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Abstract

We study the detailed structure (in a large sample) of the self-consistent estimators of the
survival functions with doubly censored data. We also introduce the kernel-type density
estimators based on the self-consistent estimators, and using our results on the structure of the
self-consistent estimators, we establish the strong uniform consistency and the asymptotic
normality of the kernel density estimators for doubly censored data. From these, the strong
uniform consistency and the asymptotic normality of the failure rate estimators for doubly
censored data are derived. © 1997 Elsevier Science B.V.

AMS classification: 62F12; 62GO05.

Keywords: Asymptotic normality; Failure rate function; Right censored data;
Survival distribution; Uniform strong consistency

1. Introduction

Incomplete lifetime data are often encountered in medical follow-up studies and in
biometry and reliability studies. In these studies, the estimation of the density function
of the underlying lifetime is an important problem in its own right and also in the
estimation of the failure rate function or hazard function of the underlying lifetime. In
the right censored case, the kernel-type density estimators have been studied based on
the product limit estimator of Kaplan and Meier (1958) (KM estimator) by Blum and
Susarla (1980), Foldes et al. (1981), Mielniczuk (1986) and Marron and Padgett (1987),
among others. Recently, some more complicated types of censoring, such as doubly
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censored data, interval censored data, truncated data, etc., have started to catch
the attention of statisticians, as these data occur in important clinical trials.
For instance, doubly censored data were encountered in a recent study of age-
dependent growth rate of primary breast cancer (Peer et al., 1993). Other examples of
doubly censored data encountered in practical situations were given by Gehan
(1965) and Turnbull (1974), among others. In this paper, we consider the kernel-type
density estimators when the data are censored from right or left, called doubly
censored data.

For doubly censored data, Turnbull (1974) constructed a self-consistent estimator
S of the survival function Sx(r) = P{X > t}, where X denotes the lifetime. Chang
and Yang (1987), Chang (1990) and Gu and Zhang (1993) have established the strong
consistency and the weak convergence of S . For more discussion on S & see Tsai
and Crowley (1985) and Gill (1989). The kernel-type density estimators considered in
this paper are based on SY.

In the right censored case, the asymptotic properties of the kernel density es-
timators are studied through the structure of the KM estimator (viz., Mielniczuk,
1986). The KM estimator can be expressed explicitly as a step function with the jump
sizes given clearly, and does not have jumps at those right censored observations
(Efron, 1967). However, in the doubly censored case, the self-consistent estimator is
given implicitly through an integral equation (see (2.5) in Section 2), and the structure
of the self-consistent estimator S5 is quite complex. We easily have examples to show
that the jumps of S§ may occur at non-censored, or right censored, or left censored
observations (see the examples in Gu and Zhang, 1993). This makes it difficult to study
the asymptotic properties of the kernel density estimators for doubly censored data.
Moreover, in other studies of the statistical inference problems based on S$ such as
extended L-, M- and R-estimators for doubly censored data (Ren and Zhou, 1993,
1994), there is also a need to investigate the structure of SY .

The main results of this paper consist of two parts: (1) the structure of the
self-consistent estimator S$° in a large sample case; (2) the strong uniform consistency
and the asymptotic normality of the kernel density estimators for doubly censored
data. As a corollary of the second part of the results, the strong uniform consistency
and the asymptotic normality of the estimators of the failure rate function for doubly
censored data are also obtained. The results are presented in Section 2 with the proofs
deferred to Sections 3 and 4.

2. Main results

Let X be a nonnegative random variable (r.v.) denoting the lifetime under investiga-
tion, and let X;,i = 1,2, ... ,n, be nindependent observations on X with d.f. F. In this
research, one observes not {X;} but a doubly censored sample:

W, = max{min{X,, Y;},Z;}
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with the index

1 if Z, <X <Y,
(5,': 2 lf Xi>Yi’
3 if X;<Z,,

where (Y;,Z,), i = 1,2, ... ,n, are independent from X; and are independent observa-
tions on (Y, Z) for nonnegative random variables Y and Z with P{Y = Z} = 1. The
r.v.s Y; and Z; are called right and left censoring variables, respectively. This means
that X, is observable whenever X lies in the interval [ Z;, Y;], and otherwise we know
whether X; < Z; or X, > Y, and observe the value of Z; or Y; accordingly. The
problems considered here are the structure of the estimators of Sy, Sy, Sz in a large
sample and the estimation of the density functions of X, Y, Z based on (W}, §;). where
Sy(t) = P{Y >t} and S;(t) = P{Z > t}.

We present the estimators of Sy, Sy and Sy as follows. Let (W, d;) be distributed as
(W,9), and let

Qi()=P{W>td0=j}, j=1273, (2.1

1 n
() = - 2 H{W.>t6,=j}, j=123, (2.2)
then the estimators S, SI, S3” of Sx,Sy,Sz (Chang and Yang, 1987) are given by the
solutions of the following equatlons.

i &
"M =—{ (S —s5)dsy,
JI
0V = — S"”dS‘"’ (2.3)
Ji
Y=~ (1 -57)dsy
Jt

Imposing the conditions on Sy and S5,
SP0)=1 and S¥(c0) =0, (2.4)
from the system (2.3), Chang and Yang (1987) obtain

(") 1 — S(")
590 =090~ | Smd0f + | idot, 25)

where ¢t > 0 with

j =0 ifSP()=0 andJ =0 ifSP(0) =1,
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and obtain
(n)
SO0 =1 +Lt SQ;,,) (L‘)’), t < B, 2.6)
@ do$(u)
Sz ()= —Lu TSP’ t = A, 2.7)
Q™) = S(1) + SY (O [SY (1) — SP(9], =0, (2.8)
where
A, = min{W;; SP(W;) < 1}, (2.9)
B, = max{W,;; S{(W; —) > 0}, (2.10)
Q" () = i 0", t>=0. (2.11)

One may note that a self-consistent estimator of Sy is given by a solution of (2.5) and
that the self-consistent estimating equation (2.5) is originally given by Tsai and
Crowley (1985). Moreover, one may note that for any self-consistent estimator S of
Sy, the range in which we can obtain information for estimating Sy is [A4,, B, ], thus
the restriction on t by 4, and B, in (2.6) and (2.7) is natural.

From Gu and Zhang (1993), we know that the solution of (2.5) is not unique and
that the self-consistent estimators are asymptotically equivalent. Hence, for our
investigation in this paper, we consider a particular type of self-consistent estimators
as follows. Let

Way=min{W;1<i<n} and W, =max{W;1<i<n}.

We note that for any solution S of (2.5), suppose we define S O =1,ift < Wy
SP), if Wy <t < W 0,if t = W,,,, then §$ is still a solution of (2.5). For the rest
of the paper, we will always consider those solutions S% of (2.5) which satisfy

1 ft< W
(n) _ 1)
Sx'(t) = {0 if > W, (2.12)

Since an arbitrary solution S of (2.5) is not necessarily a proper survival function, the
condition (2.12) is to restrict our attention to those proper estimators. This is an
already adopted convention for right censored data (Efron, 1967; Miller, 1976).

One may note that for a step function Sy e satisfying (2.5) and (2.12), 4, and B, given
by (2.9) and (2.10) are the smallest and the largest jump points of Sy o , respectively,
with W, < 4, < B, < W,,, and that (2.5) and (2.8) are actually the same equations
for $¢ and Sy satisfying (2.6) and (2.7), respectively.

Throughout, we assme that there are no ties among W, ... ,W, and impose the
following conditions on Sy, Sy, Sz.
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Assumption A.

(A1) The random variable X; and the vector (Y;, Z;) are independent for each i and
the vectors (X;,Y;,Z;), i =1, ... ,n, are independently and identically distributed;

(A2) P{Z <Y} =1

(A3) Sy(t) — Sz(t) > 0 on [0, o0);

(A4) Sy,Sy and §; are continuous functions of t for t > 0, and 0 < Sx(r) < 1 for
t >0

(AS) Sx(0) = S¢(0) =1, Sx(oc) = Sy(o0) = Sz(oc) =0

Remark 1. Because of (A3), our conditions here are slightly stronger than those
required by Chang and Yang (1987) for the strong consistency of S, SV, 85, Our
(A3) implies P{Z =0} > 0 and S;(0) < 1, which ensures that for any 0 < T < oo
[Sy(r) — Sz(1)] has a positive lower bound for t € [0, T ]. In Section 4, we will see that it
is naturally required for the strong uniform consistency of the kernel density es-
timators with doubly censored data that [Sy(t) — Sz(¢)] has a positive lower bound cn
[0, T]. One may see the comments by Chang (1990) about the condition S,(0) < [.
From (2.6) and (2.7), we easily have

1{6; =2, W; <

S (1) 1—— , 1 <B, (2.13)
!zl S(")(W'
nopS =3, W, >t

so@m =ty I il i A, (2.14)
ni=y 1-=Sx(Wy

In the appendix, we show that for a solution S% of (2.5) satisfying (2.12), we have
5i=2 lf Wi<An and 5123 lf Wi>Bn- (215)

Note that if we consider the following extensions of (2.13) and (2.14) beyond the
interval [4,, B,):

-1 ) fo=2Wist 4 _p,
SY(1) = "is Sx W) (2.16)
SY(B, —) if t>B
_21{0—3(:V >t} > A
SP(1) = x (Wy) (2.17)
SP(4,) if t < A,,

then SY’ and S5’ satisfy (2.5)(2.8), and from (2.15), they satisfy

oY1) = — f SYdSY + {05, = 2,B, > t}/n,

e J (1 —SPYASY +1{8y =3, A4, > t}/n,



32 J.-J. Ren [Journal of Statistical Planning and Inference 64 (1997) 2743
where d,4, and dp_ are the indexes of 4, and B,, respectively. Hence, from integration by

parts and (2.8), we have that for a solution S¥ of (2.5) satisfying (2.12), our S{ and
SY given by (2.16) and (2.17) satisfy the following equations:

0% = J Sy — SP)ASY — (I{04, = 3, Ay >t} + 1{5, = 2,B, > t})/n

T j " ISP —) — SPETdSP ) — f " ISPw —) — S dS L),

t

(2.18)

Poy=— f SYASY + 1{0p, = 2,B, > t}/n,
t

0P = — f(l SPYASY 4+ 1{6, = 3,4, > t}/n,

where te[0, co). Under Assumption A, we have that from Gu and Zhang (1993),
Chang and Yang (1987), our S{” and %’ given by (2.16) and (2.17) for a solution S of
(2.5) obeying (2.12) satisfy

lim S§(1) = Sx(o), (2.19)
lim $$°(¢) = Sy (), (2.20)
lim $(t) = S,(1), (2.21)

uniformly for t [0, co) with probability 1. For the rest of this paper, we will always
consider ${” and S given by (2.16) and (2.17).

In the following theorem, we give the detailed structure of S§ in a large sample
under Assumption A.

Theorem 1. Let S be a solution of (2.5) satisfying (2.12) and assume that there are no
ties among W;’s. Then,
(i) the jump size of S at A, is given by

1
X o= o 5@ (2.22)
n[SY'(4,) — S7(4,)]
and we have
A, =min{W; 8, =1 or 3}; (2.23)

(i) assuming [SY'(B, —) —S$ (B, —)] > 0, the jump size of 3" at B, is given by

1
n[SY(B,) — SP (BT

X
AB”Z

(2.24)
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and we have
B, =max{W;d; =1 or 2}; (2.25)

(iil) under Assumption A, we have that for any A, < T < oo and sufficiently large n,

n I{An } 1 I{é,zl,ngt}
SP(=1— { +~
0 n[S¥(4,) — S$(A,)] n Z [SY(W,) — SP(W)]

I{B, < min(t, T)} _I_]{B,, >T,0c =1,C, <t}
n[SY(B,) —SY(B,)]  n[SY(C,) — SP(C)]

}, te[0,T](2.20)

with probability 1, where C, = max{W; W, <min(B,.T)} and 0., is the index
of C,.

Theorem 1 is proved in Section 3. In the proof, it plays an important role that for
sufficiently large n, [SY(t) — SP(1)] has a positive lower bound for te[0,T] with
probability 1. This fact, ensured by (2.20) and (2.21) along with assumptions (A3) and
(A4), leads to our Theorem 1(ii1). One may note that in (2.8), S ©(r) cannot be expressed
in terms of SY(1), S5(t) and Q™(v), if [S{")(t) SY()] = 0 on a certain interval. In
fact, this is precisely the reason that S may have jumps at censored observations.
Detailed discussion on this can be found in Mykland and Ren (1996) and is omitted in
current paper for brevity. As mentioned earlier, the KM estimator (the self-consistent
estimator for right censored data) only has jumps at non-censored observations for
any n (Efron, 1967). But for doubly censored data, this is no longer the case (see Gu
and Zhang, 1993, for examples). Our Theorem 1(iii) shows that on any compact set
[0,T], except the first jump point, the self-consistent estimator SY for doubly
censored data only has jumps at non-censored observations for sufficiently large
n with probability 1. In comparison, the structure of S for doubly censored data is
far more complicated. Nonetheless, our (2.26) generally provides a sufficiently useful
tool for the study of the asymptotic properties of the statistics based on S% . In fact,
(2.26) plays a key role in the proof of our next theorem and in the study of the
asymptotic properties of L-, M- and R-estimators for doubly censored data (Ren and
Zhou, 1993, 1994).

Let
le—Sx, GZI-‘S}’, I'Izl—Sz, (227)
F=1-S20, G@O=1-5701, H(@®=1-57@ (2.28)

and let f, g, h denote the density functions of F, G, H, respectively. (Note that under
(A3) (see Remark 1), H does not have a density function. In such a case, h denotes the
derivative of H in (0, oo)). Then, the kernel-type density estimators of f, g, k, for doubly
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censored data are naturally given by

f(x) a(n)j <a(n > F,(), (2.29)

gn(x) = ( f ( > Ga(y), (2.30)
n)

hy(x) = J < )dH (), (2.31
a(n)

respectively, where a(n) is a sequence of positive numbers such that a(n) — 0, as n — oo
and K is a density function. The strong uniform consistency of f,,g,,h, and the
asymptotic normality of f,(x) are established in the next theorem with the following
conditions.

Assumption B,

(B1) f,g,h are continuous on [0, co);

(B2) K is a continuous density function with support in [ — 1, 1] and is of bounded
variation;

(B3) a(n) - 0 and (logn)/[ra(n)] —0, as n — co.

Assumption C,

(C1) fis bounded, f(x} > 0 and in the neighborhood of x, the second derivative of
SISy — S2] exists and is bounded;

(C2) K is an even and bounded density function with support in [— 1,1];

(C3) n[a(n)]® - 0 and na(n) - oo, as n — oo;

(C4) There exist 6 and 4, 0<d <4 <oo, such that P{Ze(0,8)} =0 and
P{Z <4} =1,

Remark 2. The conditions (B1)+(B3) and (C1)HC3) are usually required for the strong
uniform consistency and the asymptotic normality of the kernel density estimators,
respectively, for non-censored data (Silverman, 1978; Rosenblatt, 1971) or right
censored data (Mielniczuk, 1986). (C4) is required by Chang (1990) for the weak
convergence of $%° and S¥. In Section 4, we will see that the weak convergence of
SY and SY is used to derive the asymptotic normality of f,(x). One may see the
comments by Chang (1990) about the condition (C4) in practical situations.

Theorem 2. (i) If (X, Y,Z) satisfies Assumptions A and B, then for any A, < T < o0,
we have that as n — oo,

sup | fu(t) —f@®)] =0 with probability 1, (2.32)
telo,

sup lga(t) — g(t)| > O with probability 1, (2.33)
tel0

sup |h,(t) — h(t)| >0 with probability 1; (2.34)

te[0, T}
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(i) if (X, Y, Z) satisfies Assumptions A and C, then as n — oC,

D f(x) 2
Juram [ fo(x) —f(x)] = N(O, I5.00) — 5,00 JK (w) du). (2.39)

Theorem 2 is proved in Section 4. One may note that (2.32) is a doubly censored
version of Theorem A of Silverman (1978), and that (2.33), (2.34) are similar to (ii) of
Corollary 2 of Mielniczuk (1986) for right censored data. One may also note that (2.3%)
is a doubly censored version of Corollary 3(ii) of Mielniczuk (1986). who considered
the right censored case.

The failure rate function of X is given by

R(1) =f(0)/Sx(t), t=0. (2.36)
Naturally, the estimator of R for doubly censored data is given by
R(1) = £,()/SY(1), =0 (2.37)

As a corollary of Theorem 2, from the strong consistency (given by (2.19)) and the
weak convergence (Chang, 1990) of S *_we have the strong uniform consistency and

the asymptotic normality of R,.
Corollary. (i) If (X, Y, Z) satisfies Assumption A and B, then for any A, < T < ¢, we
have that with probability 1,

sup [R,(0) —R(@)| =0, asn— oo (2.38)

tef0,T]

(i) if (X, Y, Z) satisfies Assumption A and C, then as n — oC,

— D J(x)
\/n a(m[R,(x) — Rx)] = N<0’S§((x) [5,(9 = S,09] jKZ(u) du>. (2.39)

3. Proof of Theorem 1

First, we note that by the continuity assumption (A4), we may, without loss of the
generality, assume 0 < W, < W, < --- < W,. Ties among W/s are neglected with
probability one. Before proving Theorem 1, we establish the following lemma.

Lemma 3.1. If [SY(t) — S9(1)] >0 for te[A,,B,), then SY is a step function on
[A4,,B,) with the jump size at W; given by

1
n[SY(W,) — S$ (W]

0 if 0 # 1,

l:faizlv

Ay, =
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where A, < W; < B,.

Proof. (i) From (2.13) and (2.14), we know that S}’ and S’ are step functions on
[A,, B,) with the jump size at W, given by

1/(nSY W) if 8, =2,
Y __
Aw. = {0 if 9, #2, (3-2)
and
1/(n[1 - SPW)]) if 6 =3,
zZ __
Aw, = {0 if §; # 3, (3:3)

respectively, and we know that S ¢ and S are constants on interval [W,, W) for
W.€[A,, B,). From assumption [SY'() — $$°(1)] > O for te[A,, B,) and (2.8), we have
that for te[A4,, B,),

w270 —S2)
O SP0 570

1z"i=1 W, >t} — 12;;, ({8 =3, W,>1}(1 —SP W) ']
n n
) SP0 - 590 - 09

is a step function on [4,,B,) with constant values on intervals [W;, W;, ) for
We[A,, B,), and that for W;e[A,, B,), the jump size of S at W, is given by

Ay, =SPWi_y) — SP W)

_QO(Wioy) = SPWiy)  QU(Wy) —SP (W)
S SYWiiy) = SPWiy)  SY(W) —SPWY)’

(3.5)

We will investigate the value of Aﬁ/i for different values of §; as follows.
(1) The case of §; = 1. Since there are no jumps at W, for S’ and S, we have

SPWi_)=SP(W,) and SP(W,_,)=SP(W,).

Hence, from [Q™(W, ;) — Q"Y(W;)] = 1/n, we have

Ay, = !
"aIsYw) - sP w1
(2) The case of J; = 2. Since there is no jump at W; for S5, we have

SPWi_y) = SP(W)).
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From (2.8) and (3.2), we have

QUW, 1) —SPW)  Q™(W) — SP (W)

X
M= ST, ) = SPWW) ST, — SP(W,)
_ Q"W — oWl [Q™ (W) — S2 (W14,
YW, ) —SPWol  [SPWio1) = SPWIILSY (W) — S2'(W))]
1/n SY WAL,

TISPW ) SPWIl ST W) —SP Wl
(3) The case of §; = 3. Since there is no jump at W, for S%. we have
SV (Wio1) = 5Y/(W)).
From (2.8) and (3.3), we have

QO(W,_1) —SPWi—y) QWW,) —SP(W)

AN =
TSP — SPWisy)  SP(W) — SP(W))
_ 1/n L QUMW) = SPWi ) QW) — ST W)
TISPwW) —SPWw._)] SYW) -SSP W] SPW) — ST (W)
3 1/n N QW) — SP (W)
ISP —SPW )] SY W) - SP W]
B Aw, QW) — ST (W)
[SYW) —SPW._ )] SPW,) — SP(Wy)
1/n [1 - SP(W)]4y, -

CISPWw) -SSP 01 YW —SPWe 0]
Proof of Theorem 1. (i) First we show that the smallest jump point 4, of S ¥ must

have index 1 or 3. From (2.15) and (2.16), we have

1 15, =2

NG W — - _ S 3.6
P(4a) — () = — LS (3:6)

From (2.18), we have that for t < 4,,

n n n n n I 6 = 3
[ v spasy - v - oPiay + 1= }
(t. A,

[ P - sPwasPw + | sV - sPeasv
(t, 4,1

(t, 4,1

which implies

[SY(4,) — SP(A)]14%, > (3.7)
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From (2.8), we have

[Q"(4,) — SY(4)] = — [1 — SP(AN[ST(A,) — ST (A,)]. (3.8)
If 6, =2, (3.6) and (3.8) imply

——é;—=A§B@ma—$%mm
nSP(4,) "
so that

d{ JM)+B%mr4?mm}=a

Hence, from (3.7), we have Afn = 01if 3, = 2. This contradicts that A, is the smallest
jump point of S. Therefore, we must have 3, = 1 or 3. (2.22) and (2.23) follow from
(3.6), (3.8) and (2.15).

(i) From (2.15) and (2.17), we have

Q™(B, —)SY (B, —) = I{65, = 1 or 2}/n, (3.9)
which by (2.8), implies
SY(B, —) — [ST (B, —) — SP(B,-)] = I{65, = 1 or 2}/n.

From A3 = S¢(B, —) > 0 and the assumption [S{(B,-) — S¥(B, —)] > 0, we have
dp, =1 or 2 and (2.25). Noting that (2.16) and (2.17) and 55 = 1 or 2 imply

[SY(B,) — S (B)]1 = [SY (B, —) — S$(B, —)1.

we have (2.24).
(iii) For any 4, < T < oo, from Assumption A and (2.20) and (2.21), we have that
for te [0, T] and sufficiently large n,

[SY(t) — SP(6)] = ¢ > 0 with probability 1, (3.10)

where ¢ is a constant.
If B, < T, from Lemma 3.1 and Theorem 1(ii}(iii), we have that for te[0, T],

Wy 1 {4, <t} 1 Ho=1,W: <t}
ST =1 {n[S(y")(An) SP(4,)] nAK;dn[S‘y"’(Wi)—S‘z'"(Wf)]

I{B, <t}
T AlSV(B,) S(Z")(B,,)]}' (3.11)

If B, > T, we have that for te[0,C,] and sufficiently large n,

[SP() — $P(1)] = ¢ >0, with probability 1,
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where C, = max{W;; W, < T} with index dc,. In this case, we note that Lemma 3.1
still holds if B, is replaced by C,. Hence, we have that for re{0,T],

A, < 1 o, =1, W; <t} .
SO =1 —{ " Ay t(}n) +- ¥ (,;{) 53 ! } (3.12)
n[Sy (4,) — Sz (A)] naw<c, [Sy (W) — Sz (Wi)]
(2.26) follows from (3.11) and (3.12). []

4. Proof of Theorem 2

From (iii) of Theorem 1, we have that for any A, < T < oc and sufficiently large n,

I{A, <t} 1 {0, = LW, <t}

n[SY(A,) — 55 (4,)] 5§ [SY' (W) — P (W)
I{B,<min(t, T + 1)} I{B,>T +1,0c,=1,C, <t}
n[SY(B,) — S2(B,)] n[SY(C,) — SP(C,)]

te[0,T + 1] (4.1)

Folt) =

with probability 1, where C, = max{W;; W; < min(B,,T + 1)}, From (2.16) and
(2.17), we have

1 d I{él = 2, Wi < min(t, Dn)}

0= L sy

where D, = max{W,-; W; < B,}, and
I{é; —3 W, > max(t, 4,)}

t =20, (4.2)

H(=1-= Z ST , t=0. (4.3)
Define
F.(0 =% Z KW, <t,6 =1}, (4.4)
i=1
G.(1) :% Z W, <t,8,=2}, (4.5)
i=1
H,(1) :% Z W, <t,8, =3}, (4.6)
i=1
and define
1 * A
" (x) = K[=—2dF,(v), 4.7
) = 0 = 5500 f (a(n) > ) (.7
Lo 1 * X =¥\~
gn(x) - a(n) Sx(x) J‘O K< a(n) )d(’n(y)? (48)

Eo 1 ® X —y
B e AR ey ) “
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We prove Theorem 2 by showing that f, — f,, g, — g, #, — h, converge to 0 uniformly
on [0, T'] with probability 1, as n —» 0.

Proof of Theorem 2. (i) Since (2.33) and (2.34) are established analogously as (2.32),
we will only give the proof of (2.32).
We observe that for xe {0, T] and sufficiently large n,

=5 |, K Joron=z [, (g Joron
1

K((x — A44)/a(n)) + y {6 = 1} K((x — Wi)/a(n))
na(m) [SY(4,) — SP(AN]  na() . w.c, [SPW)—SPW)]

I{B,, <T+ l}K((x — B,)/a(n)) +I{B,, >T 4+ 1,6c,= l}K((x C,)/a(n)
na([SY (B,) — S5 (B,)] nam[SY (C,)~ SP(C,)] ’
(4.10)

with probability 1. Since from (2.15),

Z I{W,St,élzl},
W.< B,

we have

7x) = y 1{6: = 1} K((x — Wi)/a(n))

<5, [Sy(x) — Sz(x)]
1 1{6; = 1} K((x — Wy)/a(n))

-

na(n) A, <W, <C, [Sy(x) — Sz(x)]

From assumption (A3),(A4), (B2),(B3) and (2.20), (2.21), we know that the first term
and the last two terms in the last equation of (4.10) converge to zero with probabi-
lity 1. Hence, we have that

sup | £,(x) = fu(x)| < 0 (1) +{ sup IZ,.(X)I}{ sup Mi(x)}, (4.11)

xe[0, T} xe[0,T] S W £C,, x€[0,T)
where
Z,(x) = Y. H{di =1} K{(x — W)a(n),

na(n) A, <W,<C
Mi(x) = I{|x — Wi| < a@)} | [SY (W) — SPW)] ' — [Sy(x) — Sz(x)]7 '],

and o{’(1) almost surely converges to 0 uniformly on [0, T], as n — oo.
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Note that for any xe[0, T],
Mi(x) < |[SY (W) — SP (W] — [Sy(Wo) — S (W) |
+ I{Ix = Wi < a(m)} | [Sy(W;) — Sz(W)] ™" — [Sy(x) — Sz(x)] "
SISV (W) = SPWI ™t = [Sy(W) — Sz(W)] ' + Ma(n),  (412)
where M > 0 is a constant. Hence, from (2.20), (2.21) and (B3), we have

sup M(x)->0 asn- o (4.13)

A, <W.<C,,xel0,T]
with probability 1.

Note that

Z(x) = — j K(f-_—y>dﬁn(y)=[sy(x)—sz(x)]ﬁ<x>, (4.14)

Tatm Jo " \a(m
and that F, is the empirical distribution function of
W(T)=WIHs=1}+(W +T + 1) {5 # 1} (4.15)
on [0, T + 1]. From Theorem A of Silverman (1978), we know that
Z,(x) = f(x)[Sy(x) — Sz{x)] as n— oo, (4.16)
Tx) > f(x), asn— o (4.17)

uniformly on [0, T ] with probability 1.
Hence, from (4.11)+4.16), we have

sup [fu(¥) —fu(x)| >0 asn— oo (4.18)

xe[0,T]

with probability 1. Therefore, (2.32) follows from (4.17) and (4.18).
(i) From (C4) and Chang (1990), we know that \/n[SY’ — Sy] and \/n[S%’ — S;]
weakly converge to Gaussian processes on [0, T ] as n > co. Hence, we have

JPISY = Syllr = Oy(1) asn— oo
and

JISE = Szllr = O,(1) asn—

where ||-{|; denotes the supremum norm on [0, T ] and O, (1) is bounded in probabil-
ity. Therefore, in (4.12) we have that for any W; < T + 1,

M;(x) < ﬁop(l) + Ma(n), (4.19)
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which implies

vnam) sup  Mi(x) <. /a(mO,(1) + M /na*(n) B 0 asn— 0. (4.20)

A, s W <G,

Note that for a single point x, (4.11) becomes

| £u6) = Fu)] < Op(1)/[na(m] +1Z,(x)]  sup  Mi(x). (4.21)

From Rosenblatt (1971), we know

E{Z,(x) — /() [Sr(x) = Sz(x)]}* >0 as n— co. (4.22)
Hence, (4.20)4.22) imply

Vramfu(0) = J)| B0 asn— oo, (4.23)

Rosenblatt (1971) showed that as n —» oo,

Vna(n)(Z,(x) = f(x) [Sy(x) = Sz(x))) > N (Qf (%) [Sy(x) — Sz(x)] f K?(u) du>,

(4.24)

if na®(n) - 0, as n —» oo. Therefore, (2.35) follows from (4.23), (4.14) and (4.24). [

Appendix

Proof of (2.15). Note that a solution § ¥ of (2.5) is self-consistent and is a nonincreas-
ing function with values in [0,1]. From (2.8) and (2.13), we have that

Q" (r) = SP() = 1 — [the number of W/s < t with 8, = 2]/n
for any t < A,, because S (t) = 1. This implies
[the number of W’s < t] = [the number of Ws <t with §; = 2].

Hence, we have §; = 2, if W; < A,. Similarly, from (2.8) and (2.14), we have that for any
t > an

Q"(t) = SP(r) = [the number of W;’s > r with J; = 3]/n
because S5'(f) = 0, so that
[the number of W’s > t] = [the number of W;’s > t with §; = 3].

Hence, we have 6, = 3,iff W; > B,. [
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