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SUMMARY

Heat shock transcription factor 1 (HSF1) is an evolu-
tionarily conserved transcription factor that protects
cells from protein-misfolding-induced stress and
apoptosis. The mechanisms by which cytosolic pro-
tein misfolding leads to HSF1 activation have not
been elucidated. Here, we demonstrate that HSF1
is directly regulated by TRiC/CCT, a central ATP-
dependent chaperonin complex that folds cyto-
solic proteins. A small-molecule activator of HSF1,
HSF1A, protects cells fromstress-induced apoptosis,
binds TRiC subunits in vivo and in vitro, and inhibits
TRiC activity without perturbation of ATP hydrolysis.
Genetic inactivation or depletion of the TRiC complex
results in human HSF1 activation, and HSF1A inhibits
the direct interaction betweenpurifiedTRiCandHSF1
in vitro. These results demonstrate a direct regulatory
interaction between the cytosolic chaperonemachine
and a critical transcription factor that protects cells
from proteotoxicity, providing a mechanistic basis
for signaling perturbations in protein folding to a
stress-protective transcription factor.

INTRODUCTION

Protein misfolding is a biochemical hallmark of diseases that

include Alzheimer disease, Parkinson disease, Huntington dis-

ease, cardiomyopathy, cataract formation, lysosomal storage

disease, cystic fibrosis, sickle cell disease, and diabetes (Chiti

and Dobson, 2006). Specific protein-quality-control mecha-

nisms operate to both sense and respond to protein misfolding

in the endoplasmic reticulum (ER), nucleus, mitochondria, and

cytosol, resulting in increased folding capacity or degradation

of irreversibly damaged proteins. Heat shock transcription factor

1 (HSF1) is a eukaryotic transcription factor that protects cells

from cytoplasmic proteotoxicity and stress-induced apoptosis
C

and is a promising target for neurodegenerative disease therapy

(Akerfelt et al., 2010; Fujimoto et al., 2005; Neef et al., 2011).

HSF1 serves as a primary mediator of cellular stress responses,

facilitating the expression of genes encoding proteins involved

in protecting the proteome from stress, including proteins that

function in protein folding and degradation as well as transcrip-

tion, transport, signal transduction, metabolism, and a broad

array of other adaptive and survival functions in yeast, somatic

cells, and neurons (Gonsalves et al., 2011; Hahn et al., 2004;

Trinklein et al., 2004).

HSF1 is activated in response to a diverse set of environ-

mental conditions associated with cytoplasmic protein misfold-

ing including elevated temperatures, oxidant exposure, metals,

and bacterial and viral infection. Under normal cell growth condi-

tions, HSF1 is largely present as an inactive monomer, where

it is thought to be bound and repressed by Hsp40, Hsp70, and

Hsp90, abundant protein chaperones that are also involved in

the folding and maturation of many cellular proteins including

hormone receptors and protein kinases (Shi et al., 1998; Zou

et al., 1998). In response to proteotoxic stress, HSF1 assembles

as a homotrimer, accumulates in the nucleus, and binds cis ele-

ments, termed heat shock elements (HSEs), in the promoters

of target genes (Akerfelt et al., 2010). HSF1 is posttranslationally

modified by phosphorylation, sumoylation, ubiquitination, and

acetylation reactions that are proposed to either activate or

repress HSF1 function during the regulatory cycle (Cotto et al.,

1996; Hietakangas et al., 2003; Sarge et al., 1993; Westerheide

et al., 2009). Both HSF1 and Hsp70 possess redox-regulated

thiols that also allow intrinsic HSF1 stress sensing and stress

sensing by repressive protein chaperones, respectively (Ahn

and Thiele, 2003; Miyata et al., 2012; Wang et al., 2012). How-

ever, the mechanism by which cytoplasmic proteotoxicity is

sensed and transmitted to HSF1 is not well understood.

Sigma 32 (s32) is a bacterial proteotoxic stress-responsive

transcription initiation factor that directs RNA polymerase to

the promoters of protein chaperone genes and other stress-pro-

tective target genes. s32 is regulated by feedback control via

direct binding of the DnaK, DnaJ, and GroE/L protein-folding

machinery, functionally analogous to the Hsp70 and Hsp40
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Figure 1. HSF1A Protects Cells fromStress-

Induced Apoptosis

(A) NIH 3T3 cells were pretreated with 50 mM

HSF1A for 15 hr followed by 0.4 mg/ml tunicamycin

for 15 hr.

(B) Total protein was isolated from NIH 3T3 cells

treated as in (A) and analyzed for Hsp70, Bip, Erdj3

expression, and caspase-3 cleavage, with GAPDH

as loading control, by immunoblotting.

(C) INS 832/13 cells were pretreated with 20 mM

HSF1A for 15 hr, before the addition of 0.5 mM

palmitate/BSA, or BSA alone, followed by a 15 hr

incubation.

(D) Total protein was isolated from INS 832/13 cells

treated as in (C) and analyzed as in (B).

(E) NIH 3T3 cells were pretreated with 50 mM

HSF1A for 15 hr, before the addition of 5 mM

homocysteine followed by a 15 hr incubation.

(F) Total protein was isolated from NIH 3T3 cells

treated as in (B). Cell viability was analyzed with

Cell Titer Glo.

See also Figure S1.
chaperones and the TRiC/CCT chaperonin complex of eukary-

otic cells, respectively (Guisbert et al., 2004; Rodriguez et al.,

2008). These chaperone interactions provide a direct mecha-

nism for the protein-folding apparatus to sense and integrate

aberrant cellular protein folding with stress-protective responses

by modulating s32 activity and abundance. Here, we demon-

strate that a chemical activator of HSF1, HSF1A, directly binds

the TRiC/CCT chaperonin and modulates TRiC-dependent

protein folding. Furthermore, TRiC directly interacts with HSF1

in vitro and represses HSF1-dependent gene activation in vivo.

HSF1A antagonizes the repressive HSF1-TRiC interaction,

promoting the expression of protein chaperones and other

HSF1 target genes that protect cells from protein misfolding

and stress-induced apoptosis. This work establishes a direct

regulatory connection between the cytoplasmic protein-folding
956 Cell Reports 9, 955–966, November 6, 2014 ª2014 The Authors
nanomachine, TRiC/CCT, and HSF1, a

critical transcription factor activated in

response to cytoplasmic proteotoxicity.

RESULTS

HSF1A Protects against ER Stress-
Induced Apoptosis
Previous studies using a humanized

HSF1-based yeast screen identified

HSF1A, a benzyl-pyrazole-based small

molecule, as an activator of human

HSF1 (Neef et al., 2010). HSF1A activates

HSF1-dependent target gene expression

in mammalian and Drosophila cells and

ameliorates protein aggregation-medi-

ated toxicity and cell death in neuronal

precursor cells and Drosophila models

of polyglutamine (polyQ)-mediated pro-

tein-misfolding disease (Neef et al.,

2010). Since HSF1 activates transcription
of target genes that prevent stress-induced apoptosis such as

Bag-3, which binds and stabilizes the antiapoptotic factor Mcl1

(Boiani et al., 2013), HSF1A was evaluated for protection of cells

from apoptosis induced by other cell stressors. The ER stress

agent, tunicamycin, causes the accumulation of misfolded pro-

teins in the ER and promotes activation of the unfolded protein

response (UPR), which, upon prolonged activation, induces

apoptotic cell death (Glover-Cutter et al., 2013; Walter and

Ron, 2011). The proline analog azetidine (AZC) incorporates

into nascent polypeptide chains and promotes their misfolding,

causing widespread misfolding of both ER and cytoplasmic

proteins. Pretreatment of cells with HSF1A, followed by tunica-

mycin or AZC exposure, ameliorated stress-induced cell death

(Figure 1; Figure S1A). Furthermore, HSF1A treatment reduced

tunicamycin-induced expression of Bip and Erdj3, two



UPR-dependent ER chaperone genes, and blunted activation of

caspase-3, the primary mediator of apoptotic cell death (Walter

and Ron, 2011) (Figure 1B). The observed protection from

apoptotic cell death upon treatment with HSF1A is dependent

on the HSF1 (Figure S1B) and HSF1 targets, Hsp70 and Bag-3,

which have been shown to ameliorate ER-stress-induced

apoptosis by enhancing UPR signaling and stabilizing antiapop-

totic proteins, respectively (Gupta et al., 2010; Boiani et al.,

2013). As ER-stress-induced apoptosis contributes to the pa-

thology of diabetes and cardiovascular disease (Scheuner and

Kaufman, 2008; Zhang et al., 2012; Zhou et al., 2005), we tested

whether HSF1A protects cells in disease-relevant models of ER

stress. Previous studies showed that exposure of the pancreatic

beta-cell line INS 832/13 to free fatty acids or high levels of

glucose promotes UPR activation and activates apoptosis (El-

Assaad et al., 2003). While palmitate caused a marked reduction

in INS 832/13 cell viability (Figure 1C) and promoted the expres-

sion of the UPR and caspases-3 activation (Figure 1D), both

phenotypes were ameliorated by HSF1A pretreatment, as was

apoptosis induced by prolonged exposure to high levels of

glucose (Figure S1C). Elevated levels of homocysteine induce

inflammatory toxicity and are a risk factor in cardiovascular dis-

ease, particularly in endothelial cells, which fail to express cysta-

thionine b-synthase (CBS) (Wang et al., 1992; Zhang et al., 2001).

Since mouse NIH 3T3 cells are also deficient in the expression of

CBS (Skovby et al., 1984), homocysteine exposure results in a

reduction in both NIH 3T3 cell viability and basal Hsp70 levels,

which promotes activation of the UPR and caspase-3 cleavage

(Figures 1E and 1F), phenotypes that were reduced by HSF1A

administration. Taken together, the HSF1 activator HSF1A pro-

tects cells from a range of disease relevant proteotoxic condi-

tions that induce apoptosis, supporting further investigation

into the mechanism by which HSF1A activates HSF1.

HSF1A Directly Interacts with TRiC/CCT Subunits
Pull-down experiments using a biotinylated form of HSF1A

(HSF1A-biotin) resulted in the enrichment of all subunits of the

TRiC/CCT chaperonin in lysates fromboth yeast andmammalian

cells (Neef et al., 2010). As several protein chaperones including

Hsp/Hsc70 and Hsp90 have been linked to the regulation of

HSF1, experiments were carried out to determine if HSF1A-

biotin associates with these protein chaperones, or with HSF1.

While HSF1A-biotin associated with the TRiC complex as shown

by immunoblotting for two TRiC subunits, Tcp1 and Cct3, it did

not bind Hsp90, Hsp70, Hsc70, or Hsp27, nor did it associate

with HSF1 itself (Figure 2A). To ascertain if HSF1A directly binds

TRiC, HSF1A-biotin was incubatedwith purified bovine TRiC and

purified recombinant Hsp70 and captured proteins analyzed by

immunoblotting (Figure 2B). Using antibodies against TRiC sub-

units Cct2 and Cct3 demonstrates that HSF1A directly interacts

with TRiC, but not with Hsp70. The TRiC complex is composed

of eight independently expressed protein subunits that assemble

into a dual-ringed hetero-oligomeric structure (Leitner et al.,

2012). While HSF1A-biotin directly binds to TRiC, these experi-

ments do not distinguish whether HSF1A-biotin binds to individ-

ual TRiC subunits or only interacts with the assembled TRiC

complex. As shown in Figure 2C, HSF1A-biotin binds to the

Tcp1, Cct2, Cct5, and Cct8 subunits of yeast TRiC (Reissmann
C

et al., 2012) when independently expressed in E. coli. Moreover,

HSF1A-biotin, but not the Hsp90-specific inhibitor geldanamy-

cin-biotin, bound an affinity purified glutathione S-transferase

(GST)-Tcp1 subunit that was expressed by in vitro translation

(Figure 2D).

A direct interaction between HSF1A and TRiC is further sup-

ported by the observation that the thermal stability of purified

bovine TRiC is reduced in a dose-dependent manner in the pres-

ence of HSF1A-biotin, but not biotin (Figure 2E; Figures S2A

and S2B). Moreover, fluorescence anisotropy experiments using

fluorescein isothiocyanate (FITC) coupled to HSF1A demon-

strated that HSF1A-FITC bound to a purified Tcp1 subunit of

TRiCwith an affinity of approximately 600 nM. This was validated

qualitatively via titration of purified Tcp1 into binding reactions

containing 500 nM biotin or HSF1A-biotin (Figures 2F and 2G;

Figures S2C and S2D). Taken together, these data demonstrate

that HSF1A associates with TRiC in vivo and in vitro and can

engage in interactions with individual TRiC subunits. These re-

sults suggest that HSF1A stimulation of HSF1 activity is medi-

ated through the modulation of TRiC upon direct binding.

The ability of HSF1A to modulate TRiC-dependent protein

folding activity was assessed by monitoring TRiC-mediated

refolding of denatured 35S-labeled actin in vitro (Thulasiraman

et al., 2000a,b). Addition of 200 mM HSF1A reduced TRiC-medi-

ated actin folding by approximately 50% (Figure 3A), while only

mildly inhibiting TRiC-dependent ATP hydrolysis (Figure 3B).

Consistent with the observation that HSF1A is not a potent inhib-

itor of ATP hydrolysis, ATP, but not HSF1A, eluted a human

Cct4-GFP fusion protein prebound to a gamma phosphate-

linked ATP-Sepharose resin (Duncan et al., 2012) (Figures 4A–

4D). As shown by example in Figure 4E for Tcp1, all eight distinct

TRiC subunits are composed of two equatorial domains that

form the ATP binding domain, two hinge regions and a central

apical domain that binds substrates. While full-length purified

Tcp1 is bound by HSF1A-biotin, a Tcp1 fragment (designated

D3) containing only the second hinge and equatorial domain

(B) is sufficient for HSF1A-biotin binding (Figures 4F and 4G).

Moreover, the presence of the second hinge region is important

for HSF1A-biotin binding, and mutation of three amino acids

within this hinge (LDE to AAA), within the context of the full D3

fragment, abrogated HSF1A-biotin binding (Figures 4H and 4I).

These results demonstrate that HSF1A binds to TRiC and per-

turbs its folding activity but that this interaction does not require

the bipartite ATP binding pocket on the TRiC Tcp1 subunit.

Compromising TRiC Function Activates Human HSF1 in
Yeast and Mammalian Cells
TRiC is essential for S. cerevisiae and mammalian cell viability

(Spiess et al., 2004). As HSF1A-biotin interacts with both yeast

and mammalian TRiC and modulates mammalian TRiC activity

in vitro, experiments were conducted to assess whether

HSF1A modulates TRiC activity in vivo. Yeast DAmP strains, in

which disruption of the TCP1 and CCT8 30 UTR destabilizes their

corresponding mRNA (Breslow et al., 2008), were exposed

to HSF1A or DMSO. Low concentrations of HSF1A (10 mM)

did not affect the growth rate of a wild-type yeast strain at

30�C but reduced the growth rate of a tcp1-DAmP strain by

�50% (Figure 5A), a phenotype that was exacerbated when
ell Reports 9, 955–966, November 6, 2014 ª2014 The Authors 957
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Figure 2. HSF1A Directly Binds the TRiC

Complex

(A) HeLa cell extracts were incubated with 100 mM

HSF1A-biotin, and proteins were purified with

neutravidin-agarose, resolved by SDS-PAGE, and

analyzed by immunoblotting for HSF1, protein

chaperones, and TRiC subunits (I, input; B, biotin;

HB, HSF1A-biotin).

(B) Purified bovine TRiC and recombinant human

Hsp70 were incubated with 100 mMHSF1A-biotin,

and interacting proteins were analyzed as in (A).

(C) E. coli extracts expressing the indicated yeast

TRiC subunits Tcp1, Cct2, Cct5, or Cct8 fused

with FLAG tag were incubated with neutravidin-

agarose beads only (B, bead) or with 100 mM

HSF1A-biotin (HB) and immunoblotted.

(D) GST-Tcp1 was incubated with DMSO (B),

100 mM HSF1A-biotin (HB), or 10 mM geldana-

mycin-biotin (GB) and purified with neutravidin-

agarose. As a control, GST-Tcp1 was also purified

using glutathione-coated agarose beads (GSH).

Purified protein was resolved by SDS-PAGE and

analyzed by immunoblotting using Tcp1 antibody.

(E) Purified bovine TRiCwas incubated with DMSO

or HSF1A-biotin or biotin and TRiC melting was

analyzed by thermal denaturation profiling in the

presence of SYPRO orange.

(F) Fluorescence anisotropy was used to assess

the affinity of HSF1A-FITC for purified recombinant

Tcp1. Increased fluorescent polarization (mP)

indicates binding to HSF1A-FITC in the presence

of increasing concentrations of Tcp1.

(G) His6-Tcp1 was incubated with 0.5 mM biotin or

HSF1A-biotin (HSF1A-B) and captured with neu-

travidin-agarose beads and immunoblotted.

See also Figure S2C.
the tcp1-DAmP strain was grown under a mild thermal stress of

37 �C. While 10 mM HSF1A did not inhibit growth of the cct8-

DAmP strain at 30 �C, growth was significantly reduced at

37 �C. Collectively, these data suggest that HSF1A inhibits yeast

TRiC function in vivo.

Hsp90 is required for the folding and stability of a number of

client proteins, and genetic or pharmacological inhibition of

Hsp90 promotes the degradation of client proteins (Picard

et al., 1990; Schulte et al., 1997). While cells exposed to

HSF1A exhibited increased Hsp70 levels as expected due to

HSF1 activation, the steady-state levels of actin and a-tubulin,

two TRiC-client proteins, were not altered (Figure 5B; Figure S3).

A modest reduction in von-Hippel-Lindau tumor suppressor pro-

tein (VHL) levels was observed in response to HSF1A, though

this reduction was dramatic in response to heat shock and

may result from cell stress rather than inhibition of TRiC activity.

Modest increases in Cct2 and Cct3 levels were also observed in
958 Cell Reports 9, 955–966, November 6, 2014 ª2014 The Authors
response toHSF1A (Figure 5B; FigureS3),

consistent with the mammalian TRiC

genes being direct HSF1 targets (Kubota

et al., 1999).

VHL requires both the TRiC complex

and Hsp70 for correct folding and func-

tion, and association of VHL with TRiC/
Hsp70 can be detected by coimmunoprecipitation (Melville

et al., 2003). To test whether HSF1A inhibits TRiC function in vivo,

the interaction between TRiC and VHL was assessed in extracts

from cells treated with HSF1A or DMSO solvent after hemag-

glutinin (HA)-tagged-VHL immunoprecipitation. In control cells

HA-VHL was immunoprecipitated with Hsp70 and the TRiC

complex. HSF1A treatment reduced the association of Cct3

and Cct8 with VHL approximately 50% and 80% respectively,

while association of Hsp70with HA-VHLwas unaffected (Figures

5C and 5D).

As HSF1A was identified as an activator of human HSF1 ex-

pressed in yeast and HSF1A-biotin binds both mammalian and

yeast TRiC, humanized HSF1 yeast cells were used to ascertain

whether yeast TRiC represses human HSF1. Assembly of the

functional TRiC chaperonin is dependent on the correct stoichi-

ometry of the individual subunits. Disruption of the stoichiometry

of the TRiC subunits, by overexpression of one subunit, reduces
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Figure 3. HSF1A Inhibits TRiC In Vitro

(A) Purified TRiC was treated with DMSO or HSF1A and used in actin refolding

assays. Folded actin was captured using a DNase I-agarose resin, resolved by

SDS-PAGE, and analyzed and quantitated by autoradiography.

(B) Relative ATP hydrolysis (normalized ratio ADP/ATP) by purified bovine TRiC

in the presence of DMSO or 200 mM HSF1A over time (min).
yeast cell viability (Lin et al., 1997). To ascertain if reduced yeast

TRiC activity promotes human HSF1 activation in yeast, a strain

expressing yeast HSF from a URA3 plasmid and human HSF1

from a LEU2 plasmid was used as recipient to overexpress

individual TRiC subunit genes. Activation of human HSF1 is

demonstrated by the ability of cells to grow on medium contain-

ing 5-FOA, indicative of the ability of cells to lose the URA3-

based plasmid carrying the yeast HSF gene. Overexpression of

all five individual TRiC subunits tested promoted human HSF1-

dependent yeast growth, suggesting that yeast TRiC represses

human HSF1 function in yeast (Figure 6A). Neither HSF1A nor

TRiC subunit overexpression activated expression from a yeast

HSF-lacZ fusion reporter gene in a wild-type yeast strain,

indicating that these conditions did not cause global protein mis-

folding (Figures 6B and 6C). Moreover, consistent with the low

conservation of primary structure between yeast and human

HSF1 (Figure S4A) and the constitutive trimerization state of

yeast HSF, these results suggest that yeast HSF is not regulated

by TRiC. In addition, the high sequence identity between yeast
C

and mammalian TRiC of �47%–65% (Figure S4B) is consistent

with both yeast and mammalian TRiC being able to bind to

human HSF1.

While partial loss of function mutations in TRiC subunits have

been described, it is difficult to ascertain the specific contribu-

tion of thesemutations on the activation of human HSF1 in yeast,

since both human HSF1 and yeast HSF bind to similar promoter

elements. To circumvent this complexity, yeast were trans-

formed with a plasmid encoding a human HSF1 protein that

lacks the DNA binding domain but is fused to the DNA binding

domain of the prokaryotic LexA repressor (HSF1-LexA) (Fig-

ure 6D). HSF1-LexA binds the LexA operator and lack of activity

of HSF1 persists in theHSF1-LexA fusion, as thewild-type fusion

protein does not promote activation of a LexA operator, b-galac-

tosidase reporter, while the constitutively activate HSF1S303A

mutant (Batista-Nascimento et al., 2011) promotes robust

activation of the reporter plasmid (Figure S4C). Expression of

HSF1-LexA in a strain expressing a CCT6-D89E mutant allele,

which partially disrupts Cct6 function (Amit et al., 2010), resulted

in activation of the LexA Op-lacZ reporter as compared to the

wild-type strain. No activation of the yeast HSF- specific

SSA3-lacZ reporter was observed in the CCT6-D89E mutant

strain (Figure 6E). These results demonstrate that TRiC functions

to repress human HSF1, but not yeast HSF, in yeast. Moreover,

these results suggest that TRiC represses humanHSF1 indepen-

dently of its DNA binding function.

To ascertain if TRiC represses mammalian HSF1 in mamma-

lian cells, expression of TRiC subunits was reduced by RNAi

and Hsp70 protein and mRNA levels were assessed. As previ-

ously reported, knockdown of either TCP1 or CCT3 in HeLa cells

(Figure 6F) or 3T3 cells (Figure S5) resulted in significantly dimin-

ished expression of the RNAi-targeted gene and other TRiC

subunits (Brackley and Grantham, 2010). Knockdown of either

TCP1 or CCT3 resulted in a �2-fold increase in Hsp70 expres-

sion in unstressed cells (Figures 6F and 6G). Similarly, overex-

pression of TCP1 in 3T3 cells resulted in significant elevation of

both Hsp70 protein and mRNA levels, as measured by immuno-

blotting and quantitative RT-PCR, respectively (Figures 6H

and 6I). These results demonstrate that TRiC represses human

HSF1 activity in both yeast and mammalian cells.

HSF1A Antagonizes Direct Inhibition of HSF1 by TRiC
To ascertain if repression of HSF1 by TRiC occurs via TRiC-

HSF1 interactions, coimmunoprecipitation experiments were

conducted by transfecting human embryonic kidney 293T

(HEK293T) cells with plasmids to express FLAG-tagged HSF1

protein and cells were treated with or without the membrane

permeable crosslinker dithiobis(succinimidylpropionate) (DSP),

as interactions between HSF1 and Hsp90 are stabilized by the

addition of a crosslinker (Zou et al., 1998). FLAG-HSF1 was

immunoprecipitated and associated proteins analyzed by immu-

noblotting. Hsp70 copurified with HSF1, with some enrichment

after treatment with DSP, while Hsp90 was highly enriched

upon addition of the crosslinker (Figure 7A). Copurification of

the TRiC complex, visualized through immunoblotting for the

Cct2 and Cct3 subunits, was preferentially observed in the pres-

ence of cross linker, suggesting that, like Hsp90, the TRiC-HSF1

interaction is labile. The DSP-stabilized TRiC-HSF1 interaction
ell Reports 9, 955–966, November 6, 2014 ª2014 The Authors 959
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Figure 4. HSF1A Binding to Cct4 Requires a

Hinge Region

(A) Total cell lysate from HEK293T cells expressing

human Cct4-GFP was incubated with ATP-

Sepharose, bound proteins were eluted with ATP,

and eluate was analyzed for Cct4 and GFP by

immunoblotting.

(B) Total cell lysate fromHEK293T cells expressing

an empty vector, GFP, Cct4, or Cct4-GFP were

incubated with ATP-Sepharose and captured

proteins eluted with ATP. GFP fluorescence was

measured.

(C) Total cell lysate fromHEK293T cells expressing

Cct4-GFP was incubated with ATP-Sepharose as

in (A) and washed with biotin, HSF1A-biotin, or

ATP. Eluted proteins were analyzed for Cct4-GFP

by immunoblotting with anti-GFP antibody.

(D) Protein elutions from (C) were measured for

GFP fluorescence.

(E) Tcp1 protein map (Kalisman et al., 2013) rep-

resenting the three fragments D1 (1–152 aa), D2

(153–379 aa), and D3 (380–559 aa) used to analyze

Tcp1-HSF1A interactions.

(F) E. coli extract expressing yeast Tcp1 fused with

a His6 tag was incubated with neutravidin-agarose

beads only (beads), 100 mM biotin, or HSF1A-

biotin (HSF1A-B) and immunoblotted with anti-His

tag antibody.

(G) E. coli extracts expressing yeast Tcp1 frag-

ments D1, D2, or D3 fused to a His6 tag were

incubated with neutravidin-agarose beads only

(beads), 100 mM biotin, or HSF1A-biotin (HSF1A-

B) and immunoblotted with anti-His tag antibody.

(H)E. coli extracts expressing yeast Tcp1-D3 (380–

559 aa) or the truncations Tcp1-D3-Tr1 (397–559

aa) and Tcp1-D3-Tr2 (404–559 aa) were incubated

with 100 mM biotin or HSF1A-biotin (HSF1A-B),

purified with neutravidin-agarose beads, and im-

munoblotted with anti-His tag antibody.

(I) E. coli extracts expressing the yeast Tcp1-D3

fragment with the triple point mutations LDE395:

397AAA, DSL404:406AAA, or GGG421:423AAA

fused with a FLAG tag were incubated with 100 mM

biotin or HSF1A-biotin (HSF1A-B), purified with

neutravidin-agarose beads, and immunoblotted

with anti-FLAG antibody.
was independently validated utilizing the dual carboxyl-terminal

TAP-GFP-tagged mouse HSF1 allele expressed in HEK293T

cells (Figure 7B). No interaction between HSF1 and the abundant

protein tubulin was detected.

To test whether TRiC and HSF1 directly interact, purified His6-

tagged HSF1 was incubated either alone or with purified bovine

TRiC, and HSF1 was affinity captured by cobalt-resin and

analyzed by immunoblotting. While very low levels of TRiC

(ascertained by immunoblotting for Cct2 and Cct3) bound to

the cobalt-resin (Figure 7C, lane 4), TRiC was enriched when co-

incubated with HSF1 (Figure 7C, lane 8). As TRiC interacts with

the N17 domain of the Huntingtin protein that is known to form

coiled coils (Fiumara et al., 2010; Tam et al., 2006, 2009), the

possibility that the TRiC-HSF1 interaction is mediated via the

HSF1 coiled-coil trimerization domain was investigated. How-

ever, as shown in Figure 7C (lane 7), the HSF1-TRiC interaction

was not abrogated by deletion of the HSF1 trimerization domain
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(HSF1DLZ1-3). To ascertain if HSF1A influences the HSF1-TRiC

interaction in vitro, TRiC was preincubated with HSF1A-biotin

(AB) or biotin (B) alone before the addition of HSF1. While biotin

alone had no effect on the interaction, HSF1A-biotin inhibited

TRiC-HSF1 complex formation (Figure 7D). Similarly, treatment

of NIH 3T3 and HEK293T cells with HSF1A, prior to DSP cross-

linking, reduced the interaction between TRiC and HSF1 in vivo,

though this wasmore variable in vivo (Figure 7E). Taken together,

these data suggest a model in which HSF1A directly binds to

TRiC, perhaps destabilizing the interaction between TRiC and

HSF1 resulting in the amelioration of TRiC-mediated repression

of HSF1 (Figure 7F).

DISCUSSION

Cytoplasmic proteotoxic stress causes the generation of mis-

folded proteins that lead to cellular dysfunction and apoptosis.
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Figure 5. HSF1A Inhibits TRiC Function

In Vivo

(A) Wild-type, tcp1-DAmP, and cct8-DAmP S.

cerevisiae strains were treated with DMSO or

10 mMHSF1A and grown at 30�C or 37�C for 10 hr,

and growth monitored by optical density. Data

shown are growth rate of HSF1A treated cultures

as a function of DMSO-treated cultures.

(B) NIH 3T3 cellswere treatedwithDMSOorHSF1A

for 15hr or heat shocked for 2 hr at 42�C followedby

a 15hr recovery at 37�C. Total proteinwas analyzed

for Hsp70, HSF1, Cct2, Cct3, a-tubulin, actin, and

VHL expression by immunoblotting.

(C) HeLa cells transfected with a plasmid ex-

pressing HA-VHL were treated with DMSO or

80 mM HSF1A for 1 hr. HA-VHL and interacting

proteins were captured using an anti-HA agarose

resin and analyzed by immunoblotting for Hsp70,

Cct3, Cct8, and VHL.

(D) Immunoprecipitated (IP) protein and input (in)

protein levels from (C) were quantified and IP pro-

tein levels normalized using input protein levels.

Data are shown as a percent of IP protein levels of

HSF1A treated cells versus DMSO treated cells.
While HSF1 is a central stress-responsive transcription factor

that undergoes a switch from an inactive monomer to a DNA-

binding active homotrimer, little is known about the mechanisms

that regulate this transition, and downstream activation steps, in

response to cytosolic protein misfolding. Previous studies re-

ported that the Hsp90 and Hsp70 chaperones associate with

HSF1 in cell extracts and play an inhibitory role in HSF1 regula-

tion (Shi et al., 1998; Zou et al., 1998). However, neither purified

Hsp90 nor Hsp70 has been reconstituted into complexes with

HSF1 in vitro to distinguish between a direct versus indirect reg-

ulatory role on HSF1. In contrast, here, we reconstitute a direct

interaction between TRiC and HSF1 that can be targeted phar-

macologically to activate the stress-protective response.

Our previous studies identified HSF1A as an activator of HSF1

in a humanized yeast screen that is also active in diverse meta-

zoan cell types (Neef et al., 2010). While HSF1A neither inhibits

nor binds Hsp90, HSF1A-biotin and HSF1A-FITC interact with

the TRiC/CCT chaperonin complex in yeast and mammalian

cell lysates and as purified subunits or in the fully assembled,

active complex. HSF1A binds to the TRiC complex directly and

modulates TRiC-dependent chaperone activity in vivo and

in vitro. While small-molecule inhibitors have been described

for Hsp90 that result in the destabilization of Hsp90 client

proteins and the concomitant activation of HSF1, no direct

small-molecule inhibitors of the TRiC/CCT complex have been

previously reported (Neef et al., 2011).

The precise mechanism by which HSF1A modulates TRiC

activity is not yet understood. HSF1A may associate with client-

bound TRiC or with the apo form of TRiC, but in either case,

HSF1A interacts with the highly conserved TRiC subunits from

both S. cerevisiae and mammalian cells (Figure S4B). Given that
Cell Reports 9, 955–966,
HSF1A binds directly to all four

of individual CCT subunits evaluated, the

chaperonin ATPase domain was a
candidate binding site for HSF1A (Hartl and Hayer-Hartl, 2002).

However, our experiments suggest thatHSF1Aneither strongly in-

hibits TRiCATPase activity nor competes effectively for ATP bind-

ing.Furthermore,mutagenesis experiments suggest thatadistinct

chaperonin domain, involving the hinge 2 region, may constitute

the site to which HSF1A binds. Indeed, it has been described

that TRiC activity and stability can be regulated by Vaccinia-

related kinase 2 (VRK2) through a mechanism that requires an

interactionwith the carboxyl-terminal regionof the TRiCequatorial

domain,without affectingATPhydrolysis (Kimet al., 2014). Further

analysis will be required to characterize the HSF1A binding site

and to understandhowHSF1Abinding altersTRiCstructure, func-

tion, and regulatory interactions with HSF1.

As TRiC directly interacts with HSF1, our data support a direct

repressor role for TRiC in regulating HSF1 activity. Perhaps the

binding of HSF1A to TRiC competes for a TRiC-HSF1 interaction

surface or initiates a conformational change in TRiC that reduces

the affinity for the HSF1-TRiC interaction. An alternative expla-

nation for HSF1A-dependent HSF1 activation via TRiC is that

HSF1A may inhibit TRiC activity, leading to the accumulation

of misfolded TRiC client proteins that, in turn, stimulate

the HSF1-mediated heat shock response. However, neither

HSF1A exposure nor genetic inhibition of TRiC promotes the

activation of yeast HSF, which, like its metazoan counterparts,

is activated in response to conditions that cause protein misfold-

ing (Verghese et al., 2012). This suggests that the negative regu-

lation of HSF1 by TRiC is a metazoan feature of the stress

response. Unlike the high degree of conservation between the

yeast and human TRiC subunits, yeast and human HSF1 show

little overall protein sequence homology outside of their DNA

binding domains (Figure S4A). Furthermore, given that yeast
November 6, 2014 ª2014 The Authors 961
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Figure 6. TRiC Inhibits Human HSF1 Activa-

tion in Yeast and Mammalian Cells

(A) S. cerevisiae strain DNY248 expressing human

HSF1 (hHSF1) or an empty vector (V) were trans-

formed with plasmids expressing the indicated

TRiC subunits and grown on SC-His or SC-His

supplemented with 5-FOA.

(B) S. cerevisiae strain DNY227 harboring an

SSA3-b-galactosidase fusion gene was treated

with 25 mM HSF1A or DMSO for 6 hr or heat

shocked at 39�C for 3 hr. Reporter gene activation

was assessed by b-galactosidase activity assays.

(C) Yeast strain BY4741 expressing a plasmid-

borne SSA3 promoter-b-galactosidase fusion

gene was transformed with either an empty vector

or plasmids expressing the CCT5 or CCT8 genes.

(D) Yeast-based assay scheme for impact of TRiC

dysfunction on human HSF1 activation. Shown is

the HSF1-LexA fusion protein bound to a LexA

operator site upstream of the lacZ gene. See also

Figure S4C.

(E) Yeast strains BJ2168 (WT) and MA6 (CCT6

D89E) were transformed with a plasmid express-

ing HSF1-LexA and a LexA operator-dependent

b-galactosidase reporter gene (left) or an SSA3-

b-galactosidase fusion gene (right). Reporter gene

activation was assessed by b-galactosidase ac-

tivity assays.

(F and G) HeLa cells treated for 72 hr with siRNA

against TCP1 or CCT3 or scrambled siRNA were

analyzed for Hsp70, Tcp1, Cct3, and GAPDH

levels by immunoblotting (F) and for Hsp70 levels

(ng/ml) by ELISA (G).

(H) NIH 3T3 cells were transiently transfected

with a plasmid expressing mouse TCP1 (CMV-

TCP1) or vector control (VEC) and analyzed for

Hsp70, Tcp1, and GAPDH protein levels by

immunoblotting.

(I) NIH 3T3 cells were treated as in (H) and Hsp70

transcript levels quantitated by quantitative RT-

PCR normalized to GAPDH.
HSF has been reported to be a constitutive homotrimer, the lack

of conservation of the HSF-TRiC regulatory interaction in yeast

is not surprising. While data presented herein suggest that

HSF1A antagonizes TRiC-dependent HSF1 repression, our

data demonstrating the copurification of TRiC and HSF1 in vivo

and in vitro strongly support a model in which TRiC acts directly

on HSF1. Furthermore, our data suggest that the highly

conserved TRiC subunits from both S. cerevisiae and humans

(Figure S4B) are able to engage in repressive interactions with

human HSF1. The TRiC interactome encompasses many func-

tional classes of cytoplasmic proteins, including those involved

in the function of the cytoskeleton, DNA replication and repair,

cell-cycle progression, RNA processing, and protein trafficking

(Dekker et al., 2008; Yam et al., 2008).
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Studies in E. coli demonstrated that

the chaperonin GroEL directly binds to

and represses the activity of s32, the pro-

karyotic proteotoxic stress-responsive

transcription initiation factor (Guisbert
et al., 2004; Rodriguez et al., 2008). Indeed, s32 regulation by

DnaK, DnaJ, and GroE/L provides a sophisticated chaperone-

mediated regulatory circuit in which the protein-quality-control

pathway directly integrates and communicates with the

stress-responsive transcription machinery. Our work suggests

that this direct regulatory relationship between a chaperonin

complex and stress-activated transcription factor is conserved

in mammals and provides an additional level for regulating

stress activation of HSF1. Recent work demonstrating specific

thiol oxidation in Hsp70 as an activating signal for HSF1 high-

lights the sophisticated mechanisms built into chaperone-medi-

ated regulation of HSF1 (Miyata et al., 2012; Wang et al., 2012).

As HSF1 is activated by a plethora of proteotoxic stress condi-

tions, perhaps distinct stresses integrate HSF1 activation via the
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Figure 7. TRiC Directly Interacts with HSF1

(A) HEK293T cells transfected with a plasmid

expressing FLAG-HSF1 or an empty vector (Vec)

were treatedwithDSP (+) or left untreated (�). HSF1

was immunoprecipitated from total protein extract

using anti-FLAG-affinity resin and analyzed for

HSF1, Hsp90, Hsp70, Cct2, and Cct3 by immuno-

blotting. Asterisk (*) indicates nonspecific band.

(B) HEK293T cells transfected with mouse HSF1-

GFP-TAP or an empty vector were treated with

DSP and HSF1 from total protein extract using

anti-GFP-affinity resin. The immunoprecipitate

was analyzed for HSF1, Hsp90, Hsp70, and Cct3

by immunoblotting (I, input; PD, pull-down).

(C) Purified bovine TRiC, His6-tagged HSF1DLZ1-

3 or His6-tagged wild-type HSF1 were incubated

either alone or with the indicated combinations.

Proteins were captured using cobalt-agarose resin

and analyzed for HSF1, Cct2, and Cct3 by immu-

noblotting. Shown are images from the same blot

that was separately probed with the indicated

antibodies.

(D) In vitro TRiC-HSF1 interaction experiment

carried out as in (C) but purified TRiC was pre-

incubated with 200 mM HSF1A-biotin or biotin

alone prior to addition of HSF1.

(E) NIH 3T3 and HEK293T cells transfected with

a plasmid expressing FLAG-HSF1 were treated

with 80 and 100 mM HSF1A, respectively, or

DMSO for 6 hr and crosslinked with DSP. HSF1

was immunoprecipitated and immunoblotted as in

(A) for HSF1, Hsp90, Hsp70, and Cct3.

(F) Model for the repressive interaction between

TRiC and HSF1 and its modulation by HSF1A.
modulation of distinct sets of chaperone repressors. As arsenic

is an HSF1 activator that also inhibits TRiC (Pan et al., 2010), it

will be interesting to evaluate whether chaperonin inhibition is a

key pathway for HSF1 activation by arsenic. Indeed, Pan et al.

observed that TRiC activity is very sensitive to thiol oxidation

in vivo and in vitro, which may resemble the thiol-dependent

regulation of HSF1 observed through the action of other

chaperones such as Hsp70 (Miyata et al., 2012; Wang et al.,

2012).

HumanHSF1 is regulatedbyHsp70andHsp90,eitherdirectlyor

indirectly, and our data show that the TRiC complex directly binds

and repressesHSF1. HSF1may exist in subpopulations regulated

by different protein chaperones, perhaps in a tissue- or cell-type-

dependent manner or in response to diverse proteotoxic stimuli.

This hypothesis is supported by the finding that RNAi-mediated

knockdown of TRiC subunits in C. elegans elicits muscle-specific

activation of HSF1 (Guisbert et al., 2013) and suggests that TRiC
Cell Reports 9, 955–966,
may be a primary regulator of HSF1 in

myocytes. Interestingly, tissue-specific

regulation of HSF1 by different protein

chaperones may have direct physiological

disease relevance. Evidence has shown

that the expression of protein chaperones

such as Hsp70, as well as the activity of

HSF1, is strongly repressed in insulin-
resistant tissues in type 2 diabetes (Kurucz et al., 2002). While

the mechanisms underlying the repression of HSF1 and Hsp70

are not understood, proteomics analysis of muscle biopsy speci-

mens revealed that Hsp70 levels were dramatically reduced, yet

levels of individual TRiC subunits were significantly elevated, in

diabetes (Hwang et al., 2010). The levels of specific chaperones

in different tissues or in disease statesmay determine their contri-

bution towardHSF1 regulationandallow for sophisticated integra-

tion of diverse stressful stimuli. A greater understanding of the

mechanisms regulatingHSF1activity in tissuesanddisease states

could lead to development of pharmacological interventions

targeting HSF1 for specific human conditions.
EXPERIMENTAL PROCEDURES

Yeast and mammalian cells, transfections, and small interfering RNA (siRNA)

yeast cell growth conditions are detailed in the figure legends. Mammalian
November 6, 2014 ª2014 The Authors 963



cell lines used in this study were human HeLa and HEK293T cells, mouse NIH

3T3, wild-type and hsf�/� mouse embryonic fibroblasts (McMillan et al., 1998)

stably transfected with either pcDNA3.1(+)/Zeo or pcDNA3.1(+)/Zeo-hHSF1,

and rat INS 832/13 cells. Plasmids used in this studywere transfected into cells

using Lipofectamine LTX (Invitrogen) following the manufacturer’s guidelines.

siRNA against TCP1 and CCT3 was purchased from Dharmacon and 2 nmol of

each siRNAwere transfected into HeLa or 3T3 cells using Dharmafect 1. Yeast

strains, plasmids, and antibodies are listed in Supplemental Experimental

Procedures.

HSF1A-Biotin Affinity-Capture Experiments

Protein extracts were generated from mammalian, yeast, and E. coli cultures

using biotin-binding buffer (20 mM HEPES, 5 mM MgCl2, 1 mM EDTA,

100 mMKCl, 0.03%NP-40) supplemented with 1% Triton X-100 and protease

inhibitors. Approximately 0.5 mg of protein extract was incubated with 100 mM

HSF1A-biotin for 4 hr at 4�C and HSF1A-biotin-associated proteins captured

by with NeutrAvidin Agarose Resin (Pierce). After washing in biotin binding

buffer, proteins were eluted using 50 ml biotin elution buffer (100 mM Tris,

150 mM NaCl, 0.1 mM EDTA, 2 mM D-biotin), resolved on a 4%–20% SDS-

PAGE, and immunoblotted. For purified TRiC and Hsp70 analyses, 5 nM pro-

tein was incubated in biotin-binding buffer + 0.5% Triton X-100 with 100 mM

biotin or 100 mM HSF1A-biotin for 4 hr at 4�C and captured with NeutrAvidin

Resin. For nickel-nitrilotriacetic acid-purified yeast Tcp1, different concentra-

tions of Tcp1 (0.5 mM, 1 mM, 2 mM, 3 mM, and 4 mM) in 25 mM HEPES

(pH 7.5), 150 mM NaCl were incubated with 0.5 mM biotin or HSF1A-biotin

for 4 hr at 4�C and captured with NeutrAvidin resin.

TRiC Subunit Expression in E. coli

Open reading frames of yeast TRiC subunits were PCR amplified and cloned

into the E. coli expression vector pT7-FLAG-4 (Sigma), transformed into

BL21(DE3) cells, and protein expression induced via the addition of 1 mM iso-

propyl b-D-1-thiogalactopyranoside for 3 hr at 37 �C. Total protein extracts

were generated by cell lysis in biotin binding buffer supplemented with 1%

Triton X-100 and protease inhibitors.

HSF1-TRiC Coimmunoprecipitation Assay

HEK293T cells transfected with the indicated plasmid were crosslinked

with DSP and lysed in immunoprecipitation buffer, and 0.5 mg of protein

was immunoprecipitated with anti-FLAG-M2 affinity gel (Sigma) for FLAG-

HSF1 or anti-GFP agarose resin (Santa Cruz Biotechnology) for mHSF1-

TAP. Captured proteins were eluted with Laemmli buffer and analyzed by

immunoblotting.

In Vitro TRiC-HSF1 Binding Assays

Recombinant human HSF1 was purified as previously described (Ahn and

Thiele, 2003). Purified HSF1 and purified TRiC (5 nM) were incubated either

alone or together in biotin binding buffer for 1 hr at room temperature and

captured using a cobalt-agarose resin for 90 min at 4�C. After washing, bound

proteins were eluted with buffer supplemented with 500 mM imidazole and

analyzed by immunoblotting.

For more information regarding thermal denaturation profiling, actin folding,

ATPase assays, ATP-Sepharose purification, VHL coimmunoprecipitation,

and the LexA-HSF1 assay, see Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and five figures and can be found with this article online at http://dx.doi.org/

10.1016/j.celrep.2014.09.056.
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