POINTWISE A POSTERIORI ERROR ESTIMATES FOR
MONOTONE SEMI-LINEAR EQUATIONS

RICARDO H. NOCHETTO, ALFRED SCHMIDT, KUNIBERT G. SIEBERT,
AND ANDREAS VEESER

ABSTRACT. We derive upper and lower a posteriori estimates for the maxi-
mum norm error in finite element solutions of monotone semi-linear equations.
The estimates hold for Lagrange elements of any fixed order, non-smooth non-
linearities, and take numerical integration into account. The proof hinges on
constructing continuous barrier functions by correcting the discrete solution
appropriately, and then applying the continuous maximum principle; no geo-
metric mesh constraints are thus required. Numerical experiments illustrate
reliability and efficiency properties of the corresponding estimators and inves-
tigate the performance of the resulting adaptive algorithms in terms of the
polynomial order and quadrature.

1. INTRODUCTION

Adaptive finite elements methods (AFEM) are a popular and efficient method
for the approximation of solutions to partial differential equations (PDE). A crucial
theoretical step in designing these methods are a posteriori error estimates that
relate the error to quantities that are computable in terms of the discrete solution
and data. For an overview on these methods, techniques, and their development,
we refer to the books [2, 26].

Most a posteriori error estimates have been derived for the energy norm error.
In contrast, the pointwise error has been investigated much less and, up to now,
only for linear finite elements: [10, 17] analyze the linear elliptic problem, while
[19, 20] treat the elliptic obstacle problem.

In this article we consider the Dirichlet problem for a monotone semi-linear PDE,

(L.1) —Au+ f(,u) =0 in§, u=g on 0%,

in a polyhedral domain Q C R? with d > 2, and approximate its solution with
continuous finite elements of any fized polynomial degree; we thus study the so-
called h-AFEM. Instead of the Laplacian A, we could examine more general elliptic
operators with variable coefficients, but the analysis would inevitably get much
more involved, which we want to avoid here. Denoting the finite element solution
by up, our main result (see Theorem 4.2) reads

(1.2) [u = unlloo;0 < Moo + Nd + Nay2-

The contribution 7., estimates the residual in an appropriate dual norm and the
approximation of the boundary values, while 14 + 74,2 estimates the error due to
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numerical integration. The proof of (1.2) hinges on the construction of barrier
functions for (1.1). They are obtained by suitably altering the discrete solution
up, via the Riesz representation w &€ Hl(Q) of the residual, namely u; + w, plus
additional constant corrections (vertical shifts). This idea has already been used
by Nochetto, Siebert, and Veeser for the elliptic obstacle problem [19, 20], but the
analysis here is simpler and thus more transparent. Complementing local lower
bounds are also established (see Theorem 4.3). Several comments are in order:

e For the linear case, where f does not depend on its second argument, the afore-
mentioned estimates generalize [10, 17] in two aspects: the polynomial degree is
not restricted to one and numerical integration is taken into account. They are
both novel features in maximum norm error analysis.

e The use of numerical integration for (1.1) corresponds to the discretization of
the constraint in the obstacle problem, where the nonlinearity f is a maximal
monotone graph. The treatment of quadrature here and discretization of the
constraint in [19, 20] are different. We propose a novel multidegree splitting which
evaluates a posteriori the effect of quadrature and does not require smoothness
of f(x,-) beyond continuity (see §3.2).

e In (1.2) the contribution 7, p = d/2,d, 0o, is the £,-norm of the corresponding
local indicators. These contributions thus “accumulate” in different ways. An
estimator with such a property was also used in [19] and handled with an appro-
priate two-step marking strategy. Here we use a similar strategy and investigate
its performance in Remark 4.4 and §5.

e Since we use the continuous mazimum principle to deal with barrier functions,
our current results are neither restricted to polynomial degree one nor impose
any geometric mesh constraints such as weak acuteness.

We study the Riesz representation w of the residual in §3, whereas we construct
barrier functions and prove error estimates in §4. We conclude in §5 with several nu-
merical experiments which explore reliability, efficiency, and performance of AFEM
for different polynomial degrees, quadrature, and interesting model problems; the
implementation has been realized within the toolbox ALBERTA [24, 25].

2. THE CONTINUOUS PROBLEM AND ITS DISCRETIZATION

Let © be a bounded, polyhedral, not necessarily convex domain in R? with
d > 2. The nonlinearity f: Q x R — R is assumed to be continuous in Q x R and
non-decreasing in the second argument; however, we could also treat a piecewise
continuous f in the first argument, with respect to the underlying mesh. The
Dirichlet boundary datum g satisfies g € H*(Q) N C%%(Q) with 0 < o < 1.

Let u be a weak solution of (1.1). More precisely, if we write (p, 1) for fQ oY,
then wu satisfies

(21) weg+ HY(Q): (Vu, Vo) + (f(,u), v) =0 for all v € H'(Q).

It is known that such w exists, is unique, and is bounded [7, Lemma 16], [11,
Section 9.3], [15, Section II1.3]. Since x — f(z,u(x)) is thus a bounded function,
regularity theory for linear elliptic PDE ensures that u is Holder continuous in
[11, 12, 13, 15].

Therefore, it makes sense to approximate u in Lo (2) with continuous finite
elements. We shall use elements of any fixed order and numerical integration for the
nonlinearity f. Given a conforming and shape-regular triangulation 7y, of {2, made
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of closed elements T', let V}, indicate the space of continuous piecewise polynomial
finite element functions of degree £ > 1. We set Wo’h =V, N Hl(Q) and gp := Ipyg,
where I}, is the Lagrange interpolation operator onto Vj,.

For ¢, 1 € C°(Q), we define

(2.2) (0, 0), = Y Qrlpv),
TeT,

where Qr is a quadrature formula for the integral over T € 7}, that is induced by
a fixed quadrature formula @ on a reference element T. We suppose that @ has
positive weights, is exact for polynomials of degree ¢ with

(2.3) q > max{2({ —2,1}

and that all quadrature points are contained in T; q > 1 is the order of Q Restric-
tion (2.3) is consistent with the a priori analysis [9, Section 4.1], and is crucial to
obtain optimal convergence rates for uniform refinement which can be a particular

case of adaptive refinement.
The discrete problem then reads as follows:

(24)  upe€gh+Vi: (Vun, Vo) + (f( un), vp), =0 for all vy, € V.

Thanks to the positivity of the weights in the quadrature formulae, the discrete
nonlinearity is monotone and thus Problem (2.4) admits a unique solution; see [21].

3. ESTIMATION OF RESIDUAL AND ITS RIESZ REPRESENTATION

Key ingredients of our a posteriori error analysis are the residual Ry, € H~1(£2),
(R, ) = = (Vun, Vo) = (f(-,un), ¢)
= (V(u—un), Vo) + (f(;u) = f(-;un), ¢)
for all € H(Q), and its Riesz representation w € H'(Q) satisfying
(3.2) (Vw, Vo) = (R, @) for all € H'(Q).

In this section, we first establish a posteriori estimates of R, in negative norms
which are then used to derive pointwise estimates for w. Correcting the discrete
solution up, with w yields barriers for the true solution u. These barriers combined
with the pointwise control of w by estimates of Ry, finally lead to a posteriori control
of the pointwise error ||u — up||o0;0; see §4.1 and §4.2.

(3.1)

3.1. Estimating the residual. We start by introducing some notation. Let I'j, be
the union of (closed) inter-element sides (edges in 2d and faces in 3d, respectively)
of 7;, and [Onup] be the jumps of the normal derivatives of uj;, across inter-element
sides. More precisely, given a common side v =TT NT~ C I'y,, we have on v

[0nun] = (Vunr+ — Vupir-) - n,
where n is the normal of v that points from T~ to 7.

Let hr be the diameter of an element T and denote by h € L, (£2) the piecewise
constant function with h‘Tv = hp, T € Tp; recall that elements T' € 7}, are closed. In
the following analysis the symbol ‘<’ stands for ‘< C’, where the generic constant
C does not depend on h but may depend on

e the shape-regularity of the partition 7p,,
e the quadrature formula defined on the reference element,
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e the domain 2 and its dimension d.

By II;, we denote the Clement interpolation operator into the space of continuous
finite element functions that are piecewise affine over 75, and have homogeneous
boundary values. The following properties are valid for all 1 < p < oo, T € T},

(3.3a) IMrpllpir < ollps, () ¢ € Ly(Q),
(3.3b) IVILollpr < 1V lpacrs p € W,y (Q),
(3.3¢) I = nellpir < hrlIVellp, 1) p e W, (),
(3.3d) e — Mnellvr < A2 I D?*@|l1a, () p € W2(Q) N HY(Q).

Hereafter, Uy (T) denotes the set of all triangles 77 € 7, that have a non-empty
intersection with 7.

We now start by estimating the residual R;,. In view of the definition (2.4) of
up, We may write

(3.4) Ry ) = (Rn, ¢ — Ilnp) + <f(= Uh),Hh(p>h - <f(= Uh),Hh(p>

for all ¢ € H'(€). The estimation of the first term is fairly standard; for conve-
nience of the reader, we give the main steps. Piecewise integration by parts yields

(35) (Ru. ¢~ g = / [Ourun] (9 — Thp) + / [Aur, — f(un)] (o — Thep).

'y Q

Here, Aup, has to be understood element-wise. To simplify notation, we define for
any 1 < p < oo the residual indicator R, over T' € T}, by

(3'6) Rp|T = h;l/p |T|71/p|| [[anuh]] Hp;BT\aQ + |Auh - f(ﬂ uh)|7

where p’ = p/(p — 1) is the dual exponent of p (with the usual conventions for
p = 1,00); the first term is the jump residual and the second one is the interior
residual.

Lemma 3.1 (Residual estimates). For any 1 < p < oo, we have
(3.72)  (Rn, ¢ — h) < [|h*Recllocsall D*¢llis,  for all o € WE(Q) N H(Q)
(3.7b) (R, » = lnp) < Ryl pallVeollpo Jor all p € Wpl’ ().

Proof. Estimate the right hand side of (3.5) with the help of the stability and
approximation properties of the Clement interpolant (3.3) as well as a scaled trace
inequality. ]

3.2. Estimating the quadrature error. Let us turn to the last two terms in
(3.4), which are related to the quadrature error. Defining £, € H~(Q) by

(3.8) (Eny @) = (fCoun), TTn@), — (f(un), ) for all p € HY(Q),

we have

(3:9) (En )= > [QT(f(',Uh)Hhsﬁ) —/ f(',Uh)th} =Y Er(fupn).
TET, T TET,

Hereafter, we use the abbreviations f5 := f(-,usn), @n := e, and Ep(-) stands
for the local quadrature error on 7', T' € 7}. In view of our assumptions on Qr,
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the error Er satisfies

(310a)  [BEr()| = |Qr(¥) - /T B < AT|[Wllocir for all v € CO(T)

and
(3.10b) Er(y) =0 for all ¢ € Py(T).

In order to proceed further, it is useful to notice the following facts:

e the cancellations (3.10b) in the quadrature error are related to the product frep
and not only to f, or the discrete test function pp;

e in general, f, = f(-,up) is not polynomial and thus usually frp, can not be
integrated exactly;

e we do not suppose that the nonlinearity f is differentiable; hence, an application
of the Bramble-Hilbert lemma involving derivatives of fj, ¢y and thus of f is not
possible.

We overcome these difficulties by a multidegree splitting of the consistency error
using different interpolation/projection operators. The idea is based on the method
used in [9, Section 4.1] for estimating the quadrature error in the a priori analysis.

Lemma 3.2 (Consistency estimates). Let ¢ > ¢ be the quadrature order. For v €
C%Q) and j = q,q— 1 let Iiw be any element-wise approximation of ¥ satisfying
I,Zz/J‘T inP;(T), T € Tp,. For1<p<oo,let|-|, be the {,(R*T) norm and e}, the
sequence given by

(3.11) e = ITI"P|f(oun) = B f(oun)loosr for all T € T,

The following estimates for the consistency error hold
(3.120) (& 0) < [t olare + 1hel o] 1Dl
Jor all o € W2(Q) N HY(Q) and

(3.12b) (Ens ) < Il lage + 15 a] IVl
for all ¢ € Vonl, (Q) and 1 < p < oo with p’ =p/(p—1) the dual exponent of p.

Remark 3.3 (Choice of I,JI) The optimal choice for I,{fh‘T would be the best
approximation in L., of fr, = f(-,up) in P;(T). In general, for j > 0 this best

approximation is not easy to compute. Since I ,]I can be any approximation operator,
we have used the computationally convenient Lagrange interpolation operator into
the space of piecewise polynomials of degree < j in our implementation. Note that,
in view of the stability of Lagrange interpolation in C°, this is a quasi-optimal

choice.

Proof of Lemma 3.2. In addition to the operators I,{ we need the Ls-projection P,g
onto the space of piecewise constant functions over 7j, i.e. P,?z/J‘T = ﬁ fTw for
Y € La(Q) and T € Tp,. As a first step, we decompose the discrete test function ¢y,
into

on = Plon + [on — PPon).
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Using representation (3.9) along with (3.10b) — quadrature Qr is exact of degree
q > 1 — and the fact that ¢ € P1(T) for all T' € Tj, this splitting implies

(Eny ) = Z Er(faen) = Z [ET(fhPﬁcph) + Er(falen — P;?wh])]

TET, TET,
(3.13) = > Br(lfa— I flPlon) + Y Er([fn — I fullen — Pren)).
TeTh TeT,

We now estimate the sums on the right hand side of (3.13) separately and start
with the first one. The stability of quadrature (3.10a) readily implies

Er([fn = LifulPRen) < 207/ fn = I fullsoir | PRonllooir
for each element T € 7,. Using the stability of PP in L (T), an inverse estimate,
and the local stability property (3.3a) of II;, we obtain for the second factor
PR enllocsr < lenlloost < BT lienllasa—zyr < ha el @2y,
using the convention d/(d — 2) = oo for d = 2. Thus summing over T' € 7}, the
Holder inequality in R#7» with p = d/2 and p’ = d/(d — 2) gives

> Br(fn — LLnlPlen) < > bllfa = I fulloosr el ad—2)um )
TeT, TeT,
(3.14) 2/d

d/2
< | S bl = BAIL | lelasa-2e < 164 las2l D010,
TeT),

as a consequence of definition (3.11) of sg /2 and the global Poincaré-type inequality

lella/—20 < [D*¢lli,o. The latter follows from [12, Corollary 7.11] for d > 2
and [6, Lemma 4.3.4] for d = 2, after removing the lower order terms in [[¢[[yy2(q)
because ¢ has zero trace.

For the second sum in (3.13), we use again quadrature stability (3.10a) to get

Er([fn — I ful lon — BRen)) < W1 fn = I fullooirllon — PRenloorr
Proceeding as before, now with stability property (3.3b) of IIj, we obtain
lon — Plonlloor < hi llen — Plonllas—1yr
< b7 NVenllas@a-yr < W NVellasa-1)wn ).

As above, we combine this with an Holder inequality and the Poincaré-type in-
equality [[Vella/@a-1);0 < [D?*¢ll1;0 [11, Theorem 2 - p. 265] to write

> Br(Ufn— 1 fullen — Pien)

TeT,
<> W= I fulloor IV ella) a1y (r)
(3.15) TeT,
1/d
< | D0 =T | ID%ellie < 1heh al D*¢lle.

TeT,

Estimate (3.12a) is now a consequence of (3.13) combined with (3.14) and (3.15).
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We proceed similarly to show (3.12b), and only give the main steps. To estimate
the first contribution in (3.13) we now use

IPYonlloosr < b llenllas -1y < ha lellaya—1yan Ty,
whence
> Er(fn — LifnlPon) < > hrllfa = I fullso:r 1ol asa—1yu )
TeT), TeTy
(d—2)/d
d/(d—2)

< |h_153/2|d/2;9 Z ”(pHd/(dfl);Z/{h,(T) = |h_15§/2|d/2;ﬂ||%0||d/(d—l);ﬂ’
TeT,

because |£|q/(a—2) < [€la/a—1) for all £ € R#7». The Poincaré-type inequality
llella/@a—1):0 < IVellpia, valid for all p’ > 1, finally yields
(3.16) > Er([fa—LlPlon) < 17l olajzl Vollyo-
TeT),
For the second term in (3.13), we use
llon = PRenlloor < hy lellaa-nwn e

together with similar arguments to those above to arrive at

(3.17) > Er(lfn — L fallon — Plen]) < 125 all Vellpa.
TeTh
Estimate (3.12b) is then a consequence of (3.13), (3.16), and (3.17). O

Combining the residual estimates (3.7) and quadrature estimates (3.12), in con-
junction with (3.4), directly implies the following estimates for the negative norms

10—, 000 := sUP{ (¥, @) | ¢ € H' (W) NWi(w), [D*¢]l1w < 1},

Il o = sup{ (. 0} | 0 € Wy (), Vel < 1},

defined for any open subset w C Q, 1 < p < oo and p’ = p/(p — 1), the dual
exponent of p; the use of w C 2 will be essential in §4.2.

Corollary 3.4 (Control of the residual). Let the residual Ry be given by (3.1).
Then, the following negative-norm estimates hold true

(3.18a) |||Rh"|72,oo;ﬂ < ||h2R00||00;Q + |53/2|d/2 + |h5371|d
and
(3.18b) IRt o < 1Ry llocs + [ e playe + €5 a-

Remark 3.5 (Relation between residual and error). Having established in (3.18a)
an estimate for the residual norm ||R4|_5 ..., one might think that this would be
equivalent to the pointwise error ||u — up|oo:0- In §4.2 we will show

[|u — Uh”OO;Q < N,

where the error estimator 7, contains the terms from the right hand side of (3.18a)
plus the boundary correction term ||g— gp||oc;00- Integration by parts in (3.1) yields

the following identity for any function ¢ € W2(€2) N H ()

<Rh7 QO) = - <u — Uh, A@) + ~/6S2(u - Uh)a,,(p—l— <f(7u) - f('vuh)v 90>'
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Hence, we infer that for any subdomain w C 2

(3.19) IRAN -2 0000 = Nt = tnllooio + WS o w) = £ un)l g 000
holds just as well
(320) |||f(7u) - f('7uh)"|—2,oo;ﬂ < |||Rh"|—2,oo;ﬂ + ||U‘ - uhHOO§Q < M-

From these estimates we see that error ||u — up||oo;0 and residual |[Rp|_5 ..o do
not relate directly. For [[Rp|l_, ..o to be an effective error measure we need to
enlarge the error concept and incorporate || f(-,u) — f(-,un)||_g oo.0

Remark 3.6 (Order of consistency estimators). The proof of Lemma 3.2 only re-
quires ¢ > ¢. However, since ¢ > max{2{ — 2,1} > ¢ for £ > 2 and interpolation
operators of order ¢ and ¢ — 1 occur in the definitions of € /o and 5371, we may
wonder how our a posteriori error analysis compares with the well established a pri-
ori error analysis [9, Section 4.1]. We first note that the test for the residual Ry, in
(3.4) involves only piecewise linear polynomials rather than polynomials of degree
< ¢. This allows us to exploit more cancellation in (3.13) than it is possible in the a
priori analysis. For smooth functions f(z, ), the consistency estimators may decay
faster than the residual estimator ||h?Roo | co:0. On the other hand for rough func-
tions this may not be the case; we explore this issue further in Remark 4.4. In any
event, it is the collective contribution of both residual and consistency estimators
what controls [[Rp]l _, .. and eventually the pointwise error.

3.3. Estimating the Riesz representation. In this section, we use (3.18) in
order to prove an a posteriori L, estimate for the Riesz projection w = (—A) "Ry,
We establish this bound in three steps: We first bound w in a Hdélder space, thus
stronger than L. (Q2). We then give an estimate weaker than ||w||ee,q, and finally
we combine these two estimates. We use the same techniques as in [19] but, since
they are not standard, we repeat them here for the reader’s convenience.

Lemma 3.7 (Holder continuity of w and its control). The Riesz representation w of
the residual Ry, is Hélder continuous. More precisely, for every p > d there exists
a € (0,1) such that

(321) [wl[o.a@) < ClIRAIy pa s
where the constant C' depends on  and p, and blows up as p | d.

Proof. Estimate (3.21) is a classical Holder estimate of De Giorgi and Nash (see
e.g. [15, Theorem C.2]). O

Recalling estimate (3.18b) for |Rx[l_, ,.q we realize that the right hand side of
(3.21) is a first order estimator only, while we have to estimate |w| oo, by a second
order estimator (assuming a smooth nonlinearity f). A key step for recovering a
second order estimator is performed next.

Since w is continuous and satisfies wjpn = 0, there exists a point zp € 2 with
|w(zo)| = ||wl]|cos- Invoking the uniform cone property of Q [1, Section 4.7], we can
choose a ball B with radius p such that B C €, dist(zo, B) < p, and p = C’hﬁin,
where Apin is the minimal meshsize of 7j,, i.e.

hmin = min h'T;
TG,Z’}L
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and 8 > 1 will be chosen later. Now, let § € C5°(£2) be a regularization of the
Dirac mass satisfying

(3.22) suppd C B, §=1, 0<d=<p @
Q

Taking 1 € B such that (J, w) = w(z1), we may write

(3.23) [w]loos < [(8, w) | + w(wo) — w(a1)].
Lemma 3.7 implies the following estimate for the second term of (3.23):
(3:24) w(@o) = wlw)l < A IRl -1

A bound for the first term in (3.23) is established in the next lemma.

Lemma 3.8 (Estimate for (0, w)). The regularized Dirac mass 6 of (3.22) and the
Riesz representation w of the residual Ry, satisfy

(6, w)| < C |og hmnl® IRAls i
where the geometric constant C' depends on (3 via p.
Proof. Introducing the regularized Green’s function G € H'() defined by
(VG, V)= (8, ¢)  forall p e H(Q),
we obtain in light of (3.2)
18, w)| = [(VG, Vud] = [(Ras G| 5 IRl g ID?Cll10

The assertion of the lemma now follows by applying the following estimate of No-
chetto [17] in two and of Dari et al. [10] in three space dimensions for the second
derivatives of the regularized Green’s function in any polyhedral domain:

||D2G||1;Q =< | lOg hmin|2'
The constant hidden in < depends on 3 via p. O
Combining the two previous lemmas yields the main result of this section.

Proposition 3.9 (Pointwise estimate of |w|). The mazimum norm of the Riesz
representation w of the residual Ry, satisfies the a posteriori bound

(3.25) [wlloc:2 < 1108 humin|* | 1h* Rocllscs2 + e85l as2 + |h€§71|d]
Proof. Combining (3.23) and (3.24) together with Lemma 3.8 yields
(3.26) lwllosie < 1108 hunin|* IRAN s, 000 + Pt IRAN 1 2 -
Estimate (3.18a)

IRA 5 00 < 10 Rocllocsr + [ 5 as2 + 1P a

directly gives the desired second order estimator for the first term of the right hand
side of (3.26).

Let p > d be fixed and let o € (0,1) be given by Lemma 3.7. Now choosing
B =1/a, wesee hy = hyin < by for all T € 7, and, recalling (3.18b), we achieve
the second order estimator also for the second term of (3.26)

_ —1
Bt IRANZ e < Bunin | 1Byl scso + A€l olaya + 12§ a

1
< ||h2ROO||OO;Q + |Eg/2|d/2 + |h53 ld,
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where we have used a Holder inequality for the first term. O

4. A POSTERIORI ERROR ESTIMATES

The a posteriori upper bound for the pointwise error ||u — up||o0;0 is established
in two steps. In the first step, the Riesz projection w of the residual Ry, is used for
constructing barrier functions for the true solution. These barrier functions together
with the pointwise estimate (3.25) of w then directly yield the upper bound.

4.1. Barrier functions for the true solution. The basic idea for the construc-
tion of the barrier functions for the true solution is a correction of the discrete
solution u;, by means of w and a term due to approximation of boundary values.

Proposition 4.1 (Upper and lower barriers). Let uj, be the discrete solution given
by (2.4), w be the Riesz representation (3.2) of the residual Ry, and gn be an
approzimation of boundary data g. Then, the functions

(4.1a) wt = 4w+ [ + 9 — gnllocion
and
(4.1b) Uy = up +w — wlloss;2 — 19 — gnllooson

are an upper, respectively lower barrier to the true solution u of (2.1), i.e.
U < u < u* i Q.

Proof. To establish that w* is an upper barrier of u, we let v = (u — u*)y =
max{u — u*,0} be the non-negative part of v — u*. On 99, we have
u—up —w— [wlles;o = |9 = gnllosso0 < 9= gn — |9 — gnllocson <0,
whence v = 0 on 0Q2. By the definition (3.1) of the residual R, we obtain
||Vv||§;Q = (V(u—u"), Vo) = (V(u —up), Vo) — (Vw, Vv)
= (V(u—wun), Vo) = (R, v) = = (f(-,u) = f (-, un), v)

:—/ [f(u) = f(,un)] vda.
{v>0}

Let z €  with v(z) > 0. This implies u(x) > u*(x) which gives
w(@) > un(z) + w(z) + [ wllooo +19 = gnllocoa = un(z).
—_———

>0

The monotonicity of f in the second argument then yields f(x,u(z)) > f(x,un(x))
for v(z) > 0 whence [f(z,u(z)) — f(z,un(z))]v(z) > 0. Therefore

IVola <= [ (@) - fu@)]o@) ds <0
{v>0}

which implies v = 0 since v = 0 on 9f). Hence, we derived the upper bound u < u*.

To establish that w, is a lower barrier of u, we now use v = (ux — u); =
max{u, — u,0}. As above v = 0 holds on 09, thanks to the correction term
—|lg — gnllso;00 in the definition of u.. Definition (3.1) of the residual R, then gives

Vol = (76w = ) o) = [ (o) = fwn)] v

{v>0}
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For points z € 2 with v(z) > 0 we conclude
u() <up(@) + wx) = wlocsa = g = gnllocson < un(@).

Monotonicity of f implies f(z,u(x)) < f(z,up(z)) for v(z) > 0, which yields
Vol < [ [fGeu@) - S un(a)] of)do <0
{v>0}

and thus u, < u. This is the asserted lower bound. O

4.2. Error estimator: Pointwise upper and lower bounds. A consequence
of the barriers (4.1) is the bound

(4.2) [ = unllocso < 2[wllocia + llg = gnllocso0-

Pointwise control (3.25) of w in terms of the discrete solution and given data now
directly gives rise to the a posteriori error estimator

nn = |log hmin|2 CO||h2ROO||00;Q + 01|€§/2|d/2 + 02|h5371|d +lg - gh”OO;@Q-

Here Ay is the smallest meshsize, R, is the local residual, defined in (3.6), ¢ is the
quadrature order (2.3), €/ is the local consistency estimate, defined in (3.11), and
gn = Ipg is the approximation of boundary data in V. Finally, cg,c1,co are the
constants appearing in the analysis presented above, and may depend on the degree
q of quadrature formula, the shape regularity of the underlying triangulation 7},
and . Remarkably, these constants do not depend on the nonlinearilty f, which
is assumed to be continuous in both arguments and monotone in the second one.

Theorem 4.2 (Reliability). Let u be the true solution given by (2.1) and wuy the
discrete solution given by (2.4). Then the following a posteriori estimates hold

lu = unllocia < mny I w) = FEun)ll g o0 < 0

Proof. The estimate for |u — up||co; is obvious in view of (3.25) and (4.2). The
estimate for || f(-,u) — f(-,un)|| _3 o.q then directly follows from estimate (3.20) in
Remark 3.5. O

Finally, the lower bounds are proven with the standard techniques introduced by
Verfiirth [26]. We also refer to [17, 19] for the Lo, analysis. We sketch the proofs
and start by defining data oscillation as follows:

OSC(fh;w) = ||h2[f(= uh) - f(u uh)]”oo;wu

where w is a union of elements and f is a piecewise polynomial approximation of f of
degree > ¢ + 1 so that osc(fr;w) is formally of higher order than any contribution
in n,. We say that a local (global) indicator is locally (globally) efficient if it is
dominated by the local (global) error plus local (global) data oscillation.

Theorem 4.3 (Local efficiency). The residual indicator |h?Reo||so:0 and boundary
datum indicator ||g — gnlleoso0 are locally efficient. In particular, for all T € Ty, the
bound
182 Roclooir + 119 = gnllossornan
< lw = wnllooswry + 1 Cow) = F un)ll Zg aw(ry T 05¢(fn; w(T)
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is valid, where w(T') is the union of all simplices in Ty that share one side with
T. On the other hand, if ¢ > £ — 1, the consistency indicators are locally efficient,
namely

[u = unlloow(my + 1 (5 w) = FCun)ll g oy + 0sc(fns w(T)).

Proof. Since g— gn = u—wuyp, the estimate for the boundary data indicator is trivial.

We now recall the definition (3.6) of Re|r for T € T3, and first deal with the
interior indicator. We again set f, = f(-,u) and define fr = f(-,us). Since
(Aup, — fr)|7 is a polynomial of degree k > ¢ + 1, we have

| Aup, — follooir = /T(Auh — fu)¢rbr

for a suitable ¢r € Py (T') with ||¢r|l1;7 < 1; here by is a suitable bubble function
in W2(T) N HY(T); see [17, 19, 26]. Integration by parts and (2.1) yield

/T(Auh — fn)erbr = (R, Crbr) + / (fn — fn)lrbr,

whence, with the aid of ||(rbr|l2,1.7 < [|D?((rbr) |17 < hy? and (3.19), we deduce

Wl Aun = fulloor < llu = unllsor + I = full g ccir + 0sc(fa; T)-

We consider next the jump residual. Given a side S, let bg be a suitable bubble
function in W2(w(S)) N H'(w(S9)), where w(S) is the union of the two elements
sharing S; see [19]. Since [Onun] € Pe—1(S), for a suitable function (g € Py—_1(w(S))
such that ||(s|l1;s < 1, we have after integration by parts

Eal/2T"’hT5dT

| [Onun] ||oc;s < / [Onun] Csbs = (Rn, sbs) + (fn — Aun, Csbs),
S
whence

[ Ontun] llssss < B IR sy + sl — Atnllocruis).

Combining this with (3.19) and the previous estimate for the interior residual, we
obtain the desired local estimate for ||h%Reo||oo:7-
We finally deal with the consistency indicators. We note first that

ednr S P fn = I fullosr < B0 = Fullosr + W2l fn — I fullocir

Since fp — I nfn is a polynomial in T, there exists a polynomial (7 of the same
degree with ||¢r|l1;7 < 1 such that

1= Fifullr < [ (= 12)Grbn
:/ ((fh—Auh)—Ig(fh—Auh))CTbT—l—/ (fh—fh)CTbT
T T

because Auy, € Py_o(T) and ¢ > ¢ — 2. Consequently, we conclude
Wl fo = I fullooir < 102 Roollooir + ose(fa; T)

and thus the asserted estimate for €4 /2,7 is established. We next observe that

hTEdT W2 frn — I 1fh||Oo .7, and so the same argument as of ad/2 r applies
whenever ¢ — 1 > ¢ — 2. This completes the proof. O
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Remark 4.4 (Global efficiency). The local bounds for the indicators ||h%Reo||co:r
and ||g — gnlleo:oTnon in Theorem 4.3 immediately imply a corresponding global
lower bound and so these estimator contributions are globally efficient too. This is
not clear for the consistency indicators 53 /2.1 and hngTTl, since they accumulate
differently from the maximum norm error: contrast

e = > (&)’ = D 1T = I fullZr

TeT), TeT,
with
[lu — up|loo:o = max ||u — up || o (T)-
’ TeTh ’ ( )
10° 10
2—A Cons Est -4 Cons Est
v Res Est v Res Est
4 =8 Err | -4 =8 Er |
10 =~ opt 10 = opt
10°F 10°
10°F 10°
107 S b 107
-8 Ll e -8 Ll M W
10 10
10° 10* 10° 10° 10* 10°
NDOF NDOF

FIGURE 4.1. Decay of error and estimators (residual and consis-
tency parts) vs. number of degrees of freedom (NDOF) for a lin-
ear problem with non-smooth right hand side: uniform refinement
(left) and adaptive refinement (right).

In order to investigate this issue, which is unrelated to the nonlinear structure of
(1.1), we numerically compare the computable part of the error ||u — up|0o;0 and
. . . —1
the two estimator contributions ||h? R ||oe: + || g — ghloc:00 and |sg/2|d/2 +|hed ™ a
for the linear Poisson equation

—Au=f inQ, u=g on 0.

For smooth right hand sides f, numerical experiments suggest that the local con-
sistency indicators, which read |T|'/?|| f — I} f||co;r for the linear problem, exhibit
enough local cancellations for an optimal decay of the global consistency estimates
|e7 |, This is also observed for the nonlinear problem; see §5.2.

For the discussion on nonsmooth data, consider now the exact solution u(x) =
(lz| = R)§ with the corresponding forcing function

e = afa =1+ =) o) g

with o = 2.5, R = 0.5 and Q = (0, 1)?; the solution u is related to the semilinear
example of §5.3. Since f is Hélder continuous with exponent 1/2 but not C, the
effect of quadrature is noticeable for all polynomial degree £ > 1. Figure 4.1 depicts
the results for the case of uniform and adaptive refinement, using the marking
strategy designed in §5.1, with ¢ = 3 and ¢ = 4 for d = 2. It suggests that:

e the quadrature indicators are not globally efficient in general;
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e for this particular example, the convergence rate of the estimator is slightly less
than the rate (¢ 4+ 1)/d = 2 for regular forcing functions f, thereby indicating a
suboptimal decay for non-smooth data due to the missing global efficiency of the
quadrature indicators;

e in spite of the preceding observation, adaptive refinement is still far superior to
uniform one.

Remark 4.5 (Efficient consistency control). As already observed in [19], the quan-
tity |En]l g, o0.q is globally efficient. In fact, combining the relation of residual and
consistency error (3.4) with the bound for the residual (3.19) yields

IRl 2 0000 < e = wnllocso + 11 = full 2 0000 -

However, [|Ex]l_s o. is a global and noncomputable quantity and thus of little
practical value. Due to the product structure of the cancellation in &, we are
forced to deal with Sobolev spaces L4(£2) and Wdl/Q(Q) instead of WZ(Q) in the
derivation of local and computable indicators. We conclude that the efficient control
of quadrature deserves further investigation even for linear PDEs.

5. NUMERICAL EXPERIMENTS

We have implemented the nonlinear solver, error estimator and corresponding
marking strategy using the adaptive finite element package ALBERTA! [24, 25]. In
ALBERTA, an initial simplicial macro-mesh is refined by successive bisections of its
elements. Moreover, it can later be coarsened, by operations of junction of two
elements which initially constituted a single element.

The discrete nonlinear problems are solved with a damped Newton iteration.
The resulting linearized equations are solved by a preconditioned CG method. For
the experiments shown below, the Newton solver converged quite well with only
few damping steps.

5.1. Marking strategy. The aim of adaptive finite element methods (AFEM) is
the generation of a sequence of meshes by local refinement such that eventually the
error is below a given tolerance whereas the number of degrees of freedom (NDOF)
used for the finite element solution is as small as possible.

We follow the common, but still heuristic, practice of marking elements with
relatively large error indicators [5]; in general, this leads to quasi-optimal meshes,
a crucial property that has not yet been proved theoretically. In the present case,
however, the error estimator consists of three terms with different accumulation
properties:

Moo ¢ COHhQROOHoo;Q + Hg - thoo;Bfla
Naj2 ‘= 01|€g/2|d/2,
Ng := cz|hagfl|d.

A marking strategy aiming at quasi-optimal meshes must account for this fact.
Similarly to [19], we proceed in two steps:

1The original name of the toolbox ALBERT had to be renamed due to copyright reasons.
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e We select an estimator n,, p € {d/2,d, oo}, solely whenever it is relatively large
with respect to the total estimate, and thus its role is expected to be significant.
We implement this idea by first computing

Tmax = max{noo, nd/2a 77d}

and then choosing 7, provided n, > ONmax, Where 0 < 6 < 1 is a given parameter.
e For each 7, so chosen, we use the maximum strategy to mark elements 7' € 7,
such that

[ >
np(T) = G{Fﬂe% WP(T)7

where 0 < 6 < 1 is a given parameter and n,(T") is the element indicator.

In the experiments below, we have neglected the logarithmic factor ‘1og hfnin‘z
in the estimator and used, instead, 7 = 7)o + Na/2 + 1a- The Log-norms of element
indicators are approximated by computing the maximum absolute value among all
Lagrange nodes for 7th order polynomials. Parameters for the marking strategy
were § = 0.7 in selecting contributions and # = 0.5 for the standard maximum

strategy.

P, P, P

Tter NE| NR[NC| NE]| NR|[NC| NE[NR]|NC
1 1 il 0 4 7 4] 4] o0
2 16 16| 0 16| 16| of 16| 14| o0
3 64 48] 0 64| 52| 0 62| 30| o
4 222 170 Of 240| 10| of 178| 62| 12
5 766 | 464| 0| 276| 86| 20| 420| 12| o©
6| 2332| 472 o 592| 186| 0] 460|148 | 16
71 4108 | 2626| 6| 1246 0| 38| 1044 | 40| 56
8| 12806 | 1036 | 10| 1456 | 470 | 80 1532 | 0] 10
9| 16792 | 9806 | 14| 3526 | 474| 18 1602| 0| 86
10 || 48812 0| 30| 5348 0104 | 2208 | 136 | 4
11| 49006 | 4998 | 48| 5994 | 506 | 56 || 2760 | 0| 24
12 || 68284 0| 181 8394|3234 |1321( 2952 | 0124
13| 68420 | 37698 | 58 || 20358 0| 100 || 3954 | 248 | 36
14 || 188980 0| 32121136 | 682| 601 5322| 0] 76
15 || 189194 0| 86 | 24420 033815962 | 0]282

16 || 189774 | 19666 | 128 || 26698 | 4472 | 168 || 8162 | 262 | 22

TABLE 5.1. Free boundary problem (d = 2): Behavior of the
marking strategy for the first 16 iterations of AFEM. NE is the
number of mesh elements, and NR, NC are the number of elements
marked due to residual indicator and consistency indicator, for
piecewise linear P, quadratic Py, and cubic P53 finite elements. The
role of quadrature is more pronounced for higher order elements
because the residuals decay faster.

Table 5.1 shows results of the marking strategy for piecewise linear P1, quadratic
P53, and cubic P3 finite elements for the free boundary problem of Section 5.3 in
the case d = 2. It records, for each iteration of our AFEM, the current number of
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mesh elements NE, the number NR of elements marked due to residual indicator,
and the number NC of elements marked due to consistency estimate. After the
residuals get smaller during the first iterations, the consistency indicators cause
some additional mesh refinements. Consistency marking is more pronounced for
higher order approximations because the residuals decay faster. The effect of the
consistency estimator is even more noticeable in the boundary layer example of
Section 5.4, where the nonlinearity blows up and dominates the computation. After
a few iterations, nearly all refinement is due to consistency indicator.

5.2. Smooth nonlinearity. The nonlinear stationary Poisson-Boltzmann equa-
tion for the potential u corresponding to a given charge density p(x) reads

—Au + k?sinh(u) = p(z).

For k =1 and p = 0, an exact solution in 1d is given by (compare [23], e.g.)

i(s) = In (LOS(S)) .

1 — cos(s)

For a = (1.0,2.0)/v/5 € R?, we consider here the exact 2d solution u(z) = @(0.1 +
(z,a)) on the unit square Q = (0,1)2. The direction a was chosen such that the
gradient is not aligned with any mesh side. Function u attains its maximum in
the origin, «(0) ~ 6, which implies f(u(0)) = sinh(u(0)) & 200. Figure 5.1 shows
the convergence of AFEM for piecewise linear, quadratic, and cubic approximation.
For each polynomial degree, the decay of estimate and exact error, together with a
straight line giving the optimal decay, are depicted. For this smooth nonlinearity,
AFEM is able to attain the optimal decay rate after a few iterations, when the
behavior near the origin is resolved.

T I
~~opt
1007 GO Est
10—2,
10-4,
10°F
8 | | | | | -8 | | | | | 8 |
10 10 10
100 100 10° 10° 10° 100 100 10° 10° 10° 10t 102 10° 10* 10°
NDOF NDOF NDOF

FIGURE 5.1. sinh nonlinearity: Error estimate, exact error, and
optimal decay, for piecewise linear (left), quadratic (middle), and
cubic elements (right). AFEM achieves optimal decay rate after a
few iterations, when the behavior near the origin is resolved.

5.3. Free boundary problem. We now consider exact solutions of the form
ur.a(z) = (lz| = R),

on a bounded domain, where s; := max{s,0} denotes the nonnegative part of s.

The solution attaches to the zero level on the ball of radius R around 0, the contact

set; thus 9B(0, R) N is the free boundary. The corresponding Dirichlet problem

is
—Au(z) + f(z,u) =0 in QCRY, U=1UupRq onof
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with nonlinearity

a—2

TN (I ST =
f(x7u)— ( 1+(d 1) |I| > +

For a > 2, the nonlinearity is Holder § with g = O‘T_2 < 1 but nondifferentiable at

0. Problems of this form arise in reaction in porous media and have been studied
in [3, 22].

4&—A Cons Est 7
v—v Res Est
&8 Er
-- Opt

2 10° 4
NDOF

FIGURE 5.2. Free boundary problem: Convergence of consistency
estimator (upper curve), residual estimator (middle curve) and er-
ror (lower curve) for AFEM, together with dashed line showing
optimal decay versus number of degrees of freedom, for piecewise
cubic approximation.

Experiments were performed for d = 2,3 on Q = (0,1)¢ with a = 2.5 and
R = 0.5. As the exact solution is known, we can compare the error estimate with
the exact error ||u—up||oo:0. Figure 5.2 depicts the suboptimal decay of consistency
estimator, residual estimator, and pointwise error for AFEM with P3 elements; re-
call that a suboptimal decay was already observed for the linear case in Remark 4.4.
Figure 5.3 shows discrete solutions and meshes for two different iterations of AFEM.
In the interior of the contact region, for both d = 2,3, mesh refinement is mostly
dictated by mesh conformity. Figure 5.4 illustrates this effect in 3d along with
isolines of solutions. Since u € W2 (Q)\WZ2 (), quadratic approximation detects
the lack of regularity across the free boundary and refines accordingly (see Figures
5.3 and 5.4).

5.4. Boundary layer problem. We finally consider the problem
—Au(z) — p(z)u(r)” =0 in QCR? u=0 on 09,
with p(z) > 0 and v > 0. This equation is used to model the behavior of pseudo-
plastic fluids [8, 14], and is somewhat related to the black holes equation, for which
~ = 7 but the boundary condition is of Robin type [4].
Due to the blow-up behavior of the negative power u =" for u — 0, the function
u — f(xz,u) = —p(z)ul” is not continuous in R and does not fit our theory; in

particular, functions IZ(f(-,un)) and I~ " (f(-,us)) would be undefined on 99 for
all v. We circumvent this matter upon considering the regularized problem

—Au(z) + fo(z,uc(z)) =0 in Q CRY, ue =0 on 05,
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FIGURE 5.3. Free boundary problem in 2D: Solutions and meshes
from iterations 5 and 8 of AFEM using ¢ = 2, with 2557 (11587)
unknowns, error 2.82E-05 (1.64E-06). The solutions attach to zero
values in the circle B(0,0.5), the contact region, where the mesh
remains rather coarse and is mostly driven by mesh conformity.
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FIGURE 5.4. Free boundary problem in 3D: Mesh for piecewise
quadratic elements with 35812 unknowns, and isolines of solution
(at multiples of 0.01). The mesh remains rather coarse in the
contact region B(0,0.5).

where

fe(x,8) = —p(x) max(s,e) 7.
Since the solution u is Holder continuous for all v > 0, the question arises whether
or not u. converges to u in Lo (£2) with a prescribed rate. Before we explore this
crucial issue, let us pause to comment on the boundary behavior of u as a function

of v for p(x) uniformly positive; u is smooth in the interior of €2, depending on the
regularity of p. Lazer and McKenna [16] show the following facts:

e for 0 < v < 1, u dominates dist(z, d2), whereas for v > 1 it behaves exactly like
dist(x, 00) ==

e ue HY(Q) if and only if v < 3 but u ¢ C*(Q) if v > 1;

e the boundary behavior of u can be compensated by p(z) tending to 0 with a
prescribed order.
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We examine now the rate of convergence of u. to u. We claim that
(5.1) 0<u—u.<e in Q;

note that there is no constant in (5.1) and that p plays no role on it. This result can
be proved upon modifying a technique developed by Nochetto [18], which is briefly
described here. Consider two regularized solutions us and u. for § < €, and denote
e := us — us. We observe that both functions us and u. are weak solutions and in
fact they are globally Lipschitz. If we take the difference of the corresponding PDE
and multiply by the test function e?*+! ¢ H L(Q) with k an integer, then we obtain

/ VeVe™ ™+ (f5(-us) — f2 (- ue)) (us — uc)e® = 0.
Q

We first estimate the nonlinear term. Notice that if us > ¢, then fs(-, us) = fe(-, us)
and the nonlinear term is nonnegative by monotonicity. If 0 < us < ¢, instead, but
ue > ¢, then fe(-,ue) = fs(-, us) and the nonlinear term is again nonnegative. The
only case left is 0 < ug, ue. < €, for which we have the bound

/ p(@) (577 — &) (w5 — )™ < CFHI6 {0 < s < )| < O T
{0<us<e}

for all v > 0. On the other hand, the gradient term can be bounded via Poincaré
inequality as follows:

2k+1 2k+1
/VeV 2k+1 _ e /|V k+1|2>0(k;+1) /Q|e2(k+l)|'

Collecting the two estimates above, we arrive at

e 2k+1)|<c(k+ 1)? STk

Computing the power on both sides and taking the limit as k¥ — oo yields

[lus — telloo:o < €. We now take the limit as § — 0, and use the fact that us —
u uniformly, to deduce the bound [|u — uc|o;0 < €. To prove the claim (5.1),
it remains to show that u > wu.. This follows from a weak maximum principle

argument because fc(x,s) > f(x,s) implies
—Au+ fa(l',u) > —Au+ f(:v,u) =0,

whence u is a supersolution of the regularized problem.
We finally consider the example of Henson and Shaker [14] with

p(z) = max(0.25 — x1,0, 21 — 0.75),

on Q = (0,1)2. The solution exhibits a boundary layer where p > 0 and a smooth
boundary behavior where p = 0. For positive ¢, both the Newton solver and AFEM
work without any problems. Of course, the smaller ¢, the stronger local refinement
is generated near the boundary where p > 0. The mesh refinement is now mostly
dictated by the consistency error indicator which accounts for quadrature error.
The computed solution for v = 0.5 and € = 0.001, together with the corresponding
locally refined mesh, are shown in Figure 5.5.
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FIGURE 5.5. Boundary layer problem (scaled by factor 20) and
corresponding mesh for piecewise linear approximation with 3285
unknowns and estimated error ~ 6e — 4. Compare the boundary
layer effect for p(z) > 0 with the smooth behavior where p(z) = 0.
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