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Abstract 

We study the detailed structure (in a large sample) of the self-consistent estimators of the 
survival functions with doubly censored data. We also introduce the kernel-type density 
estimators based on the self-consistent estimators, and using our results on the structure of the 
self-consistent estimators, we establish the strong uniform consistency and the asymptotic 
normality of the kernel density estimators for doubly censored data. From these, the strong 
uniform consistency and the asymptotic normality of the failure rate estimators for doubly 
censored data are derived. © 1997 Elsevier Science B.V. 
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1. Introduction 

Incomplete lifetime data are often encountered in medical follow-up studies and in 
biometry and reliability studies. In these studies, the estimation of the density function 
of the underlying lifetime is an important  problem in its own right and also in the 
estimation of the failure rate function or hazard function of the underlying lifetime. In 
the right censored case, the kernel-type density estimators have been studied based on 
the product limit estimator of Kaplan and Meier (1958) (KM estimator) by Blum and 
Susarla (1980), F61des et al. (1981), Mielniczuk (1986) and Matron  and Padgett (1987), 
among others. Recently, some more complicated types of censoring, such as doubly 
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censored data, interval censored data, truncated data, etc., have started to catch 
the attention of statisticians, as these data occur in important clinical trials. 
For instance, doubly censored data were encountered in a recent study of age- 
dependent growth rate of primary breast cancer (Peer et al., 1993). Other examples of 
doubly censored data encountered in practical situations were given by Gehan 
(1965) and Turnbull (1974), among others. In this paper, we consider the kernel-type 
density estimators when the data are censored from right or left, called doubly 
censored data. 

For doubly censored data, Turnbull (1974) constructed a self-consistent estimator 
S(x ") of the survival function Sx(t) = P{X > t}, where X denotes the lifetime. Chang 
and Yang (1987), Chang (1990) and Gu and Zhang (1993) have established the strong 
consistency and the weak convergence of S(x "). For more discussion on S(x "), see Tsai 
and Crowley (1985) and Gill (1989). The kernel-type density estimators considered in 
this paper are based on S~x "). 

In the right censored case, the asymptotic properties of the kernel density es- 
timators are studied through the structure of the KM estimator (viz., Mielniczuk, 
1986). The KM estimator can be expressed explicitly as a step function with the jump 
sizes given clearly, and does not have jumps at those right censored observations 
(Efron, 1967). However, in the doubly censored case, the self-consistent estimator is 
given implicitly through an integral equation (see (2.5) in Section 2), and the structure 
of the self-consistent estimator S~x ") is quite complex. We easily have examples to show 
that the jumps of S(x ") may occur at non-censored, or right censored, or left censored 
observations (see the examples in Gu and Zhang, 1993). This makes it difficult to study 
the asymptotic properties of the kernel density estimators for doubly censored data. 
Moreover, in other studies of the statistical inference problems based on S(x ") such as 
extended L-, M- and R-estimators for doubly censored data (Ren and Zhou, 1993, 
1994), there is also a need to investigate the structure of S(x "). 

The main results of this paper consist of two parts: (1) the structure of the 
self-consistent estimator S(x ") in a large sample case; (2) the strong uniform consistency 
and the asymptotic normality of the kernel density estimators for doubly censored 
data. As a corollary of the second part of the results, the strong uniform consistency 
and the asymptotic normality of the estimators of the failure rate function for doubly 
censored data are also obtained. The results are presented in Section 2 with the proofs 
deferred to Sections 3 and 4. 

2. Main results 

Let X be a nonnegative random variable (r.v.) denoting the lifetime under investiga- 
tion, and let Xi, i = 1, 2 . . . .  , n, be n independent observations on X with d.f.F. In this 
research, one observes not {Xi} but a doubly censored sample: 

Wi = max{min{Xi, Yi}, Zi} 
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with the index 

i if Zi<~Xi<~Yi, 
6 i =  if X i >  Yi, 

if Xi < Z~, 

where (Y~, Z~), i = 1, 2, . . . ,  n, are independent  from X~ and are independent  obserw~- 
tions on (Y,Z) for nonnegat ive  r andom variables Y and Z with P{Y  ~> Z} = 1. The 
r.v.s Yi and Zi are called right and left censorin9 variables, respectively. This means 
that  Xi is observable whenever X~ lies in the interval [ Zi, Yi], and otherwise we know 
whether  X~ < Zi or X~ > II,- and observe the value of Z~ or Y~ accordingly. Tile 
problems considered here are the structure of the estimators of Sx, Sy, Sz in a large 
sample and the estimation of the density functions of X, Y, Z based on (W,  6~), where 
St(t) = P{Y > t} and Sz(t) = P{Z > t}. 

We present the estimators of Sx, Sr and Sz as follows. Let (Ws, 6~) be distributed as 
(W,6), and let 

Q j ( t ) = P { W > t , & = j } ,  j =  1,2,3, (2.1) 

Q~")(t)=-I ~ I { W i > t , 6 , = j } ,  j =  1,2,3, (2.2) 
n i = l  

then the est imators S~x "), S~ "), S(z ") ofSx, Sv, Sz (Chang and Yang, 1987) are given by the 
solutions of the following equations: 

Q'l"'(t) = - (S~"' - S~z"))dS~("), 

Qi . ) ( t )  = _ q( . )  A q( . )  ox ,~oy , (2.3) 

Q~3")(t) (1 ~") (") = - - Sx )dSz  . 

Imposing the condit ions on S(r "~ and S(z "), 

S~"'(0) = 1 and S~z")(oo) = 0, 

from the system (2.3), Chang and Yang (1987) obtain 

s~"~It) = Q~"~(t) - f .  S t.) tt ~ f, x ~ d~q(,~u ~ 1 - S~x")(t) 
<,SCx.)(u) ~2 t , +  <.1 S(x")(u) dQ~")(u) '  

where t /> 0 with 

f,.<, = 0  ifS~x")(t)=0 anal,<. = 0  ifS(x")(t)= 1, 

(2.4) 

(2.5) 
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and obtain 

f .  dQ~")(u) S~)(t) = 1 + <~, S~x.)(u) , t < B., 

ft dQ~'(u) S~" ) ( t )= -  < . l - S ~ " ) ( u )  ' t ~ A . ,  

Q(")(t) = s~z")(t) + s~x")(t) [str")(t) - s~z")(t)], t/> O, 

(2.6) 

(2.7) 

(2.8) 

where 

A, = min{Wi; S(x")(Wi) < 1}, (2.9) 

B, : max{Wi; S(x')(Wi-) > 0}, (2.10) 

3 

Q(')(t) = • Q~)(t), t >~ O. (2.11) 
j = l  

One may note that a self-consistent estimator of Sx is given by a solution of (2.5) and 
that the self-consistent estimating equation (2.5) is originally given by Tsai and 
Crowley (1985). Moreover, one may note that for any self-consistent estimator S~ ) of 
Sx, the range in which we can obtain information for estimating Sx is [A,, B,], thus 
the restriction on t by A, and B, in (2.6) and (2.7) is natural. 

From Gu and Zhang (1993), we know that the solution of (2.5) is not unique and 
that the self-consistent estimators are asymptotically equivalent. Hence, for our 
investigation in this paper, we consider a particular type of self-consistent estimators 
as follows. Let 

W(1)=min{Wi;  1 ~<i~<n} and W ( , ) = m a x { W i ; 1  ~<i~<n}. 

We note that for any solution S~ ) of (2.5), suppose we define S(x")(t) = 1, if t < W(s); 
S(~)(t), if W(1) ~< t < W(,); 0, if t  ~> W(,), then S(x ") is still a solution of (2.5). For the rest 
of the paper, we will always consider those solutions S~ ) of (2.5) which satisfy 

{10 i f t < W ( 1 ) '  (2.12) 
S(~)(t) = if t/> W(,). 

Since an arbitrary solution S~ ) of(2.5) is not necessarily a proper survival function, the 
condition (2.12) is to restrict our attention to those proper estimators. This is an 
already adopted convention for right censored data (Efron, 1967; Miller, 1976). 

One may note that for a step function S~ ) satisfying (2.5) and (2.12), A, and B, given 
by (2.9) and (2.10) are the smallest and the largest jump points of S~ ), respectively, 
with W(1) ~< A, < B, ~< W(,), and that (2.5) and (2.8) are actually the same equations 
for S(r ") and S(z ") satisfying (2.6) and (2.7), respectively. 

Throughout, we assme that there are no ties among WI . . . . .  W,  and impose the 
following conditions on Sx, St ,  Sz. 
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Assumption A. 
(A1) The random variable X~ and the vector (Y~, Z~) are independent  for each i and 

the vectors (Xz, Y~, Z~), i = 1, . . . ,  n, are independent ly  and identically distributed; 
(A2) P { Z  ~< Y} = 1; 
(A3) Sv(t) - Sz(t) > 0 on [0, oQ); 
(A4) Sx, Sy and Sz are cont inuous  functions of t for t ~> 0, and 0 < Sx(t) < 1 for 

t > 0 ;  
(A5) Sx(O) = Sv(O) = 1, Sx(oC) = Sy(',~) = Sz(oC) = O. 

Remark  1. Because of (A3), our  condit ions here are slightly stronger than those 
required by Chang and Yang (1987) for the strong consistency of S~ ), S~ "), S~z "~. Our  
(A3) implies P { Z  = 0} > 0 and Sz(0) < 1, which ensures that  for any 0 < T < ~,~, 
[Sy(t) - Sz(t)] has a positive lower bound  for t e [0, T] .  In Section 4, we will see that it 
is natural ly required for the strong uniform consistency of the kernel density es- 
t imators  with doubly censored data  that  [Sv(t) - Sz(t)] has a positive lower bound on 
[0, T ] .  One may see the comments  by Chang (1990) about  the condit ion Sz(0) < 1. 

F rom  (2.6) and (2.7), we easily have 

1 " I{bi=2,  Wi<~t} 
s~")(t) = 1 - n ~-1 s ~ . ) ( w , )  , t < B° (2.13) 

(~) 1 ~ I{3i=3,  Wi>t }  
SZ (t):--f/i= 1A...a ] -- ~ , t ~> A,. (2.1.4) 

In the appendix, we show that  for a solution S~ ~ of (2.5) satisfying (2.12), we have 

6 ~ = 2  i f W i < A n  and 3 ~ = 3  i f W ~ > B , .  (2.15) 

No te  that if we consider the following extensions of (2.13) and (2.14) beyond tile 
interval [A,,  B,): 

i 1 ~ I { ( ~  i ---- 2, Wi ~ t} 
1 - n i~ l  - ~ f f ~ / / )  if t < B., 

S~v")(t) = (2.16) 

IS(v")(B, - )  if t >~ B,, 

(1 ~, I { 6 i = 3 ,  W i > t }  
| n  ~_z-" x - 1- -- ~ ) ~  if t ~> A,, 

S~z")(t) = ~ (2.17) 

IS(z")(A,) if t < A,, 

then S~ ") and S~z ") satisfy (2.5)-(2.8), and from (2.15), they satisfy 

Q~z")(t) = -  Sx(") dSv(") + I{6B. = 2, B. > t}/n, 

Q ~ % )  = - (1 - S i " ) ) d S l  "'  + I{6A°  = 3, A .  > t } / . ,  
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where fa. and 38. are the indexes of A, and B,, respectively. Hence, from integration by 
parts and (2.8), we have that for a solution St; ) of (2.5) satisfying (2.12), our S~r ") and 
S{z ") given by (2.16) and (2.17) satisfy the following equations: 

o0 

Q]")(t) = - (S~r ") - S~z")) dS{x") - (I{fA. = 3,A, > t} +/{fiB. = 2,B, > t})/n 

+ Est;'(u-)- f[  
(2.18) 

Theorem 1. L e t  St;  ) be a solution of(2.5) sat is fying (2.12) and assume that there are no 
ties among  Wi 's .  Then,  

(i) the j u m p  size o f  St; ~ at A ,  is given by  

1 
AX. = (2.22) 

n [ S { y ' ) ( A , ) -  S{z")(A,)] ' 

and we have 

A, = min{Wi;fi  = 1 or 3}; (2.23) 

(ii) assuming [S{r")(B, - )  -- SCz")(B, --)] > 0, the j u m p  size o f  St; ) at B ,  is given by  

1 
AB x = (2.24) 

n[S~r")(B.) -- S~z")(B,)] ' 

oo 

Q{2")(t) = -  Sx{") dSr~")+ I{fB = 2, B, > t}/n, 

;7 Q ~ " ~ ( t )  = - ( 1  - Si°~)dSi ~) + I{aa. = 3, A .  > t}/n, 

where t e [0 ,  oo). Under Assumption A, we have that from Gu and Zhang (1993), 
Chang and Yang (1987), our S~ ~) and S~z ~) given by (2.16) and (2.17) for a solution St; ) of 
(2.5) obeying (2.12) satisfy 

lim S t ; ) ( t )=  Sx(t) ,  (2.19) 
n--* ct) 

lim S(y~)(t) = St( t ) ,  (2.20) 

lim SCz~)(t) = Sz(t),  (2.21) 
n--+ oo 

uniformly for t ~ [0, oo) with probability 1. For the rest of this paper, we will always 
consider Str") and S~z ") given by (2.16) and (2.17). 

In the following theorem, we give the detailed structure of St; ) in a large sample 
under Assumption A. 
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and we have 

33 

B, = max{Wi;6i = 1 or 2}; (2.25) 

(iii) under Assumption A, we have that for any A,  < T < ~ and sufficiently large n, 

I{A~__<,_t} 1 I { 6 , = l ,  Wi<~t} 

S~'(t) = 1 - (n[S~,)(A,)  _ SCz,,(A,)] +-n A° < Zw, < c. [S~]-I4~)--- ~;~-W;)] 

I {B ,  > T, 6c = 1,C, ~< t}] I {B .  <<,min(t,T)} ~ - ~ , ~ , ) " - - - S - ~ z , ~ j ]  ~, te [0 ,  T](2.26) 
+ n [S~")(B.) - S{z")(B,)] 

with probability 1, where C , = m a x { W i ;  Wi ~<min(B,,T)} and 6c,, is the index 
oJC, .  

Theorem 1 is proved in Section 3. In the proof, it plays an important role that fl~r 
sufficiently large n, [S~"~(t)- S~z")(t)] has a positive lower bound for te  [0, T]  with 
probability 1. This fact, ensured by (2.20) and (2.21) along with assumptions (A3) and 
(A4), leads to our Theorem l(iii). One may note that in (2.8), S~)(t) cannot be expressed 
in terms of S~")(t), S{z"~(t) and Q~")(t), if [S~")(t) - S~z")(t)] = 0 on a certain interval. In 
fact, this is precisely the reason that S~ ) may have jumps at censored observations. 
Detailed discussion on this can be found in Mykland and Ren (1996) and is omitted in 
current paper for brevity. As mentioned earlier, the KM estimator (the self-consistent 
estimator for right censored data) only has jumps at non-censored observations fl3r 
any n (Efron, 1967). But for doubly censored data, this is no longer the case (see Gu 
and Zhang, 1993, for examples). Our Theorem l(iii) shows that on any compact set 
[0, T],  except the first jump point, the self-consistent estimator S~ ) for doubly 
censored data only has jumps at non-censored observations for sufficiently large 
n with probability 1. In comparison, the structure of S~ ) for doubly censored data is 
far more complicated. Nonetheless, our (2.26) generally provides a sufficiently useful 
tool for the study of the asymptotic properties of the statistics based on S~ ). In fact, 
(2.26) plays a key role in the proof of our next theorem and in the study of the 
asymptotic properties of L-, M- and R-estimators for doubly censored data (Ren and 
Zhou, 1993, 1994). 

Let 

F = I - S x ,  G = I - - S r ,  H = I - S z ,  (2.27) 

F.(t) = 1 - S~)(t), G.(t) = 1 - S~")(t), H.(t) = 1 - S{z")(t) (2.28) 

and let f, g, h denote the density functions of F, G, H, respectively. (Note that under 
(A3) (see Remark 1), H does not have a density function. In such a case, h denotes the 
derivative of H in (0, ~)). Then, the kernel-type density estimators off, g, h, for doubly 
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censored data are naturally given by 

1 K dF,(y), (2.29) 
L ( x )  = j o  \ atn) / 

1 K dG,(y), (2.30) 
g,(x) = a ~  Jo \ atn) / 

= 1 K XaTn~Y~dH.(y), h,(x) -a-~) f o  ( t , / (2.31) 

respectively, where a(n) is a sequence of positive numbers such that a(n) ~ O, as n ~ oo 
and K is a density function. The strong uniform consistency of f , , g , , h ,  and the 
asymptotic normality off,(x) are established in the next theorem with the following 
conditions. 

Assumption B. 
(B1) f, g, h are continuous on [0, ~); 
(B2) K is a continuous density function with support in [ -  1, 1] and is of bounded 

variation; 
(B3) a(n) ~ 0 and (log n)/[n a(n)] ~ 0, as n ~ ~ .  

Assumption C. 
(C1) f i s  bounded, f (x) > 0 and in the neighborhood of x, the second derivative of 

f [ S r  - Sz] exists and is bounded; 
(C2) K is an even and bounded density function with support in [ -  1, 1]; 
(C3) n[a(n)] 3 --* 0 and na(n) ~ oo, as n ~ oo; 
(C4) There exist 6 and A, 0 < 6  < A  <o% such that P{ZE(O,6)} = 0  and 

P { Z  <. A} = 1, 

Remark 2. The conditions (B1)-(B3) and (C1)-(C3) are usually required for the strong 
uniform consistency and the asymptotic normality of the kernel density estimators, 
respectively, for non-censored data (Silverman, 1978; Rosenblatt, 1971) or right 
censored data (Mielniczuk, 1986). (C4) is required by Chang (1990) for the weak 
convergence of S~ ") and S~z "). In Section 4, we will see that the weak convergence of 
S~ ") and SCz ") is used to derive the asymptotic normality off,(x). One may see the 
comments by Chang (1990) about the condition (C4) in practical situations. 

Theorem 2. (i) I f  (X, Y ,Z )  satisfies Assumptions A and B, then for any A, < T < oo, 
we have that as n ~ oo, 

sup 
tE[O, T] 

sup 
t~[O, T] 

sup 
t~[0,  T] 

If.(t) - f ( t ) l  --* 0 with probability 1, (2.32) 

Ig,(t) - g(t)]--* 0 with probability 1, (2.33) 

Ih,(t) - h(t)l ~ 0 with probability 1; (2.34) 
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(ii) i f (X ,  Y , Z )  satisfies Assumptions A and C, then as n --* 0% 

Theorem 2 is proved in Section 4. One may note that (2.32) is a doubly censored 
version of Theorem A of Silverman (1978), and that (2.33), (2.34) are similar to (ii) ef 
Corollary 2 of Mielniczuk (1986) for right censored data. One may also note that (2.35) 
is a doubly censored version of Corollary 3(ii) of Mielniczuk (1986), who considered 

the right censored case. 
The failure rate function of X is given by 

91(0 =f ( t ) /Sx( t ) ,  t ~ O. (2.36) 

Naturally, the estimator of 9t for doubly censored data is given by 

91,(0 = f,(t)/S(~)(t), t ~ O. (2.37) 

As a corollary of Theorem 2, from the strong consistency (given by (2.19)) and the 
weak convergence (Chang, 1990) of S~ ), we have the strong uniform consistency an,] 

the asymptotic normality of 91,. 

Corollary. (i) I f ( X ,  Y, Z )  satisfies Assumption A and B, then for any A n < T < ~ , we 

have that with probability 1, 

sup 191,(t) - 91(t)l --, 0, as n ~ oc; (2.38) 
te [O,T]  

(ii) !f(X, Y , Z )  satisfies Assumption A and C, then as n ~ co, 

( f ( x )  fK2(u)du) (2.39) ~/na(n)[91 , (x )  - 91(x)] ~ N O , s ~ ( x ) [ S r ( x  ) _ Sz(x)] 

3. Proof of Theorem 1 

First, we note that by the continuity assumption (A4), we may, without loss of the 
generality, assume 0 < W1 < W2 < -.. < W,. Ties among Wi's are neglected with 
probability one. Before proving Theorem 1, we establish the following lemma. 

Lemma 3.1. I f  [S~r")(t) - S(z")(t)] > 0 Jor t e  [A, ,  B, ), then S~ ) is a step ['unction c.n 

[A, ,  B,,) with the.jump size at Wi given by 

t~ 1 if 6i 1, 
W, 

i f  b i t = l ,  

(3.1) 
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where A,  < Wi < B.. 

Proof.  (i) F r o m  (2.13) and (2.14), we know that  S~r ") and S~z ") are step functions on 
[A,,  Bn) with the jump  size at Wi given by 

f l / (nS~)(Wi))  if 6~ = 2, A r,  (3.2) 
if 6i 4: 2, 

and 

f l / ( n [ 1 - -  S~)(Wi)]) if 6~ = 3, A z, (3.3) io if 6i v e 3, 

respectively, and we know that  S~r ") and S~z ") are constants  on interval [Wi,  Wi+~) for 
Wi e [A, ,  B.). F r o m  assumption [S~r")(t) - S~z")(t)] > 0 for t e [A,,  B.) and (2.8), we have 
that  for t e  [A. ,B. ) ,  

S ~ ) ( t )  Q(")( t )  - s ( ' ) ( t )  
= s ( ; ) ( t )  _ s ( ; ) ( t )  

1 n 1 n 
n ~ i : l I { W  i > t} - - n ~ i :  , [I{6, = 3, Wi > t}(1 -- S(~)(W,)) ~] 

S(')(t) -- S(z')(t) 
(3.4) 

is a step function on [A . ,B , )  with constant  values on intervals [W~,Wi+I)  for 
Wi~ [A, ,B,) ,  and that  for W~ e [A,, B,), the jump  size of S~ ) at W~ is given by 

A~, = S ~ ) ( W , _ ~ )  --  S ~ ) ( W , )  

Q ( " ) ( w ~ - I )  - s ~ " ) ( w i - ~ )  Q ( " ) ( w ~ )  - s ~ " ) ( w , )  

= S ( n ) ( W i _ l )  - -  S ( n ) ( W i _ l )  s ( y n ) ( w i )  - S ( n ) ( W i )  " 
(3.5) 

We will investigate the value of A x for different values of 6~ as follows. W~ 

(1) The case of 6i = 1. Since there are no jumps at Wi for S~r ") and S~z "), we have 

s ( n ) ( w i _ l )  = S(n)(Wi) a n d  s ( n ) ( W i _ l )  = S(zn)(gi). 

Hence,  from [Q(')(Wi 1) - Q(')(Wi)] = 1/n, we have 

A x = 1 
w, nES~.)(w,)  _ s ~ . ) ( w , ) ] .  

(2) The  case of 61 = 2. Since there is no jump  at Wl for S~z "), we have 

s ( ; ) ( w , _  , ) : s ( ; ) ( w , ) .  
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F r o m  (2.8) 

A X =  

and (3.2), we have  

Q(")(Wi 1) - -  s(n)(wi)  

s ( ¢ ) ( w , _ , )  s ( : ( w , )  

[Q(n)(wi 1) - -  Q(")(Wi)] 
[ s ( ; ) ( w ,  , )  - s : ( w , ) ]  

Q(")(w~) - s ( : ( w , )  

s ( ? ) ( w , )  _ s ( : ( w , )  

[Q(" ) (w , )  s ( : ( w , ) 3  A Y -- Wi 
s("),w [s(¢)(w~) s~"'(w;)] • y ~ , , ) -  s ~ " ) ( w 3 ]  

1/n S(~)(Wi)A~v' = O. 
= [ s ( ; ) ( w ,  1) - s(:(w,)3 - [ s ( ; ) ( w ,  , )  - Sz(")(w~)3 

(3) The  case of 6i = 3. Since there is no j u m p  at Wi for S(y "), we have 

S(¢) (W,_  , ) = S( ; ) (W,) .  

F r o m  (2.8) and (3.3), we have 

Q(n)(WI-1) - S(") (Wi-1)  Q(n)(Wi) - S(zn)(Wi) 
A~,  = S(¢)(W,)  _ S(; ) (W~_ 1) - S ( . ) ( W ,  ) _ S ( ; ) (W, )  

1In Q(") (Wi )  - S~z ' ) (W,-  i ) 

= [ s ( y n ) ( w i ) -  s ( n ) ( W i _ l ) 3  -~- [ s ( n ) ( w i ) -  s ( n ) ( W i _ l ) ]  

1 / ,  Q(" ) (w , )  - s ( : ( w , )  

-[ [ s (yn) (wi )  - -  s ( n ) ( w i  - 1)3 - [ s ( n ) ( w i )  - -  s ( n ) ( w i  - 1)3 

A~,  QJ")(w~) - s(~"~(wi) 

[S(n)(Wi) - s(n)(wi  1)]  s(n ' (wi)  -- s(n)(wi)  

1/n [1 - S(~)(Wi)] AZw, 
= [s(n)(wi)  -- s(n)(wi  1) ]  [s(n)(wi)  -- s(n)(wi  1)] 

Q(")(W¢) - S~z"l(W~ 

s(~")(w~) _ s ( : ( w , )  

= 0 .  [ ]  

P r o o f  of  Theorem 1. (i) First we show that  the smallest  j u m p  point  A, of S~ ) must  

have index 1 or  3. F r o m  (2.15) and (2.16), we have 

S(y")(A,) - Q(")(A,) - 

1 I{C~A° = 2} (3.6) 
n nS(~)(A,) 

F r o m  (2.18), we have that  for t < A,, 

I{6A. = 3} 
(S(y ") -- S(z")) dS• ) = Q(l")(t) - Q(I")(A,) -t 

t,A.] l'l 

f(t.A.,(S(~'( g - - ) -  S~)(u)]dS(r")(u) + f(t,A.][ S(~)(u - - ) -  S~'(u)]dSCzO'(u), 

which implies 

[S(¢)(A.) - S(:(A.)] AS./> 0. (3.7) 
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F r o m  (2.8), we have  

[Q(")(A,) - S~r")(A,)] = - [1 - S~)(A,)] [S~')(A,) - S~z')(A,)]. 

I f  3A. = 2, (3.6) a n d  (3.8) i m p l y  

Ax. _ AXA, ES~')(A,) -- Stz')(A,)], 
nS~)(A,) 

so t ha t  

x 1 + -- Stz")(A.)] } 0. A A . ( n ~ - ( A , )  [S~")(A.) = 

(3.8) 

Hence ,  f r o m  (3.7), we h a v e  AaX = 0 if 3a. = 2. Th i s  c o n t r a d i c t s  t ha t  A.  is the  smal les t  
j u m p  p o i n t  o f  S~  ). There fo re ,  we m u s t  h a v e  6A. = 1 or  3. (2.22) a n d  (2.23) fo l low f r o m  
(3.6), (3.8) a n d  (2.15). 

(ii) F r o m  (2.15) a n d  (2.17), we h a v e  

Q~")(B, -)Stz")(B, - )  = I{3B. = 1 o r  2}/n, (3.9) 

wh ich  b y  (2.8), impl ies  

S~)(B, - )  - [Sty")(B, - )  - S~z")(B. )] = I{6,,  = 1 o r  2}/n. 

F r o m  ABx = S~)(B. - - )  > 0 a n d  the  a s s u m p t i o n  [Sty")(B, ) - S~z")(B, - ) ]  > 0, we h a v e  
39. = 1 o r  2 and  (2.25). N o t i n g  t ha t  (2.16) a n d  (2.17) a n d  3B. = 1 or  2 i m p l y  

[S~")(B,) - SCz")(Bn)] = [ST)(B.  - )  --  Stz")(B, - ) ] ,  

we h a v e  (2.24). 

(iii) F o r  a n y  A, < T < ~ ,  f r o m  A s s u m p t i o n  A a n d  (2.20) a n d  (2.21), we h a v e  t ha t  
for  t ~ [0, T ] a n d  suff icient ly la rge  n, 

[Sty")(t) - S~z")(t)]/> c > 0 wi th  p r o b a b i l i t y  1, (3.10) 

w h e r e  c is a cons t an t .  

I f  B, <~ T, f r o m  L e m m a  3.1 a n d  T h e o r e m  l(ii)-(iii), we h a v e  t ha t  for  t e [ 0 ,  T ] ,  

I{A,  <~ t} 1 I{t~ i = 1, Wi <~ t} 
s';'(t)  = 1 - ~n [ S ; " ' ( A . ) -  S~"'(A.)] + -. A. ~ Zw, ~ . .  [ S ' - ~ - ~ )  ~ ~ , ) ]  

+ ~ [ S ~ ( B . )  _ S~O~(B.)3~. (3.11) 

I f  B~ > T,  we h a v e  t ha t  for  t ~  [0, C . ]  a n d  suff icient ly la rge  n, 

[-Str~)(t) - S~z~)(t)] ~ c > 0, wi th  p r o b a b i l i t y  1, 
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where C. = max{Wi; W~ ~< T} with index 6c.  In this case, we note  that  Lemma 3,1 
still holds if B. is replaced by C.. Hence, we have that  for t e  [0, T ] ,  

I{A.  <~ t} + 1 E [S•.)(Wi ) _ S~z.)(Wi)] j .  (3,12) S ~ ( t ) =  1 - n[ST~(A.)_S~z.~(A.)] nA°<w,<.c. 

(2.26) follows from (3.11) and (3.12). [ ]  

4. Pr oo f  of  T he or e m 2 

F rom (iii) of Theorem 1, we have that  for any A. < T < oc and sufficiently large n, 

I {A .  <~ t} 1 I{6i = 1, Wi <<. t} 
F.(t) = .[S(r.)(A. ) S(z.)(A.)] + - Z ~(~5~,,-- - ~ - -  - n A° < w, < c.  [ S y  ( W i )  - S z  (Wi)]  

I { B . < < . m i n ( t , T + l ) }  I { B . > T + I , S c ° = I , C . < ~ t }  

+ n[S(r.)(B.) ~") + -- Sz  (B,,)] n[S(r")(C.) - S~")(C.)] 

t e [ 0 ,  T + 1] (4.1) 

with probabil i ty 1, where C. = max{Wi;  Wi <~ m i n ( B . , T  + 1)}, F rom (2.16) and 
(2.17), we have 

1 " I{6i = 2, Wi <% min(t ,D.)} 
G°(t) = n ,~ ,  S ~ ( W D  , t >1 0, (4.:_>) 

where D. = max{W/;  Wi < B.}, and 

1 ~ 1{5i = 3, Wi > max(t, A.)} 
H.(t) = 1 - -  Y/ i=l 1 -- S~)(Wi) , t >i O. (4.3) 

Define 

#7( 0 = _l ]~ I{ W/~< t, 6i = 1 }, (4.4) 
F/ i -  1 

G.(t) =-1  ~, I{ W, ~< t, 5, = 2}, (4.5) 
n i  1 

n 
# . ( t )  =-1 Z I{W,  <<. t, 6, = 3}, (4.6) 

n i -  1 

and define 

,~.(x) = a(n) I-St(x) Sz(x)] K - \ a ( , )  ) " 

1 fo {x-q O,(x) - a(n) Sx(x) K dG.(y),  (4.8) \ a(n) ) 
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We prove Theorem 2 by showing tha t f ,  - f , ,  9, - 9,, h, - ~'. converge to 0 uniformly 
on [0, T ]  with probabil i ty  1, as n ~ oo. 

Proof  of Theorem 2. (i) Since (2.33) and (2.34) are established analogously as (2.32), 
we will only give the p roof  of (2.32). 

We observe that  for x e  [0, T ]  and sufficiently large n, 

a ~ ) f o  ~ x - - y  1 f f  +1 x - - y  f . (x)  = K ( ~ - ) d F . ( y )  =-d-~) ) K ( - a - ~ ) d F . ( y  ) 

I{6i = 1} K ( ( x -  Wi)/a(n))  = K ( ( x  - A . ) /a(n))  1 ~ _ _ ~ . ) - - - -  

na(n)  [S~")(A.) -- S~z")(A.)] + na(n~)A.< w,<c. [S r  (W,) - S~z")(Wi)] 

I {B .  <<. T + 1}K((x -- B.)/a(n))_~ -t I {B.  > T + 1,6c. = 1}K((x -- C.)/a(n)) 

na(n) [S~) (B.) - S~)(B.)] n a ( n ) [ S ~ ) ( C . ) -  S(z")(C.)] ' 

(4.10) 

with probabi l i ty  1. Since from (2.15), 

ft.(t) =-1 ~ I{Wi <~ t, bi = 1} =-1 Z I{Wi <~ t, bi = 1}, 
n i = 1  n A.~ W,<~B. 

we have 

1 I{(5i = 1}  K ( ( x  -- Wi)/a(n)) 
f . ( x )  - na(n)A" E .< w, ~ ~. [ S ~ ( x )  - S ~ ( x ) ]  

_ 1 ~ I{3i = 1}K((x - Wi)/a(n)) 
n a(n) A. ~ w, <~ c. [Sy(X) - -  SZ(X)] 

F r o m  assumption (A3), (A4), (B2), (B3) and (2.20), (2.21), we know that  the first term 
and the last two terms in the last equat ion of (4.10) converge to zero with probabi-  
lity 1. Hence,  we have that  

sup sup 
x~[0,  T]  [ xE[0, T] A~ <~ Wi <~ C., xe[0 ,  T]  

where 

1 
Z Z . ( x )  - n a(n) A. ~ W, ~ C. I{6i = 1} K ( ( x -  Wi)/a(n))),  

M, (x )  = I{[ x -- W il ~ a(n)}l[S~r~)(W,) - S~z")(W,)] 1 _ [Sr(x)  - S z ( x ) ] - ' l ,  

and o~")(1) almost surely converges to 0 uniformly on [0, T ] ,  as n ~ oo. 
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Note  that  for any x e [0, T ], 

Mi(x)  <<. I [S(r")(Wi) - S~z")(W,)] ' -- [Sv(Wi)  - Sz(W,)]  1[ 

+ I { Ix  - W,] <~ a(n)} l [Sr(Wi)  - Sz (W,)]  ' - [Sr(x) - S z ( x ) ] - ' l  

~< I [S(v"'(W~) - S~z")(W~)] - i  -- [Sy(W~) - Sz(W~)] 11 + Ma(n) ,  (4.12) 

where M > 0 is a constant .  Hence,  f rom (2.20), (2.21) and (B3), we have 

sup M i ( x ) - ~ O  as n ~  ~ (4.13) 
A. ~< W, ~< C.,  xE[O, T]  

with probabi l i ty  1. 

No te  that  

1 
= K ~ }  diV,(y) Sz(x)] f , (x ) ,  (4.14) z°(.,) fo ( , , /  =Esy(x)- 

and that  F, is the empirical  dis t r ibut ion function of 

W ( T )  = W I { 6  = 1} + ( W  + T + 1)1{6 va 1} (4.15) 

on [0, T + 1]. F r o m  Theo rem A of Si lverman (1978), we know that  

Z, (x )  ~ f ( x )  [Sv(x) - Sz(x)] as n --* oo, (4.16) 

f , ( x ) - * f ( x ) ,  as n--* oo (4.17) 

uniformly on [0, T ] with probabi l i ty  1. 
Hence,  f rom (4.11)-(4.16), we have 

sup ] f . ( x ) - - L ( x ) ]  ~ 0  as n ~  oo (4.18) 
x e [ 0 ,  7"] 

with probabi l i ty  1. Therefore,  (2.32) follows f rom (4.17) and (4.18). 

(ii) F r o m  (C4) and Chang  (1990), we know that  x ~ [ S ( r  ") - Sy] and x/n[S(z "~ - Sz] 
weakly converge to Gauss ian  processes on [0, T ] as n ~ ~ .  Hence,  we have 

, ,~ l lS~  ~ -  Svllr -- Op(1) as n - ,  oe 

and 

~nllS~z "> - SZIlT = Op(1) as n ~ oc 

1 
Mi(x)  <-%-~Op(1) + M a(n), 

j n  
(4.19) 

where II'llr denotes  the s u p r e m u m  n o r m  on [0, T ] and Op(l) is bounded  in probabi l -  
ity. Therefore,  in (4.12) we have that  for any Wi ~< T + 1, 
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which implies 

sup Mi(x) <~ x / ~ ) O p ( 1 )  + M ~ ~ 0 as n ~ oo. (4.20) 
A. <~ Wi <~ C. 

Note  that  for a single point  x, (4.11) becomes 

[ f , ( x ) - f , ( x ) [  ~< Op(1)/[na(n)] + [Z,(x)[ sup Mi(x). (4.21) 
A. <~ WI <~ C. 

F r o m  Rosenblat t  (1971), we know 

E{Z,(x) - - f (x)  [Sr(x) - Sz(x)]} 2 ~ 0 as n ~ ~ .  (4.22) 

Hence, (4.20)-(4.22) imply 

~ [ f , ( x ) - f , ( x ) l  ~ 0 as n ~ oe. (4.23) 

Rosenblat t  (1971) showed that  as n --* oo, 

(4.24) 

if naS(n) ~ O, as n ~ oo. Therefore, (2.35) follows from (4.23), (4.14) and (4.24). [ ]  

Appendix 

Proof  of  (2.15). No te  that  a solution S~ ) of  (2.5) is self-consistent and is a nonincreas-  

ing function with values in [0, 1]. F r o m  (2.8) and (2.13), we have that  

Qt")(t) = s(v")(t) = 1 - [ the number  of  Wi's <~ t with 6i = 2]/n 

for any t < A,,  because S~(t) = 1. This implies 

[the number  of  Wi's ~< t] = [the number  of  Wi's ~< t with fig = 2]. 

Hence, we have 3~ = 2, if W~ < A,. Similarly, from (2.8) and (2.14), we have that  for any 

t >~B., 

Q(")(t) = S(z")(t) = [the number  of  W~'s > t with 61 = 3]/n 

because S~z")(t) = 0, so that  

[ the number  of  W~'s > t] = [ the number  of W~'s > t with 6i = 3]. 

Hence, we have 6i = 3, if W~ > B,. [ ]  
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