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Abstract We consider elliptic and parabolic variational equations and inequalities governed by
integro-differential operators of order 2s ∈ (0, 2]. Our main motivation is the pricing of European

or American options under Lévy processes, in particular pure jump processes or jump diffusion

processes with tempered stable processes. The problem is discretized using piecewise linear finite

elements in space and the implicit Euler method in time. We construct a residual-type a posteriori

error estimator which gives a computable upper bound for the actual error in Hs-norm. The

estimator is localized in the sense that the residuals are restricted to the discrete non-contact

region. Numerical experiments illustrate the accuracy of the space and time estimators, and show

that they can be used to measure local errors and drive adaptive algorithms.

1 Introduction

Integral equations and variational inequalities with integral operators are important in various

applications. We now mention a few of them, the first one being our main motivation. It is worth

observing that our results are valid for all of these applications.

• Option pricing with jump processes: a jump process is modeled by an integral operator and
leads to a parabolic equation (European option) or a parabolic variational inequality (American

option) [65,24]; see section 2 for details.

• Boundary integral equations and inequalities: they are obtained from elliptic partial differential

equations (PDEs) in a bounded or exterior domain [25,36,51], perhaps with unilateral constraint

on the boundary (Signorini problem) [56].
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• Fractional Laplacian: boundary control problems [28,14], surface frame propagation and quasi-

geostrophic flow models [15,23] are all problems governed by the fractional Laplacian.

We consider a linear integral operator I of order ρ ∈ (0, 2) on a bounded domain Ω ⊂ R
d.

For s ∈ (0, 1] we define the Sobolev space H̃s(Ω) = {u|Ω : u ∈ Hs(Rd), u|
Rd\Ω = 0}; see, e.g.,

[50,44]. In particular we consider integral operators of the form

Iu = K ∗ u with K(x) =
g(x)

‖x‖d+ρ
, (1.1)

where the convolution integral is defined by a suitable regularization and ρ = 2s; see sections 2

and 3.2. A special case of this is the fractional Laplacian (−∆)s.

The operator A is either an integral operator A = I of order 2s ∈ (0, 2), or an integro-

differential operator A = D + I of order 2s = 2 where D is a second-order differential operator;

hence, 2s will always indicate the order of A. In both cases we define the energy space V = H̃s(Ω)

and assume that A : V → V∗ is continuous and coercive; see section 3.1.

We examine the parabolic equation

ut(t) + Au(t) = f(t)

with initial condition u(0) = u0, which in weak form reads as follows: find u(t) ∈ V such that

〈ut(t) + Au(t) − f(t), v〉 = 0 ∀v ∈ V . (1.2)

If we add the obstacle constraint u ≥ χ, then (1.2) becomes the parabolic variational inequality

〈ut(t) + Au(t) − f(t), u(t) − v〉 ≤ 0 ∀v ∈ V with v ≥ χ; (1.3)

see section 3 for precise definitions and assumptions. Note that, for each time t, there is a contact

region {u = χ}, and a non-contact region {u > χ} where ut(t) + Au(t) = f(t), separated by a

free boundary. We also discuss the corresponding elliptic problems.

For the space discretization we use piecewise linear finite elements in space over a mesh which

does not depend on time, but may be graded. For the time discretization we use the implicit Euler

method where the time partition may also be nonuniform. One main objective is to construct

a computable a posteriori error estimator: the estimator uses the computed discrete solution,

operator and data, and gives an upper bound of the error, measured in the norm of V in the

time-independent case, and measured in L2(0, T ;V) in the time-dependent case. We are thus

after error control of (1.2) and (1.3) rather than their efficient and fast solution.

For elliptic PDEs, a posteriori error estimators are an essential part of practical and reliable

numerical methods: they indicate whether a computed solution is acceptable, or whether further
mesh refinement and coarsening may enhance it. This is achieved by splitting the error estimator

into local error indicators, which are in turn employed as a measure of local resolution. Error

estimators are particularly important if the solution exhibits singularities. For elliptic PDEs the

theory of error estimators and adaptive algorithms is now well established for coercive opera-

tors [61,1]. In particular, it has been shown that adaptive algorithms achieve optimal convergence

rates for a large class of singular solutions [46]. On the other hand, the theory for parabolic PDEs

is much less developed [21,40,54].

In extending the a posteriori error analysis from elliptic equations to more general problems,

including integral operators, variational inequalities, and parabolic problems, we face specific

challenges. We describe them now in turn.
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• Integral operators : In this case the operator A is nonlocal, and the energy norm is hard to

compute as the norms of fractional Sobolev spaces H̃s(Ω) cannot be simply broken up into local

parts over subdomains. This issue has been studied by many others [63,64,20,18,19,29–31]. In

particular, Faermann [29–31] show how to localize fractional Sobolev norms. We provide an

alternative approach based on stars (element patches) which yields a natural localization. An

additional issue is that the residuals are singular at the boundaries between elements, so that

the L2-norm does not always exist. Our estimator uses Lp-norms of the residual, and for ρ > 3
2

values of p < 2 are required [5]. This seems to be a new result even for linear elliptic equations.

We also discuss a method for the efficient numerical evaluation of the resulting singular integrals.

• Elliptic variational inequalities: The location of the free boundary is unknown, and the stan-

dard residual estimator is only appropriate in the non-contact region. Fierro and Veeser [33]

constructed an estimator for differential operators of order 2 which is properly localized: the es-

timator only uses the residual in a discrete non-contact region, and resolves the obstacle only

in the discrete contact set. This is accomplished upon dealing with estimators on stars (rather

than elements) and a suitable definition of discrete contact set. We follow a similar approach for

integral operators in sections 5 and 6. Note that no special assumptions are needed about the

geometry of the exact free boundary, which, in the multidimensional case, can indeed be very

complicated. Even in the simplest case of a standard call or put option in one dimension, where
the free boundary consists only of a single point, one cannot simply use the error estimator from

the elliptic case as the exact location is unknown.

• Parabolic problems : Additional singularities in space and time occur at t = 0, depending on

the initial data, and at the domain boundary. In [45] an error estimator was constructed which

measures the space discretization error via the elliptic estimator of Fierro and Veeser [33] and

the time discretization error via the estimator of Nochetto, Savaré, and Verdi [47] for the implicit

Euler method. We extend this approach to integral equations in section 7.

• Singularities at the free boundary: For both elliptic and parabolic variational inequalities with

integral operators, the solution can exhibit singularities [42] at the free boundary which are strong

enough to reduce the convergence rate for piecewise linear elements; this does not happen in the

case of a differential operator [33,49,45]. This makes error estimators and adaptivity particularly

important as we require mesh refinement and coarsening at a priori unknown locations (in con-

trast to linear PDEs where singularities can only occur at points where the domain boundary or

right hand side function are nonsmooth). We explore these issues computationally in section 8.

We organize the paper as follows. In §2 we briefly discuss the option pricing problem which is

the main motivation for our results. In §3 we describe the class of operators under consideration
and a suitable functional framework for their study. In §4 we consider linear elliptic integral

equations and introduce our technique for estimating the error in terms of Lp-norms of the

residual. In §5 we introduce the elliptic variational inequalities for integro-differential operators

of order 2s, along with Lagrange multipliers, both continuous and discrete, and the Galerkin

functional. In §6 we derive upper a posteriori error estimates for the elliptic case; this extends

the results of Fierro and Veeser [33] to fractional Sobolev norms Hs with s < 1. In §7 we tackle

the parabolic case and thereby extend the a posteriori error estimates in [45] to s < 1. We

conclude in §8 with several numerical experiments for both elliptic and parabolic equations and

variational inequalities for d = 1 and s ≤ 1. We discuss how to compute the residuals and their

Lp-norms.
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2 Financial Problem

We now give a very brief description of the option pricing problem in the case of one asset

(d = 1). For more details see e.g. [24]. Numerical methods for pricing American options have

been discussed by many researchers (see [17,27,2–4,42,41,22] and references therein).

We consider an asset (e.g., stock) with known initial price S(0) and let r ≥ 0 denote the

interest rate. The price S(t) for t ∈ [0, T ] is modeled by a stochastic process under the so-called

risk-neutral measure, i.e., e−rtS(t) is a martingale. We define the log-price X(t) = logS(t) and

assume that X(t) − X(0) is a Lévy process. A European option is a contract which pays the

amount G(X(T )) at maturity time T where G : R → R is a given payoff function. An American

option is a contract which pays the amount G(X(t)) at any time t ∈ [0, T ] the holder of the

option chooses the so-called exercise time.

Given the known initial log-price X(0) we want to find the fair market price of the option.
Let u(x, T − t) denote the option price at time t if the current asset log-price is x = X(t). Hence

u(x, 0) = G(x) and u(X(0), T ) is the desired option price. For a European option the function

u(x, t) satisfies the Kolmogorov equation (1.2) with

Au = −Bu+ r (u− ux) (2.1)

and initial condition u(x, 0) = G(x). Here B is the infinitesimal generator of the stochastic process

X(t). If there are no jumps, the process X(t) must be a Brownian motion with drift and we have

Bu = σ2(uxx − ux). (2.2)

A pure jump process is characterized by the so-called jump density K(z). The expected number

of jumps in a set B ⊂ R per unit time is then given by
∫

B
K(z)dz. The function min{1, |z|2}K(z)

must be integrable and B is given by

Bu =

∫

Rd

K(z) [u(x+ z) − u(x) − (ez − 1)ux(x)] dz (2.3)

(assuming sufficiently fast decay of K(z) for |z| → ∞). This is actually a regularized form of the

convolution (1.1) with the kernel function K(z). A relevant example is the so-called tempered

stable process, also known as CGMY process, where

K(z) =
g(z)

|z|1+ρ , g(z) =

{
eG+|z| for z ≥ 0

eG−|z| for z < 0
(2.4)

and ρ ∈ (0, 2) is the order of the integral operator B; see [11,16]. For a general Lévy process Bu
is the sum of the operators in (2.2) and (2.3).

For an American option, the function u(x, t) satisfies the variational parabolic inequality (1.3)

with χ(x) = G(x) instead of (1.2). The contact region specifies the optimal exercise strategy: if

at time t the current log-price x = X(t) of the stock is in the contact region one should exercise

the option, otherwise one should wait. The free boundary, i.e. the boundary of the contact region,

is thus a crucial unknown.

For multiple assets, we have a process x = X(t) with values in R
d, and a function u(x, t)

satisfying an elliptic PDE in case of Brownian motion, or an integral equation in case of a pure

jump process. For several dimensions we will only consider jump densities of the form

K(x) =
g(x)

|x|d+ρ
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where g(x) is smooth and exponentially decaying for |x| → ∞. Note that there are so-called Lévy

copulas which lead to jump densities with anisotropic singular behavior as described in [32]; this

case is not covered in this paper.

The original problem uses x ∈ R
d, but because of the exponential decay of the kernel function

K(z) one can truncate the problem to a bounded domain Ω and consider functions u ∈ V =

H̃s(Ω). This leads to an error which decays exponentially with the size of the truncated domain;

see e.g. [43]. The problem on a bounded domain Ω corresponds to a so-called barrier option
which becomes worthless as soon as the log-price X(t) leaves Ω.

3 Operators and Variational Setting

In the rest of the paper, we write A . B instead of A ≤ CB with a generic geometric constant

C independent of meshsize, time-step, and various functions involved, as well as A ≈ B in place

of A . B . A. Let H, V be Hilbert spaces so that V is dense in H with a continuous embedding
V →֒ H. We identify H with its dual H∗ and obtain the usual triple V →֒ H ∼ H∗ →֒ V∗. We first

describe both the time-independent and time-dependent problems in an abstract setting with

linear operator A : V → V∗. We then specify the class of integro-differential operators A under

consideration.

3.1 Abstract Variational Setting

Let A : V → V∗ be a linear operator which is continuous and coercive, i.e., there is CA, κA > 0
such that for all v, w ∈ V

〈Av, w〉 ≤ CA‖v‖V‖w‖V (continuity) (3.1a)

〈Av, v〉 ≥ κA‖v‖
2
V . (coercivity) (3.1b)

Hereafter, 〈·, ·〉 stands for the duality pairing between V∗ and V . We define the bilinear form

a(v, w) := 〈Av, w〉 and the energy norm |||v||| := a(v, v)
1
2 = 〈Av, v〉

1
2 . The induced norm on the

dual space V∗ will be denoted by |||·|||∗. Note that (3.1a), (3.1b) imply that A satisfies a strong

sector condition

|〈Au, v〉| ≤ 2γ |||u||| |||v||| . (3.2)

We clearly have 1
2 ≤ γ ≤ CA

2κA
, but this may be pessimistic since γ = 1

2 in the symmetric case.

Let f ∈ V∗. We consider the following time independent problem (elliptic variational inequal-

ity): find u ∈ K such that

〈Au− f, u− v〉 ≤ 0 ∀ v ∈ K, (3.3)

where K is a closed convex subset of V . It is well known that this problem has a unique solution;

see, e.g., [37].

Similarly, for f ∈ L2(0, T ;V∗) and u0 ∈ K(0), we consider the following time dependent

problem (parabolic variational inequality): Find u ∈ C([0, T ];H) ∩ L2(0, T ;V) with the initial
condition u(0) = u0 such that for almost every t ∈ [0, T ] there holds u(t) ∈ K(t) and

〈ut(t) + Au(t) − f(t), u(t) − v〉 ≤ 0 ∀ v ∈ K(t). (3.4)

Note that the initial condition and the time derivative have to be defined in a weak sense; see

[7] where actually a setting with more general u0 and f(t) is considered. On the other hand, if

we have f ∈ L2(0, T ;H) there holds u ∈ H1(0, T ;H) so that the initial condition and (3.4) hold

in the classical sense; see [13].
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3.2 Spaces and Operators

We now specify the spaces H,V , convex set K and classes of operators A under consideration.

Let Ω ⊂ R
d be a bounded polyhedral domain with boundary Γ and let s ∈ (0, 1]. We first

define the space of functions on Ω so that their extensions by zero are in Hs(Ω):

H̃s(Ω) = {u|Ω : u ∈ Hs(Rd), u|
Rd\Ω = 0}.

Another space is obtained by restricting Hs(Rd) functions to Ω:

Hs(Ω) := {u|Ω : u ∈ Hs(Rd)}.

Note that H̃s(Ω) := [L2(Ω), H1
0 (Ω)]s and Hs(Ω) := [L2(Ω), H1(Ω)]s for s ∈ (0, 1] for the

interpolation spaces with the induced norm; see [9,44] for example. We define for s > 0 the dual

spaces H−s(Ω) := H̃s(Ω)∗ and H̃−s(Ω) := Hs(Ω)∗.
Let ω be a sub-domain of Ω. We define the spaces Hs

Γ (ω) for s ∈ (0, 1] by interpolation of

H0
Γ (ω) := L2(ω) and H1

Γ (ω) :=
{
u ∈ H1(ω) : u|Γ = 0

}
.

It is then clear from their definitions that Hs
Γ (Ω) = H̃s(Ω) and Hs

Γ (ω) = Hs(ω) provided ∂ω∩Γ
is empty. We use Hs

Γ (ω)∗ to denote the dual space of Hs
Γ (ω).

In American option pricing the convex set K corresponds to a unilateral constraint given by

the payoff function χ ∈ V , namely,

K = { v ∈ V : v ≥ χ }. (3.5)

To simplify the presentation, we assume that the obstacle χ is a piecewise linear function in the

finite element space. More general obstacles, which may also be time-dependent, can be treated

similarly; we skip the details and refer to [45, Section 4] for details (see also [60,49]).

We now introduce the integral operators I. Let K ≥ 0 denote the jump density and assume

it is a tempered distribution on R
d so that its Fourier transform K̂ satisfies

∣∣∣K̂(ξ)
∣∣∣ ≤ C(1 + |ξ|)ρ (3.6)

with ρ < 2. Then the convolution u 7→ K ∗ u is a continuous mapping between Hr(Rd) →
Hr−ρ(Rd) as well as H̃r(Ω) → Hr−ρ(Ω) for all r ∈ R. We assume that the kernel K(x) is

smooth for x 6= 0 and satisfies
∣∣∂β

xK(x)
∣∣ ≤ Cβ |x|−d−ρ−|β|

near x = 0 for all multi-indices β. Examples for such processes are so-called tempered stable

processes where the kernel has the form

K(x) =
g(x)

|x|d+ρ
for x 6= 0

and g(x) ≥ 0 decays exponentially for |x| → ∞; for d = 1, g(x) could be given by (2.4) for

example. We now let s = ρ/2 and define the integral operator I : H̃s(Ω) → H−s(Ω) as follows:

consider a smooth function u with support in Ω, extended by zero to R
d. If ρ < 0, then the

convolution −K ∗ u can be expressed as a classical integral

Iu(x) := −

∫

Rd

K(x− y)u(y) dy. (3.7)
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However, for ρ ≥ 0 the convolution integral does not exist in the L1 sense, and we thus consider

regularizations of the integral; see [36,39]. For 0 ≤ ρ < 1 we use

Iu(x) := −

∫

Rd

K(x− y)
(
u(y) − u(x)

)
dy, (3.8)

whereas, for 1 ≤ ρ < 2 we use

Iu(x) := −

∫

Rd

K(x− y)
(
u(y) − u(x) −∇u(x) · (y − x)

)
dy (3.9)

to obtain an integrable integrand. Because of (3.6) equations (3.7)–(3.9) define a continuous

operator I : H̃s(Ω) → H−s(Ω).

We now specify the class of integro-differential operators A by considering the following cases.

Case C1: s = ρ/2 ∈ [1/2, 1). Here A consists of an integral operator of order ρ and a differential

operator of order 1. Let c1 ∈ R
d, c0 ∈ R and

Au := Iu+ c1 · ∇u+ c0u (3.10)

This corresponds to (2.1) with a pure jump process where B is given by (2.3) and (2.4). Note

that for a bounded domain Ω the difference between the regularizations in (3.9) and (2.3) is just

a term c∇u.

Case C2: s = ρ/2 ∈ (0, 1/2). Here A is an integral operator of order ρ:

Au := Iu+ c0u (3.11)

For a pure jump process with kernel (2.4) the operator A in (2.1) contains a first order term

rux. One can, however, eliminate this term from the parabolic problem by using the change of

variable x̃ = x− rt, at the expense of having a time-dependent obstacle [45].

Case C3: s = 1 > ρ/2. Here A consists of an integral operator of order ρ and an elliptic

differential operator of order 2:

Au := −∇ · (µ∇u) + Iu+ c1 · ∇u+ c0u. (3.12)

We assume that the matrix µ ∈ R
d×d is positive definite (µ corresponds to the covariance matrix

of the Brownian motion). This corresponds to (2.1) where the process X(t) is a Lévy process

with nonzero diffusion part. In this case B is the sum of the operators in (2.2) and (2.3).

In all three cases C1, C2, C3 the operator A : H̃s(Ω) → H−s(Ω) is continuous and satisfies

the G̊arding inequality,

〈Av, v〉 ≥ κA |||v|||2 − c‖v‖2
L2(Ω) (3.13)

with κA > 0 and c ≥ 0, i.e., the operator A + cI is coercive (I is the identity operator). For

time-independent problems we will assume that A is coercive, i.e., (3.13) holds with c = 0. For

time-dependent problems one can use the change of variables ũ(x, t) := e−ctu(x, t) and express

the problem in terms of the coercive operator Ã = A + cI, again at the expense of having a

time-dependent obstacle. This is why we assume (3.1).
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4 Linear Integral Equation

We first consider the simplest case of a linear integral equation Au = f . Here A is the operator

defined in section 3.2 and satisfies (3.1).

We focus first on cases C1 and C2, with the case C3 being postponed until section 4.3. In

cases C1 and C2 the operator A is an integro-differential operator with differential part of order

≤ ρ. Therefore, A is dominated by the integral operator I of order ρ = 2s ∈ (0, 2), and the energy

space is H̃s(Ω). We derive residual-type a posteriori error estimators for the Hs-norm which are

computable. The theory is based on a partition of unity and a localization result for fractional

Sobolev spaces, which is also proved. We refer to Faermann [29–31] for a different approach.

We consider the integral equation: given f ∈ H−s(Ω), find u ∈ H̃s(Ω) such that

Au = f. (4.1)

Because of continuity and coercivity (3.1) of A, this problem has a unique solution satisfying

‖u‖ eHs(Ω) ≤ κ−1
A ‖f‖H−s(Ω) .

For the discretization we define a finite-dimensional subspace Vh as follows. Let {Th}h be

a family of shape-regular triangulations of the polyhedral domain Ω. We define for x ∈ Ω the

local meshsize h(x) by h|τ := hτ where hτ denotes the diameter of an element τ ∈ Th. Let Ph

be the set of all nodes of the mesh Th, including the boundary nodes. Let Vh be the space of

continuous piecewise linear functions vh over the mesh Th with vh = 0 on the boundary of Ω. Let

{ψz}z∈Ph
be the canonical nodal basis of Vh. For z ∈ Ph, we define the star ωz as the support

of the piecewise linear nodal basis functions ψz , the skeleton γz as the union of all interior sides

containing z, and hz := max{h(x) : x ∈ ωz}; for d = 1, γz reduces to {z}.
We define the discrete problem as follows: find uh ∈ Vh such that for all vh ∈ Vh

〈Auh, vh〉 = 〈f, vh〉 .

In view of (3.1) this problem has a unique solution. The residual is the distribution

rh := f −Auh ∈ H−s(Ω)

which, again by (3.1), satisfies

κA ‖u− uh‖Hs(Ω) ≤ ‖rh‖H−s(Ω) ≤ CA ‖u− uh‖Hs(Ω) .

Therefore the issue at stake is how to estimate ‖rh‖H−s(Ω) in terms of computable quantities.

We first want to investigate the regularity of rh. Since the Fourier transform of the kernel satis-

fies (3.6) we get from [58, Theorem XI.2.5] that the pseudodifferential operator

A : W̃ t
p(Ω) →W t−2s

p (Ω)

is continuous for all t ∈ R and p ∈ (1,∞). As uh is continuous piecewise linear we have that

uh ∈ W̃
1+ 1

p
−ε

p (Ω) for any ε > 0. Hence we obtain Auh ∈ W
1+ 1

p
−2s−ε

p (Ω) and

Auh ∈ Lp(Ω) for
1

p
> 2s− 1. (4.2)

Since s ∈ (0, 1) there exists p > 1 with Auh ∈ Lp(Ω).
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In cases C1 and C2 the residual rh is just a function R without any delta distributions at

the interelement boundaries. It is our goal to estimate ‖R‖H−s(Ω) in terms of local Lp-norms

of the residual. This involves two steps: (1) estimate the global norm ‖R‖H−s(Ω) in terms of

local H−s-norms; (2) estimate the local H−s-norms by local Lp-norms. As the norm of H−s(Ω)

is nonlocal one cannot estimate ‖R‖H−s(Ω) in terms of norms ‖R‖H−s(τ) on the elements. Our

technique is to use the partition of unity given by the nodal basis functions. This leads to local

H−s-norms on the stars ωz. Our approach leads to a different upper bound of ‖R‖H−s(Ω) as
compared with Faermann [29–31].

In case C3, however, the residual rh has delta distributions on the interelement boundaries.

We will thus split rh into an interior residual R on element interior plus jumps of the fluxes

µ∇uh on element boundaries.

4.1 Localization of Fractional Sobolev Norms

We first show that we can bound the global H−s(Ω)-norm by a sum of localized norms on ωz

for s ∈ [0, 1].

Lemma 1 (Localized Upper Bound of the Dual Norm) Let G =
∑

z∈Ph
gz and gz ∈ H−s

Γ (ωz). For

s ∈ [0, 1] there holds

‖G‖2
H−s(Ω) ≤ (d+ 1)

∑

z∈Ph

‖gz‖
2
Hs

Γ
(ωz)∗ . (4.3)

Proof We have for v ∈ H̃s(Ω),

|〈G, v〉| ≤
∑

z∈Ph

∣∣ 〈gz, v〉
∣∣ ≤

(
∑

z∈Ph

‖gz‖
2
Hs

Γ
(ωz)∗

)1/2(∑

z∈Ph

‖v‖2
Hs

Γ
(ωz)

)1/2

.

Note that, for s = 0 and s = 1, we have
∑

z∈Ph

‖v‖2
Hs

Γ
(ωz) ≤ (d+ 1) ‖v‖2

eHs(Ω) (4.4)

since at most d+ 1 of the stars ωz overlap on each simplex.

For any v ∈ H̃s(Ω), we define the operator L : H̃s(Ω) →
∏

z∈Ph
Hs

Γ (ωz), which restricts v to

local patches, i.e.

L(v) :=
(
vz

)
z∈Ph

with vz(x) :=

{
v(x) x ∈ ωz

0 otherwise.

For s = 0 or s = 1, (4.4) gives ‖L(v)‖2 ≤ (d+ 1)‖v‖2
eHs(Ω)

. By interpolation between L2(Ω) and

H1
0 (Ω), we obtain (4.4) for all s ∈ [0, 1], which in turn implies (4.3). ⊓⊔

The following lemma provides a computable estimate of negative norms in terms of Lp-norms.

Lemma 2 (Upper Bound of Local Dual Norm) Let gz ∈ Lp(ωz) satisfy
∫

ωz
gz = 0 for z ∈ Ph such

that ∂ωz ∩ Γ has measure 0. If s ∈ [0, 1] and 1 ≤ p <∞ satisfy 1
p <

s
d

+ 1
2 , then

‖gz‖Hs
Γ

(ωz)∗ . hs+d(1/2−1/p)
z ‖gz‖Lp(ωz) . (4.5)
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Proof If 1 < q = p
p−1 ≤ ∞ is the dual Lebesgue exponent of p, then we have Hs

Γ (ωz) →֒ Lq(ωz)

because s − d
2 > − d

q , whence by duality Lp(ωz) →֒ Hs
Γ (ωz)

∗. We split the proof in two steps

according to whether ∂ωz ∩ Γ has measure 0 or not.

1 ∂ωz ∩ Γ has measure 0. Since
∫

ωz
gz = 0, for any v ∈ Hs

Γ (ωz) and Cz ∈ R, we have

|〈gz, v〉| = |〈gz, v − Cz〉| ≤ ‖gz‖Lp(ωz) ‖v − Cz‖Lq(ωz) .

Let ω̂z := h−1
z (ωz − z) be the rescaled star, and v̂(x̂) := v(hzx̂+ z) be the corresponding rescaled

function. Hence ‖v − Cz‖Lq(ωz) = h
d/q
z ‖v̂ − Cz‖Lq(ω̂z) and

‖v̂ − Cz‖Lq(ω̂z) . ‖v̂ − Cz‖Hs

Γ̂
(ω̂z) .

We now choose the constant Cz as the mean value of v̂ on ω̂z and define the operator Lz :

Hs
Γ (ωz) → Hs

Γ (ω̂z) to be Lz(v) := v̂ − Cz. For s = 0 we have

‖Lz(v)‖L2(ω̂z) ≤ ‖v̂‖L2(ω̂z) = h−d/2
z ‖v‖L2(ωz) , (4.6)

whereas for s = 1 we use the second Poincaré’s inequality

‖Lz(v)‖H1(ω̂z) . |v̂|H1(ω̂z) = h1−d/2
z |v|H1(ωz) ≤ h1−d/2

z ‖v‖H1(ωz) . (4.7)

A space interpolation argument leads to (4.5) because

‖v̂ − Cz‖Hs

Γ̂
(ω̂z) . hs−d/2

z ‖v‖Hs
Γ (ωz) ∀ s ∈ [0, 1].

2 ∂ωz ∩Γ has positive measure. We take Cz = 0 and notice that both (4.6) and (4.7) still holds,

the latter because of the first Poincaré’s inequality. We thus proceed as in 1 . ⊓⊔

Remark 1 (Choice of p) To apply Lemma 2 and have a finite upper bound, we must choose p > 1

so that the following conditions are satisfied:

2s− 1 <
1

p
<
s

d
+

1

2
. (4.8)

The right inequality was required in Lemma 2 to have Lp ⊂ H−s on ωz, and the left inequality

gives Iuh ∈ Vh so that the right hand side of (4.5) is finite according to (4.2). For ρ < 3/2 we

can pick p = 2, but for ρ ≥ 3/2 we need to use p ∈ (1, 2). There exists a p > 1 satisfying (4.8) iff

(2 − 1/d)s < 3/2, i.e.,

(2 −
1

d
)ρ < 3.

For d = 1, 2 this condition is always satisfied as ρ < 2; see Figure 1 for d = 1. In the case d = 3,

however, the condition is only satisfied for ρ ∈ (0, 9/5). ⊓⊔
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1
p

s

1
2 1

1
2

1

Fig. 1 Admissible Region of p (d = 1): The gray region indicates admissible points (p, s) with s = ρ/2.
For ρ ∈ (0, 3/2) we can choose p = 2; for ρ ∈ (3/2, 2) we need to pick some 1 < p < 2 in the gray area.

4.2 A Posteriori Error Estimates

The following result is a consequence of Lemmas 1, and 2, as well as Remark 1.

Theorem 1 (Upper Bound for Linear Integral Operators) Let f ∈ Lp(Ω) and p > 1, 0 < s < 1

satisfy (4.8). We then have the following upper a posteriori error bound

|||u− uh|||
2

. E2 :=
∑

z∈Ph

ξ2z , (4.9)

where

ξz := h
s+ d

2
− d

p
z ‖(R−Rz)ψz‖Lp(ωz) , (4.10)

and

Rz :=

{
〈R,ψz〉 / 〈1, ψz〉 z ∈ Ph ∩Ω
0 z ∈ Ph ∩ Γ.

(4.11)

Proof Using Galerkin orthogonality, we easily obtain

〈R,ϕ〉 =
∑

z∈Ph

〈R,ϕψz〉 =
∑

z∈Ph

〈R, (ϕ− ϕz)ψz〉

where ϕz ∈ R is any constant. If we choose ϕz to be the weighted mean value

ϕz :=

{
〈ϕ, ψz〉 / 〈1, ψz〉 z ∈ Ph ∩Ω
0 z ∈ Ph ∩ Γ,

(4.12)

then recalling that of Rz is also a weighted mean value yields

〈R,ϕ〉 =
∑

z∈Ph

〈R−Rz, (ϕ− ϕz)ψz〉 .

If gz = (R − Rz)ψz for z ∈ Ph, we see that
∫

ωz
gz = 0 for z ∈ Ph ∩ Ω. We may thus apply

Lemmas 1 and 2 with p satisfying (4.8) to deduce

|||R|||2∗ .
∑

z∈Ph\Ch

h2s+d(1−2/p)
z

∥∥(R−Rz

)
ψz

∥∥2

Lp(ωz)
.

This is the asserted estimate. ⊓⊔



12 Ricardo H. Nochetto et al.

Remark 2 (Convergence Rate of E) Theorem 1 only establishes an upper bound and so the

question remains whether the effectivity index E/ |||u− uh||| is of moderate size. This is confirmed

in Table 1 in section 8.2 for s = 1
2 . ⊓⊔

Remark 3 (Computation of Residual) The function Auh is in general singular at the element

boundaries for 0 < s < 1 even though it does not contain Dirac masses. Therefore special care

must be exercised in dealing with numerical integration of ‖(R−Rz)ψz‖Lp(ωz). Pointwise values of

Auh(x), necessary at quadrature points, can be computed by appropriate quadrature algorithms

[50]. We refer to §8 for more details for d = 1. ⊓⊔

4.3 Second Order Integro-Differential Operator

The case C3 of second order integro-differential operators leads to additional jump residual terms.

The residual rh contains two parts: a regular part (interior residual) and a singular part (jump

residual) with respect to the Lebesgue measure. Let the interior residual associated with A be

R := f − Iuh − c1 · ∇uh − c0uh, (4.13)

and the jump residual on the side τ1 ∩ τ2 be

J := −µ(∇uh|τ1
· ν1 + ∇uh|τ2

· ν2), (4.14)

where νi is the unit outer normal vector to the element τi ∈ Th for i = 1, 2. In this case, s = 1,

0 < ρ < 1 and, instead of (4.8), the range of admissible p’s becomes

ρ− 1 <
1

p
<

1

d
+

1

2
. (4.15)

For ρ < 3/2 we may take p = 2, but we need p ∈ [1, 2) for ρ > 3/2. Such a p exists if ρ < 3/2+1/d.

This condition is verified for d = 1, 2, but it requires ρ < 11/6 for d = 3.

Theorem 2 (Upper Bound for Integro-differential Operator of Order 2) Let f ∈ Lp(Ω) and p > 1

satisfy (4.15). We then have the following upper a posteriori error bound for s = 1

|||u− uh|||
2

. E2 :=
∑

z∈Ph

(
η2

z + ξ2z
)
, (4.16)

where ξz is given in (4.10) with s = 1 and ηz is the jump residual

ηz := h1/2
z ‖J‖L2(γz) ∀z ∈ Ph. (4.17)

Proof Using the partition of unity {ψz}z∈Ph
, together with Galerkin orthogonality, we get

〈rh, ϕ〉 =
∑

z∈Ph

〈rh, (ϕ− ϕz)ψz〉 =
∑

z∈Ph

〈R, (ϕ− ϕz)ψz〉 +

∫

γz

J(ϕ− ϕz)ψz ϕ ∈ H1
0 (Ω),

where ϕz is given by (4.12) for all z. Note that we have integrated elementwise by parts the term

〈µ∇uh,∇[(ϕ− ϕz)ψz]〉. The rest of the proof proceeds as that of Theorem 1 for the first term

and the standard a posteriori error analysis for the second one. ⊓⊔

Remark 4 (Convergence rate of E) The definition (4.11) of Rz implies that (R−Rz)ψz has mean

value 0 and thus ξz appears to be an oscillation term. This is confirmed in Table 2 of section 8.2

for A = −∆ + I, which shows faster decay of
(∑

z∈Ph
ξ2z
) 1

2 than |||u− uh|||. This is in striking

contrast with cases C1 and C2; see Table 1. ⊓⊔
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5 Elliptic Variational Inequality

In this section we discuss elliptic variational inequalities of the form (3.3) and (3.5), with the

simplifying assumption that the obstacle χ is piecewise linear in Th. We derive an abstract a

posteriori error estimate for integro-differential operators of order smaller than or equal to 2. We

refer to [60,49,33,48,12] for similar analyses for differential operators.

5.1 Discrete Elliptic Variational Inequalities

Consider the discrete convex set Kh approximating K

Kh := {v ∈ Vh : v ≥ χ}. (5.1)

Since we assume that χ is piecewise linear over Th, we have Kh ⊂ K and the approximation

is thus conforming. Property Kh ⊂ K greatly simplifies the analysis; we refer to [45,49,60] for

general obstacles. We formulate the discrete variational inequality: find uh ∈ Kh such that

〈Auh − f, uh − v〉 ≤ 0 ∀ v ∈ Kh. (5.2)

5.2 Lagrange Multipliers and Galerkin Functional

We define rh := f −Auh formally to be the residual as in the case of linear equations. Note that,

however, for variational inequalities there is no longer an error-residual relation A(u− uh) = rh,

which is the starting point for residual error estimation. We must account for the constraint.

We first introduce the Lagrange multiplier

σ := f −Au ∈ H−s(Ω), (5.3)

which restores equality, is non-positive and vanishes in the non-contact region in the sense of

distributions. We next introduce a discrete Lagrange multiplier σh and notice the validity of

A(u − uh) = rh − σ, or equivalently,

A(u − uh) + σ − σh = rh − σh. (5.4)

We discuss practical choices σh so that σh ≤ 0 in Section 6. Equation (5.4) mimics the error-

residual relation for linear equations. The right-hand side of (5.4) is a nonlinear quantity though,

the so-called Galerkin functional,

Gh := rh − σh, (5.5)

and plays an important role in a posteriori error analysis of variational inequalities. We refer to

[60,33,48,45] where this terminology was introduced and used before.
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5.3 Abstract Error Analysis

For the moment, we only assume that σh ≤ 0 and focus on deriving upper and lower error

bounds. The structure of these bounds turns out to be independent of particular choices of σh.

Multiplying (5.4) by u−uh, and recalling (5.5), we obtain via the Cauchy-Schwarz inequality

|||u− uh|||
2 ≤

1

2
|||Gh|||

2
∗ +

1

2
|||u− uh|||

2 − 〈σ − σh, u− uh〉 .

On the other hand, (5.4) also implies

〈σ − σh, ϕ〉 = 〈A(uh − u), ϕ〉 + 〈Gh, ϕ〉 ∀ϕ ∈ H̃s(Ω). (5.6)

Therefore |||σ − σh|||
2
∗ . |||u− uh|||

2 + |||Gh|||
2
∗, whence we find the upper bound

|||u− uh|||
2

+ |||σ − σh|||
2
∗ . |||Gh|||

2
∗ − 〈σ − σh, u− uh〉 .

The conformity assumption Kh ⊂ K simplifies the analysis of 〈σ − σh, u− uh〉; we refer to

[45,49,60] for more general cases. In fact, taking v = uh ∈ K in (3.3) and using (5.3) yields

〈σ, u − uh〉 ≥ 0. Furthermore, since u ≥ χ and σh ≤ 0, it is easy to see that

〈σh, u− uh〉 = 〈σh, u− χ〉 − 〈σh, uh − χ〉 ≤ − 〈σh, uh − χ〉 ,

whence

|||u− uh|||
2

+ |||σ − σh|||
2
∗ . |||Gh|||

2
∗ − 〈σh, uh − χ〉 . (5.7)

Rearranging terms in (5.6), and using the strong sector condition (3.2), we infer that

〈Gh, ϕ〉 = 〈A(u − uh), ϕ〉 + 〈σ − σh, ϕ〉 . |||u− uh||| · |||ϕ||| + |||σ − σh|||∗ · |||ϕ||| ∀ ϕ ∈ H̃s(Ω).

This shows that |||Gh|||
2
∗ is also a lower bound for |||u− uh|||

2
+ |||σ − σh|||

2
∗ up to a multiplicative

constant. We summarize the preceding analysis in the following abstract lemma.

Lemma 3 (Abstract Error Bounds for Elliptic Variational Inequalities) Let u and uh be the solutions

of (3.3) and (5.2), respectively. If σh ≤ 0, then we have the upper and lower bounds

|||Gh|||
2
∗ . |||u− uh|||

2
+ |||σ − σh|||

2
∗ . |||Gh|||

2
∗ − 〈σh, uh − χ〉 . (5.8)

Remark 5 (Computable Upper Bound) The estimate (5.8) is of theoretical interest. In practice,

we still need to find a localized and computable representation of the global dual norm |||Gh|||
2
∗

and an upper bound for 〈σh, χ− uh〉 as small as possible. This leads to the definition of σh and

is our next task in section 6. ⊓⊔

6 A Localized Residual-type Error Estimator

In practice, it is important to find a “good” approximation σh, which mimics the properties of

σ at the discrete level. An ideal, but not practical, choice would be σh = σ. A simple-minded

alternative is to take σh = 0 for which Lemma 3 yields the bounds

|||rh|||
2
∗ . |||u− uh|||

2
+ |||σ|||2∗ . |||rh|||

2
∗ .

However these bounds have the drawback that the residual rh in the contact region contributes

to the bound even if uh is the exact solution. This contribution is accounted for in |||σ|||2∗ but

overestimates |||u− uh|||
2
. A good practical estimator should be localized in the sense that only

the value of the residual in the non-contact region contributes to the error bound. This is what

we construct in this section, thereby extending the work of Fierro and Veeser [33] to integro-

differential operators.
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6.1 Discrete Sets

We start by defining the discrete counterparts of the contact set C := {u = χ} and non-contact

set N := {u > χ}, which use the sets ωz and γz for z ∈ Ph.

We recall that the residual rh = f −Auh contains two parts: a regular part (interior residual

R) and a singular part (jump residual J) given by (4.13) and (4.14), respectively; the latter

vanishes if s < 1. We split Ph = Nh ∪ Ch ∪ Fh into three disjoint sets of non-contact nodes Nh,

full-contact nodes Ch, and free boundary nodes Fh defined as follows:

Nh := {z ∈ Ph |uh > χ in intωz}, (6.1a)

Ch := {z ∈ Ph |uh = χ and rh ≤ 0 in ωz}, (6.1b)

Fh := Ph \ (Nh ∪ Ch). (6.1c)

Remark 6 (Sign Condition) Since rh is not a discrete object, it is not possible to check the sign

condition rh ≤ 0 in the definition (6.1b). In practice, we check R ≤ 0 and J ≤ 0 at all quadrature

points in ωz and γz. ⊓⊔

6.2 Discrete Lagrange Multiplier

In trying to make σh as close to rh as possible, and thus minimize |||Gh|||∗, we first attempt to

define σh as a piecewise linear function σh =
∑

z∈Ph
szψz with nodal values sz given by weighted

means of rh on stars ωz:

sz :=

{
〈rh, ψz〉 / 〈1, ψz〉 z ∈ Ph ∩Ω
0 z ∈ Ph ∩ Γ.

(6.2)

Note that sz can be naturally divided into two parts sz = Rz + Jz, where

Rz :=

{
〈R,ψz〉 / 〈1, ψz〉 z ∈ Ph ∩Ω
0 z ∈ Ph ∩ Γ

and Jz :=

{
−〈µ∇uh,∇ψz〉 / 〈1, ψz〉 z ∈ Ph ∩Ω
0 z ∈ Ph ∩ Γ,

and that sz = 0 on Γ is motivated by σ = 0 on N ∩ Γ . This definition yields sz ≤ 0 and sz = 0

for z ∈ Nh, and it is thus quite appropriate for Nh but not necessarily for z ∈ Ch. In fact, to

achieve localization of the error estimator, σh must equal the residual rh in ωz for z ∈ Ch, thereby

leading to σh = rh ≤ 0 in ωz.

We can blend the two competing alternatives via the partition of unity {ψz}z∈Ph
and define

σh :=
∑

z∈Ch

rhψz +
∑

z∈Ph\Ch

szψz, (6.3)

but σh is not a purely discrete object here [33]. As a consequence of sz ≤ 0 and the sign conditions

in (6.1b), (6.3) guarantees that σh ≤ 0 in Ω. In addition, the Galerkin functional vanishes in the

discrete contact region in the sense of distributions (localization), i.e.

Gh =
∑

z∈Ph

rhψz − σh =
∑

z∈Ph\Ch

(rh − sz)ψz . (6.4)
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6.3 Upper Bound

In view of Lemma 3, to derive a practical upper bound of the energy error, we just need to find

localized upper bounds for |||Gh|||∗ and 〈σh, χ− uh〉. The latter is simple (see Lemma 4) whereas

the former is tricky. We first prove that this dual norm can be bounded from above by the sum

of local dual norms, and next give computable upper and lower bounds for them.

Error at the Free Boundary. The second term on the right-hand side of (5.8) accounts for

lack of monotonicity in the expression (6.3). Proceeding as in [33], [45, Lemma 3.2], and [49], it

is easy to see the following assertion.

Lemma 4 (Lack of Monotonicity) If dz := 〈uh − χ, ψz〉, then dz ≥ 0 and the following holds

〈σh, uh − χ〉 =
∑

z∈Fh

szdz .

Proof It suffices to use that uh = χ in ωz for any z ∈ Ch and sz = 0 for z ∈ Nh. ⊓⊔

From Global to Local. Now we are left with |||Gh|||∗ or equivalently ‖Gh‖H−s(Ω). We can now

use Lemma 1 to bound the global H−s(Ω)-norm by a sum of localized norms on ωz for s ∈ [0, 1],

and Lemma 2 to obtain a computable estimate in terms of Lp-norms.

Theorem 3 (Upper Bound for Elliptic Variational Inequalities) Let f ∈ Lp(Ω) and p > 1 satisfy

(4.8) with s < 1 or (4.15) with s = 1. Then the following localized a posteriori upper bound holds

|||u− uh|||
2

+ |||σ − σh|||
2
∗ .

∑

z∈Ph\Ch

(
η2

z + ξ2z
)
−
∑

z∈Fh

szdz, (6.5)

where sz is defined in (6.2), dz in Lemma 4, and

ηz := h
1
2
z ‖J‖L2(γz) and ξz := h

s+ d
2
− d

p
z ‖(R−Rz)ψz‖Lp(ωz) .

Proof The expression (6.4) can be written as Gh =
∑

z∈Ph
gz with gz = (rh−sz)ψz for z ∈ Ph\Ch

and gz = 0 otherwise. Therefore, Lemmas 1 and 2 apply for s < 1 and give |||Gh|||
2
∗ .

∑
z∈Ph\Ch

ξ2z .

The desired estimate (6.5) follows as in Theorems 1 and 2 (for s = 1) upon using Lemma 4. ⊓⊔

7 Parabolic Problems

In this section, we consider the parabolic integro-differential equation (1.2) and variational in-

equality (1.3). For the numerical treatment of the time derivative term, we use the backward

Euler approximation because the lack of time regularity of the solution u(t) of (1.3) does not

justify higher order schemes.

7.1 Fully-discrete Problems

We partition the time domain [0, T ] into N subintervals, i.e. 0 = t0 < t1 < · · · < tN = T and

let kn := tn − tn−1. For any sequence {Wn}N
n=1, we define the piecewise constant interpolant W

and the piecewise linear interpolant W to be

W (t) := Wn, W (t) := l(t)Wn−1 + (1 − l(t))Wn ∀ t ∈ (tn−1, tn], 1 ≤ n ≤ N, (7.1)
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where the linear function l(t) is defined by

l(t) :=
tn − t

kn
∀ t ∈ (tn−1, tn]. (7.2)

We also denote by {δWn}N
n=1 the discrete derivative of the sequence {Wn}N

n=1

δWn :=
Wn −Wn−1

kn
∀ 1 ≤ n ≤ N. (7.3)

For a function w continuous in time, we let wn(·) := w(tn, ·) be its semi-discrete approximation

and w be defined as in (7.1). We denote by Un
h for n = 0, 1, . . . , N the fully discrete solution at

time tn for the time-dependent problems.

The fully-discrete numerical method using the backward Euler scheme in time and the contin-

uous linear finite element method in space can be written as follows: starting from U0
h = Ihu0 ∈

Kh, the linear interpolant of u0, find {Un
h }

N
n=1 ⊂ Kh such that

1

kn

〈
Un

h − Un−1
h , Un

h − v
〉

+ a(Un
h , U

n
h − v) ≤ 〈Fn, Un

h − v〉 ∀ v ∈ Kh, (7.4)

where Fn = f(tn) and Kh := {v ∈ Vh : v ≥ χ}. To simplify the discussion, we restrict ourselves

to the case where the underlying mesh does not change in time and the obstacle χ is piecewise

linear and time-independent. The effect of mesh changes in time is under investigation.

7.2 Lagrange Multipliers and Galerkin Functional

We now define the continuous and discrete Lagrange multipliers and Galerkin functional for the

parabolic problem (1.3) in analogy to the elliptic case in §6. Let the Lagrange multiplier σ be

σ(t) := f(t) − ∂tu(t) −Au(t) ∈ H−s(Ω) a.e. t ∈ (0, T ), (7.5)

and note that σ(t) = 0 for (1.2). At each time tn, n = 1, . . . , N , we define the residual

rn
h := Fn − δUn

h −AUn
h

and split the set of all nodes Ph into three disjoint sets

Ph = Nn
h ∪ Cn

h ∪ Fn
h ,

where non-contact Nn
h , full-contact Cn

h , and free boundary Fn
h sets are given by (6.1), except

that now they may depend on n. We next define the discrete Lagrange multiplier σn
h as in (6.3)

and the discrete Galerkin functional as in (6.4).

7.3 Coercivity Property

Now we give a crucial lemma in the error estimation for time-dependent problems; see [47,45].

Lemma 5 (Coercivity) For any v, w, z ∈ K, the linear integro-differential operator A satisfies

〈Av −Aw,w − z〉 ≤ 2γ2 |||v − z|||2 −
1

4

(
|||v − w|||2 + |||z − w|||2

)
. (7.6)
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Proof In view of the strong sector condition (3.2) of A, we get

〈Av −Aw,w − z〉 = 〈Av −Aw,w − v〉 + 〈Av −Aw, v − z〉

≤ − |||v − w|||2 + 2γ |||v − w||| |||v − z|||

≤ −
1

2
|||v − w|||2 + 2γ2 |||v − z|||2 .

In the same way we get 〈Av − Aw,w − z〉 ≤ − 1
2 |||z − w|||2 + 2γ2 |||v − z|||2 . Adding the last two

inequalities gives (7.6). ⊓⊔

7.4 Abstract Upper Bound for Parabolic Problems

Now we are ready to discuss the main steps to treat parabolic problems. Let Gh ∈ L2(0, T ;H−s(Ω))

be the piecewise constant (in time) Galerkin functional obtained from {Gn
h}

N
n=1, i.e.

Gh = F − ∂tUh −AUh − σh.

This and the definition (7.5) of σ give

〈Gh, ϕ〉 = 〈A(u − Uh), ϕ〉 − 〈∂t(u− Uh) + (σ − σh), ϕ〉 −
〈
f − F , ϕ

〉
∀ ϕ ∈ H̃s(Ω). (7.7)

Taking ϕ = u− Uh in (7.7) and applying Lemma 5, we get

1

2

d

dt
‖u− Uh‖

2
L2(Ω) +

1

4

(∣∣∣∣∣∣u− Uh

∣∣∣∣∣∣2 + |||u− Uh|||
2
)

≤ 2γ2
∣∣∣∣∣∣Uh − Uh

∣∣∣∣∣∣2 − 〈σ − σh, u− Uh〉 + 〈Gh, u− Uh〉 +
〈
f − F , u− Uh

〉
. (7.8)

Since 〈σ, u − Uh〉 ≥ 0, σh ≤ 0, and u ≥ χ, we obtain that

−〈σ − σh, u− Uh〉 ≤ − 〈σh, Uh − χ〉 .

We then apply Young’s inequality with appropriate constants for the last two terms on the

right-hand side of (7.8) to get

1

2

d

dt
‖u− Uh‖

2
L2(Ω) +

1

4

∣∣∣∣∣∣u− Uh

∣∣∣∣∣∣2 +
1

8
|||u− Uh|||

2

≤ 2γ2
∣∣∣∣∣∣Uh − Uh

∣∣∣∣∣∣2 − 〈σh, Uh − χ〉 + 4
∣∣∣∣∣∣Gh

∣∣∣∣∣∣2
∗

+ 4
∣∣∣∣∣∣f − F

∣∣∣∣∣∣2
∗
. (7.9)

On the other hand, rearranging terms of (7.7) and applying the strong sector condition (3.2),

we have that

|||∂t(u− Uh) + (σ − σh)|||∗ ≤ 2γ
∣∣∣∣∣∣u− Uh

∣∣∣∣∣∣+
∣∣∣∣∣∣Gh

∣∣∣∣∣∣
∗

+
∣∣∣∣∣∣f − F

∣∣∣∣∣∣
∗
. (7.10)

Adding (7.9) and (7.10) and dropping all the constants, we get the upper bound:

d

dt
‖u− Uh‖

2
L2(Ω) +

∣∣∣∣∣∣u− Uh

∣∣∣∣∣∣2 + |||u− Uh|||
2 + |||∂t(u − Uh) + (σ − σh)|||2∗

.
∣∣∣∣∣∣Uh − Uh

∣∣∣∣∣∣2 − 〈σh, Uh − χ〉 +
∣∣∣∣∣∣Gh

∣∣∣∣∣∣2
∗

+
∣∣∣∣∣∣f − F

∣∣∣∣∣∣2
∗
.

Integrating in time, we then obtain the following upper bound of the error

e(Uh, σh)2 := ‖(u− Uh)(T )‖2
L2(Ω) +

∫ T

0

∣∣∣∣∣∣u− Uh

∣∣∣∣∣∣2 + |||u− Uh|||
2 + |||∂t(u− Uh) + (σ − σh)|||2∗ dt.
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Lemma 6 (Abstract Upper Bound for Parabolic Variational Inequalities) Let u and {Un
h }

N
n=1 be

solutions of the continuous and discrete variational inequalities, (1.3) and (7.4), respectively.

Then we have the following upper bound:

e(Uh, σh)2 . ‖u0 − U0
h‖

2
L2(Ω) +

∫ T

0

∣∣∣∣∣∣Uh − Uh

∣∣∣∣∣∣2 dt

+

∫ T

0

∣∣∣∣∣∣Gh

∣∣∣∣∣∣2
∗
dt−

∫ T

0

〈σh, Uh − χ〉 dt+

∫ T

0

∣∣∣∣∣∣f − F
∣∣∣∣∣∣2
∗
dt. (7.11)

Notice that on the right-hand side of (7.11), the first term measures the initial error; the

second term is computable and measures the error due to time discretization; and the last term

gives the data consistency error due to time discretization of f . The third and fourth terms have

been analyzed before for stationary problems and measure the space discretization error. At each

time-step, |||Gn
h |||∗ and 〈σn

h , Uh − χ〉 can be treated similarly as in §6.

7.5 Localized Error Estimators for Parabolic Variational Inequalities

Finally, we conclude this section by giving a computable local error estimate. Let Rn and Jn be

the interior and jump residuals at time tn, respectively, i.e.

Rn := Fn − δUn
h − IUn

h − c1 · ∇U
n
h − c0U

n
h and Jn := −µ(∇Un

h |τ1
· ν1 + ∇Un

h |τ2
· ν2),

the latter used for s = 1 only. We define the following interior and jump indicators as in §6:

ηn
z := h

1
2
z ‖Jn‖L2(γz) and ξn

z := h
s+ d

2
− d

p
z ‖(Rn −Rn

z )ψz‖Lp(ωz) ,

where Rn
z := 〈Rn, ψz〉 / 〈1, ψz〉 is the weighted average. We define the error estimator to be

E :=
(
E2
0 + E2

k + E2
h + E2

D

) 1
2 (7.12)

with

E2
0 = ‖u0 − U0

h‖
2
L2(Ω) initial error

E2
k =

N
X

n=1

kn

˛

˛

˛

˛

˛

˛Un

h − Un−1
h

˛

˛

˛

˛

˛

˛

2
dt time error

E2
h =

N
X

n=1

kn

n

X

z∈Ph\Cn
h

ˆ

(ηn

z )2 + (ξn

z )2
˜

−
X

z∈Fn
h

sn

z

˙

Un−1
h

− χ,ψz

¸

o

space error

E2
D =

Z

T

0

˛

˛

˛

˛

˛

˛f − F
˛

˛

˛

˛

˛

˛

2

∗
dt. data oscillation

We then obtain the following computable and localized upper a posteriori error bound.

Theorem 4 (Upper Bound for Parabolic Variational Inequalities) Let f ∈ L2(0, T ;Lp(Ω)) and
p > 1, 0 < ρ < 2, 0 < s ≤ 1 satisfy

ρ− 1 <
1

p
<
s

d
+

1

2
.

Then the localized upper bound for the error e(Uh, σh) . E is valid.

Proof In view of Lemma 6, it suffices to apply Lemmas 1 and 2 to |||Gn
h |||∗ and Lemma 4 to

〈σn
h , U

n
h − χ〉. ⊓⊔
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8 Numerical Experiments

In this section we illustrate the behavior of the proposed error estimators with numerical ex-
periments. Our original motivation was the pricing of American options on a single asset with

possible barriers. In this case the singularities which reduce the convergence rates are located at

• the barriers (endpoints of the interval)

• the free boundary

• t = 0 (maturity) where the payoff function (initial condition) is nonsmooth

and we show the performance of the estimator under these circumstances. These issues also occur

in the equality case and the time independent case where we can observe their effect more easily.

We have proved that the estimators give an upper bound to the actual error. With the

following numerical experiments we provide additional evidence that

• the space and time estimators converge with the correct rates in space and time

• the ratio of estimator to actual error (effectivity index) is of moderate size
• the node-based error estimators provide reliable information about the local errors

• in the time-independent case an adaptive algorithm driven by our estimators converges with

the optimal rate despite the presence of singularities at boundaries and the free boundary.

We consider d = 1, Ω = (−1, 1) and the integral operator I : H̃s(Ω) → H−s(Ω) given by

(3.7)–(3.9) with

K(x) :=
1

|x|1+ρ , x 6= 0. (8.1)

with the order ρ ∈ (0, 3
2 ). In this case we can use p = 2 in (4.10) and let

E2
η :=

∑

z∈Ph\Ch

η2
z and E2

ξ :=
∑

z∈Ph\Ch

ξ2z .

We decompose Ω into M subintervals and therefore have DOF := M − 1 degrees of freedom.

8.1 Implementation Details

Before discussing the numerical experiments, we first give a few comments on the implementation

of the finite element method and of the error estimators. We use mesh points −1 = x0 < x1 <

· · · < xM = 1. We first consider a uniform mesh with hi := xi − xi−1 = 2/M . In §8.3 we define

a graded mesh which has smaller subintervals near the endpoints.

The elements of the stiffness matrix can be expressed analytically in terms of a fourth an-

tiderivative of the kernel function K(x). In this way we can evaluate the stiffness matrix without

quadrature error.

The error estimator ξz in (4.10) is an integral over two adjacent intervals involving the residual

R. Since a functions uh ∈ Vh has discontinuous derivatives at the mesh points, the term Iuh

will have singularities at the mesh points. If ρ is noninteger these singularities are of the type

|x− xj |
1−ρ

, whereas in the integer case there are logarithmic terms. We used the following

quadrature method which gives exponential convergence in the presence of these singularities.

Let −1 = x0 < x1 < · · · < xM = 1 be the mesh points of Ω. Since the residual r is singular at

the ends of each interval, we subdivide [xi−1, xi] of length hi in the following way: Let P > 0 be

an integer and θ = 0.1. We introduce additional points at distance θjhi from the left and right
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endpoints, for j = 1, . . . , P . This divides the interval into 1 + 2P subintervals. On each of these

intervals a Q-point Gauss-Legendre rule is applied for numerical integration. Also the condition

r ≤ 0 in the definition of discrete contact set Ch is checked pointwise at each of the (1 + 2P )Q

quadrature points. It is shown in [53] that the quadrature error decrease exponentially fast with

respect to PQ.

In all our numerical computations we used three subintervals (P = 1) with two Gauss quadra-

ture points in each (Q = 2). We performed numerical experiments which indicated that increasing

P and Q does not change the character of the asymptotic results.

The linear complementarity problem (5.2) can be solved by the projected SOR method [26],

multilevel methods [38,57], domain decomposition methods [6], and interior point methods [8];

see [35] and references therein. We used the projected SOR method in our simulations.

8.2 Elliptic Equations

In this example, we consider problem (4.1) with ρ = 1. To test the asymptotic behavior of the

error estimators, we construct a problem where the exact solution is available. We define the
effectivity index to be the ratio E/ |||u− uh|||.

Pure Integral Operator Case. We consider case C1 with c0 = c1 = 0, then s = 1
2 and the

energy space is H̃
1
2 (Ω). We choose f(x) = 15

8 − 15
2 x

2 + 5x4, then the exact solution for this

problem is u = 1
π (1−x2)5/2. The exact solution u is sufficiently smooth at the boundary x = ±1

so that the approximation rate in the energy norm is DOF−1.5. The numerical experiment (see

Table 1) shows that both the energy error and the error estimator Eξ (η = 0) converge with this

optimal rate 1.5. Furthermore, the effectivity index is almost a constant (around 5.0).

Although we only prove reliability of the proposed error estimator E , we notice that the node-

based error indicator ξz mimics the pointwise error (see Figure 2). This observation justifies the

use of {ξz}z∈Ph\Ch
to drive adaptive algorithms.

DOF |||u − uh||| E Effectivity

15 1.3021e-002 6.2052e-002 4.7655

31 4.4597e-003 2.2014e-002 4.9362

63 1.5618e-003 7.7849e-003 4.9846

127 5.5069e-004 2.7527e-003 4.9986

255 1.9455e-004 9.7327e-004 5.0027

EOC 1.501 1.500 –

Table 1 Elliptic equation in §8.2 with pure integral operator A = I of order 2s = ρ = 1 (uniform mesh, expected

convergence rate 1.5). EOC is the experimental convergence rate based on last two iterations, which agrees with the

expected value 1.5. The effectivity index (ratio between the error estimator and the error) is almost constant.

Integro-Differential Operator Case. Now we consider case C3 and take A = −∆ + I with

ρ = s = 1, then the energy space is H̃1(Ω). We choose an appropriate right-hand side function

f such that the exact solution is exactly the same as in the previous example. The energy norm

error as well as the error estimators are reported in Table 2. We see that the jump residual term

η converges at the optimal convergence rate (DOF−1.0) just as the energy error itself. On the

other hand, Eξ is of higher order as we expected (see Remark 4). As in the last example, Figure

3 shows the nodal-based error indicator captures the local behavior of the pointwise error.
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Fig. 2 Elliptic equation in §8.2 with pure integral operator A = I of order 2s = ρ = 1 (uniform mesh). Upper left:

numerical solution; middle left: pointwise error |uh − u|; lower left: nodal-based error estimator; right: convergence rates

for energy error and estimator E. Both the energy error and the error estimator converge at the optimal rate O(DOF−1.5).

Furthermore, the local error indicator captures the local behavior of the error.

DOF |||u − uh||| Eη Eξ E Effectivity of E

15 5.9891e-002 1.9670e-001 9.6446e-003 1.9694e-001 3.2883

31 2.9484e-002 1.0010e-001 2.4849e-003 1.0013e-001 3.3962

63 1.4647e-002 5.0323e-002 6.2787e-004 5.0327e-002 3.4361

127 7.3015e-003 2.5203e-002 1.5751e-004 2.5204e-002 3.4519

255 3.6455e-003 1.2608e-002 3.9419e-005 1.2608e-002 3.4585

EOC 1.002 0.999 1.998 0.999 –

Table 2 Elliptic equation in §8.2 with integro-differential operator A = −∆ + I, s = ρ = 1 (uniform mesh, expected

convergence rate 1.0). The experimental convergence rate EOC, based on last two iterations, agrees with the expected

value 1.0.
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Fig. 3 Elliptic equation in §8.2 with integro-differential operator A = −∆ + I, s = ρ = 1 (uniform mesh). Upper

left: numerical solution; middle left: pointwise error; lower left: nodal-based error estimator; right: convergence rates for

energy error and estimator E (optimal convergence rate is O(DOF−1)).

8.3 Elliptic Variational Inequalities

In order to exhibit the influence of the singular behavior of the solution at the free boundary

points we now consider A as in case C1 with ρ = 0.2 and c0 = c1 = 0, then the energy space is

H̃s(Ω) = H1
0 (Ω) with s = 0.1. We consider the problem (3.3) with f = 0 and the obstacle

χ(x) = max(0.5 − |x|, 0).
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For a smooth function u, we would have an approximation rate infvh∈Vh
|||u− vh||| = O(DOF−1.9)

using uniform mesh refinement.

In our case the solution has singular behavior at the boundary points x = ±1, and at the

free boundary points. The solution of the integral equation Iu = f behaves near the boundary

point 1 like |x − 1|s [10, Theorem 7.5]. We compensate the singular behavior at the boundary

points by using mesh grading towards x = 1. We briefly review the arguments from [62].

In order to analyze the convergence rate we consider the singular term u(x) = xs and use a

graded mesh with mesh points xj = ( j
M )β for j = 0, 1, . . . ,M . Let hj be the length of subinterval

Ωj := [xj−1, xj ] and Ω := ∪M
j=1Ωj . Then we have

hj = xj − xj−1 ≤ Cβ

(
j − 1

M

)β−1
1

M
≤ Cβx

β−1

β
1

M
.

Let uI denote the piecewise linear Lagrange interpolation of u. Note that u − uI is zero at all

mesh points xj . Hence the restriction of u − uI to Ωj is contained in H̃s(Ωj). Any function

v ∈ H̃s(Ω) whose restriction vj to each Ωj is in H̃s(Ωj) (vj(x) = v(x) if x ∈ Ωj and vj(x) = 0

elsewhere) satisfies that ‖v‖2
eHs(Ω)

≤
∑M

j=1 ‖v‖
2
eHs(Ωj)

. This is obvious for s = 0, 1 and follows for

s ∈ (0, 1) by interpolation argument. For j = 2, . . . ,M , we have

‖u− uI‖
2
eHs(Ωj)

. h4−2s
j |u|2H2(Ωj)

. M−(4−2s)

∫ xj

xj−1

x−(4−2s)/βdx,

whereas for j = 1 we get

‖u− uI‖
2
eHs(Ω1)

≤

∫ x1

0

1dy ≤M−β .

Hence we obtain for the sum of the squares of the interpolation errors:

M∑

j=2

‖u− uI‖
2
eHs(Ωj)

. M−(4−2s)

∫ 1

x1

x−(4−2s)/βdx.

We can see that if β > 4 − 2s then the approximation error in H̃s(Ω)-norm converges with

the optimal rate M−(2−s) despite the singularity at 0. So we use the graded mesh 1 − ( j
M )4 for

j = 0, 1, . . . ,M toward the end point 1 in this test example. Because of symmetry, the same
grading is employed close to −1. Note that if the grading parameter β = 4 or a stronger one

is used, the smallest meshsize is M−β and it decreases very quickly as the degrees of freedom

DOF = M − 1 increases. Round-off errors will play an important role even for not so big DOF.

According to [55] the solution has regularity C1,s near the free boundary. If the singularity

has the form |x− xF |
γ near a free boundary point xF , then this result would correspond to

γ = 1 + s, u(x) ∈ H1.5+s−ε(Ω), and an approximation rate O(DOF−1.5+ε) in the H̃s(Ω) energy

norm. Figure 4 shows that we indeed obtain the suboptimal rate of O(DOF−1.5) for the error

estimator.

In order to obtain the optimal rate O(DOF−1.9) we need mesh refinement close to the free

boundary whose position we do not know in advance. Therefore we use an adaptive algorithm

with the standard estimate—mark—refine strategy (see, e.g., [52]) driven by our local error

indicator ξz . Figure 5 shows that the estimator, and therefore the solution, converges with the

optimal rate O(DOF−1.9). Note that this requires that the algorithm generates appropriate mesh

refinement both at the endpoints and at the free boundary points.
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Fig. 4 Elliptic variational inequality in §8.3 for pure integral operator A = I of order 2s = ρ = 0.2 (using algebraically

graded mesh towards end points). Upper left: numerical solution (black solid) and obstacle (red dashed) on the graded

mesh with 255 grid points; lower left: nodal-based error estimator in logarithmic scale log(ξz); right: the convergence

rate of error estimator is suboptimal (−1.5 instead of −1.9) due to the singularity at the free boundary. The proposed

local error indicator captures the local behavior of the error and the convergence rate of the error estimator behaves as

expected.
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Fig. 5 Elliptic variational inequality in §8.3 for pure integral operator A = I of order 2s = ρ = 0.2 (adaptive

refinement). Upper left: numerical solution (black solid), obstacle (red dashed), and associated mesh points; lower left:

nodal-based error estimator in logarithmic scale log(ξz); right: convergence rate (compare with Figure 4). The adaptive

algorithm achieves the optimal convergence rate −1.9.

8.4 Parabolic Variational Inequalities

In this example, we examine the parabolic variational inequality (3.4) with A as in case C1

with ρ = 2s = 1 and c0 = c1 = 0. To mimic an American-style butterfly option we use f = 0,

χ(x) = max(1
2 − |x|, 0), and u0 = χ. We compute the solution in the time interval [0, T ] with

T = 1. The solution as well as space error estimator at the two times t = 0.0625 and t = 0.5 are

shown in Figure 6. We use for the space discretization a mesh of M subintervals with grading

toward x = ±1 to compensate for the singularities at the boundary points. For example, the

graded mesh points toward 1 are 1 − ( j
M )β for j = 0, 1, . . . ,M with β = 3. The choice of β is

explained in the previous subsection §8.3. For the time discretization we use a uniform mesh

of N subintervals of size k = 1/N . We want to investigate the influence of M and N on the
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Fig. 6 Parabolic variational inequality in §8.4 for pure integral operator of order 2s = ρ = 1 (using algebraically graded

mesh in space and uniform in time). Numerical solution and the corresponding space error indicator which captures the

correct local space behavior of the solution (N = 128 and DOF = 127).

L2(0, T ; H̃s(Ω)) error, and how it is reflected by the space error estimator Eh and the time error

estimator Ek in (7.12).

In order to understand the effect of the space and time discretization, we consider the

parabolic equation ut + Au = 0. It is known, even for non-symmetric operator A, that for

s2 > s1 [34,59],

u0 ∈ H̃s1(Ω) =⇒ ‖u(t)‖ eHs2(Ω) . t−(s2−s1)/2‖u0‖ eHs1(Ω). (8.2)

We examine first a (space) semidiscrete problem which is continuous in time. We ignore the

effect of the singularities at the interval boundaries (they are compensated by the mesh grading).

The energy error |||u(·, t) − uh(·, t)||| at time t has to be at least as large as the approximation

error infvh∈Vh
|||u(·, t) − vh||| . h2−s‖u(·, t)‖H2(Ω) according to (8.2). Because of u0 ∈ H

3
2
−ε(Ω)

we expect |||u(·, t) − uh(·, t)||| . h2−st−
1
4
−ε and an L2(0, T ; H̃s(Ω)) error of optimal order h

3
2 ,

despite the presence of a singularity at t = 0.

We consider finally a (time) semidiscrete problem which is continuous in space. Since u0 ∈
H̃

3
2
−ε(Ω), the initial condition u0 is in the domain of A, namely H̃1(Ω). Therefore, [47] yields

an optimal rate O(k) for the L2(0, T ; H̃
1
2 (Ω))-error.

For the numerical computation we used the same number of time and space degrees of free-

dom, i.e. N = DOF. The left picture of Figure 7 confirms that the time estimator Ek converges

with the optimal rate O(N−1). The right graph of Figure 7 shows that the space estimator Eh

also converges with the optimal rate O(DOF−1.5), as expected.
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Fig. 7 Parabolic variational inequality in §8.4 for pure integral operator of order 2s = ρ = 1 (using algebraically

graded mesh in space and uniform in time). Asymptotic convergence rates of the error estimators, Ek in time (left) and

Eh in space (right). Both temporal and spatial convergence rates are optimal. The error estimators behave exactly as the

error asymptotically which confirms our theoretical results.
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8. R. E. Bank, P. E. Gill, and R. F. Marcia. Interior methods for a class of elliptic variational inequal-
ities. In Large-scale PDE-constrained optimization (Santa Fe, NM, 2001), volume 30 of Lect. Notes
Comput. Sci. Eng., pages 218–235. Springer, Berlin, 2003.
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