optimal regularity). The a priori bound in (3.5) (and therefore in
(3.6)) is of optimal order. The regularity required is optimal only for polynomial
degree k ≥ 2. Indeed by exploiting standard results on superconvergence in negative
norms of elliptic finite element problems we see that the following bound for the
error of the elliptic projection holds, [22, 26]:

‖v − P1v‖V ? ≤ Ch(k+1)‖v‖k. (3.7)

The above estimate follows using the definition of the norm ‖w‖V ? = sup‖z‖V =1 〈w, z〉
and a standard duality argument. Using (3.7) we obtain

∫ T

0

‖ut − P1ut‖2V ?dt ≤ C

∫ T

0

h2(k+1)‖ut‖2kdt ≤ Ch2(k+1)

∫ T

0

‖u‖2k+2dt .

Here ‖ · ‖s denotes the Sobolev norm of Hs(Ω) , and for simplicity take A = −∆
and f = 0.

For an (optimal) rate of convergence of order O(hk+1) in L∞(0, T ; L2(Ω)), the
minimal regularity required by our finite element space is u ∈ L∞(0, T ; Hk+1(Ω)).
But it is a simple matter to check that for our problem both

∫ T

0

‖u‖2k+2dt and max
0≤t≤T

‖u‖2k+1
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are bounded by the same constant depending on data. Thus the classical a priori
estimate (3.6) is of optimal order and regularity for k ≥ 2. The negative norm
‖ · ‖V ∗ appears in a complete similar fashion in the a posteriori error analysis of
Theorem 3.1, and thus for polynomial degree k ≥ 2 this indicates that the estimator
is of optimal order-regularity.

4. Application: Residual-Type Error Estimators

In this section we derive the specific form of the estimates of Section 3 in case we
choose the classical residual type estimators for (2.5) [6, 23]. Of course any other
choice, such as solving local problems [2, 7, 18, 23] or averaging techniques [3], is
possible according to Theorem 3.1. For simplicity we assume that A = −∆ and
that Ω is sufficiently smooth in order for (4.2) below to be valid. However, Theorem
3.1 is general enough to allow for geometric singularities and corresponding elliptic
estimators. We refer to [16] for weighted a posteriori estimators which account for
corner singularities in both H and V ? in an optimal fashion. We refer also to [8]
where an error estimator is derived for an elliptic problem with curved boundaries.

We first calculate E(uh,t, gh,t;V ?), or equivalently estimate

‖ρ‖V ? = sup
‖φ‖V ≤1

〈ρ, φ〉, ρ = (U − uh)t.

We accomplish this via standard duality arguments. Given φ ∈ V , let ψ ∈ V be
defined by

a(ψ, v) = 〈∇ψ,∇v〉 = 〈v, φ〉 ∀v ∈ V, (4.1)
and suppose there exists a constant CΩ > 0, depending on the domain Ω, such that

‖ψ‖H3(Ω) ≤ CΩ‖φ‖H1(Ω). (4.2)

If Th = {K} is a shape-regular partition of Ω into finite elements K, then Sh = {S}
denotes the set of internal interelement sides and Nh(E) stands for the union of all
elements of Th intersecting the closed set E (= K or S). Then, assuming for the
time being that the polynomial degree is k ≥ 2 and recalling (2.12), we can write

〈ρ, φ〉 = a(ψ, ρ) = a(ψ − Ihψ, ρ)

≤
∑

K∈Th

|(ψ − Ihψ,∆ρ)K |+
∑

S∈Sh

∫

S

|ψ − Ihψ||[∂nρ]| ds

≤ CI

∑

K∈Th

h3
K |ψ|3,Nh(K)‖∆ρ‖L2(K)

+ CI

∑

S∈Sh

h
5/2
S |ψ|3,Nh(S)‖[∂nρ]‖L2(S),

(4.3)

where CI > 0 is an interpolation constant associated with the local interpolation
operator Ih. If we further set

η−1(uh,t)2 =
∑

K∈Th

h6
K‖∆ρ‖2L2(K) +

∑

S∈Sh

h5
S‖[∂nuh,t]‖2L2(S),

and make use of (4.2), then we end up with the a posteriori error estimate

E(uh,t, gh,t;V ?) = ‖ρ‖V ? ≤ CICΩη−1(uh,t),

where CI now contains an additional factor to account for the h-independent overlap
of sets Nh(E) in (4.3).
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The form of η−1(uh,t) can be further simplified upon using the definition of the
elliptic reconstruction and the semidiscrete scheme:

∆ρ = ∆Ut −∆uh,t = −Ahuh,t + fh,t − ft −∆uh,t .

Since uh,tt + Ahuh,t = fh,t, we have

∆ρ = −fh,t + uh,tt + fh,t − ft −∆uh,t = (uh,t −∆uh − f)t .

If we denote the element residuals as

r|K := uh,t −∆uh − f ∀K ∈ Th, j|S := [∂nuh] ∀S ∈ Sh,

we finally get

η−1(uh,t)2 =
∑

K∈Th

h6
K‖rt‖2L2(K) +

∑

S∈Sh

h5
S‖jt‖2L2(S), (4.4)

and
E(uh,t, gh,t;V ?) ≤ CICΩη−1(uh,t) if k ≥ 2.

Using similar arguments we can derive

E(uh, gh;H) ≤ CICΩη0(uh) if k ≥ 2,

where
η0(uh)2 =

∑

K∈Th

h4
K‖r‖2L2(K) +

∑

S∈Sh

h3
S‖j‖2L2(S). (4.5)

Note that the constants CI , CΩ may have different values now. Finally in the case
k = 1 the use of negative norm does not give better results because of the lack of
superconvergence. Hence

E(uh,t, gh,t; V ?) ≤ E(uh,t, gh,t; H) ≤ CICΩη0(uh,t) . (4.6)

In summary, we have derived the following explicit error estimate.

Theorem 4.1. (A posteriori estimators of residual type). Assume that the domain
Ω is sufficiently smooth and let t ∈ (0, T ]. If k = 1, then the following a posteriori
estimate holds

‖(u− uh)(t)‖H ≤ ‖u0 − u0
h‖H

+ CICΩ

{
η0(uh(0)) + η0(uh(t)) +

( ∫ t

0

η0(uh,t(s))2ds
)1/2}

.

In addition, for k ≥ 2 we have

‖(u− uh)(t)‖H ≤ ‖u0 − u0
h‖H

+ CICΩ

{
η0(uh(0)) + η0(uh(t)) +

( ∫ t

0

η−1(uh,t(s))2ds
)1/2}

.

where the estimators η0 and η−1 are given by (4.5) and (4.4) respectively.

Remark 4.1. The reasoning of Remark 3.3 applies and indicates that the estimator
in Theorem 4.1 is of optimal order for polynomial degree k ≥ 1, and of optimal
regularity for k ≥ 2.
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