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Abstract

High-throughput sequencing technologies are currently revolutionizing the field of biology and medicine, yet bio-

informatic challenges in analysing very large data sets have slowed the adoption of these technologies by the

community of population biologists. We introduce the ‘Simple Fool’s Guide to Population Genomics via RNA-seq’

(SFG), a document intended to serve as an easy-to-follow protocol, walking a user through one example of high-

throughput sequencing data analysis of nonmodel organisms. It is by no means an exhaustive protocol, but rather

serves as an introduction to the bioinformatic methods used in population genomics, enabling a user to gain famil-

iarity with basic analysis steps. The SFG consists of two parts. This document summarizes the steps needed and lays

out the basic themes for each and a simple approach to follow. The second document is the full SFG, publicly avail-

able at http://sfg.stanford.edu, that includes detailed protocols for data processing and analysis, along with a reposi-

tory of custom-made scripts and sample files. Steps included in the SFG range from tissue collection to de novo

assembly, BLAST annotation, alignment, gene expression, functional enrichment, SNP detection, principal compo-

nents and FST outlier analyses. Although the technical aspects of population genomics are changing very quickly,

our hope is that this document will help population biologists with little to no background in high-throughput

sequencing and bioinformatics to more quickly adopt these new techniques.
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Introduction

High-throughput sequencing technologies are today

capable of sequencing billions of bases in a single

sequencing reaction (Hudson 2008; Morozova et al.

2009). These revolutionary techniques allow researchers

to sequence entire genomes or transcriptomes (Wang

et al. 2009) on a population-wide scale at reasonable cost

and are currently revolutionizing our view of many

important biological concepts, such as natural selection

(Pickrell et al. 2009; Yi et al. 2010; Pespeni et al. 2011),

gene flow (Tishkoff et al. 2009; Neafsey et al. 2010) and

gene expression patterns (Wolf et al. 2010; Renaut &

Bernatchez 2011). For example, Price et al. (2012) recently

used high-throughput sequencing to simultaneously

assemble nuclear, mitochondrial and chloroplast

genomes of the basal alga Cyanophora paradoxa and to

unambiguously demonstrate a single origin of all algal

and plant chloroplasts in the face of a complex pattern of

reticulate evolution. Barakat et al. (2009) used 454

sequencing to assemble Chestnut transcriptomes to find

genes and functional pathways involved in resistance to

a parasitic fungal infection, opening the door for genetic

engineering of resistant trees (Barakat et al. 2009).

Similarly, Poelchau et al. (2011) assembled a transcrip-

tome of an invasive disease-carrying mosquito and

identified genes involved in diapause, which allows

mosquitos to survive harsh winters, research that might

lead to better control of mosquito-transmitted diseases in

the future.
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Yet, the computational power and bioinformatics

knowledge needed to process and successfully analyse

these immense data sets have slowed adoption of this

approach for a large number of population biologists.

Increasingly powerful desktop computers make it possi-

ble to analyse short-read DNA sequence data, but analyt-

ical approaches are still being developed (e.g. Grabherr

et al. 2011; Haridas et al. 2011; Mizrachi et al. 2011), and

new software is being written constantly (Li & Durbin

2009; Simpson et al. 2009; Boisvert et al. 2010; Martin

et al. 2010; Pitt et al. 2010; DePristo et al. 2011).

Increasingly, published studies tend to omit many of

the steps needed to move from tissue sample to analysis.

Consequently, a great deal of trial and error is demanded

in every new laboratory taking up these tools. Further,

most analysis software to date require considerable

knowledge of computer scripting and micro-program-

ming. In many cases, there is a demand for custom-made

scripts to move from one analysis step to another, but

how to write or execute these requires learning a new

skill set (See Haddock & Dunn (2011)). Thus, there is a

need for an easy-to-follow guide that walks the user

through the steps needed from tissue collection, to

acquiring gene expression and genotype data on genome

or transcriptome-wide scales, to data analysis and visual-

ization.

In this article, we introduce the ‘Simple Fool’s Guide

to Population Genomics via RNA-Seq’ (from here on

‘SFG’), available at http://sfg.stanford.edu, a tool

intended as a guide to help researchers dealing with

nonmodel organisms start to acquire and process high-

throughput sequencing data. It aims at walking popula-

tion biologists with little to no background knowledge in

computer programming through an example analysis of

high-throughput sequencing data. It is intended as an

example of one way to process this kind of data, to

address a few specific biological questions (outlined

below). By getting started with a simplified analysis for

which scripts are already written, our intention is to

lower the steepness of the initial learning curve. After

walking through this protocol and focusing on bioinfor-

matic methods, the user will have acquired many skills

that will be useful for creating their own custom analysis.

In the long run, users will likely want to learn how to

write their own scripts in Perl or Python, a topic that is

not included in this protocol. However, by studying how

the scripts within this protocol are structured in combi-

nation with more general bioinformatic learning material

such as Haddock and Dunn’s ‘Practical Computing for

Biologists’ (2011), the user will be at an optimal starting

point for further learning.

We recognize that any SFG to Population Genomics is

partially obsolete already when published owing to the

speed with which the field is developing; but our aim is

to get the reader started, leaving future developments to

be incorporated as needed. The SFG covers tissue

collection, library preparation and computer setup and

includes data quality control, transcriptome assembly

and extraction of SNP and gene expression data.

High-throughput sequencing in population biology

There are numerous techniques currently in use that are

associated with high-throughput sequencing. Popula-

tion-wide whole-genome shotgun sequencing (Weber &

Myers 1997) data are still technically difficult to analyse

in nonmodel organisms, as repeat regions and insertions

and deletions in noncoding regions complicate assembly.

Also, an intense sequencing effort is required to gain suf-

ficient sequencing depth throughout unknown genomes

to confidently identify variant sites. This issue is now

starting to become less problematic with the extremely

high output and lower cost of new sequencing machines.

Also, development of new inferential methods for

assignment of genotypes from pooled individuals is

likely to decrease the coverage needed in the future (Li

2011). Yet, these issues must still be kept in mind when

choosing the sequencing technique for a new project. An

option is to initially sequence the genome of one individ-

ual through BAC library Sanger sequencing and then

resequence more individuals using a high-throughput

platform, as was recently performed by Jones et al.

(2012). This approach was successful in locating adaptive

sequences throughout the genome. However, the initial

genome sequencing was both time-consuming and

costly. In addition, current population-based genome

resequencing studies often rely on experimentally inbred

lineages (e.g. in Drosophila (Andolfatto et al. 2011; Turner

et al. 2011)), which is not feasible for studying variation

in natural populations.

As a result, it seems as if practical access to genome-

wide information from nonmodel organisms currently

requires that the entire genome be reduced in some way.

One way to do this is to concentrate on regions that sur-

round predefined restriction sites, used in the Genotyping-

by-Sequencing (Elshire et al. 2011), CRoPS (van Orsouw

et al. 2007) and RAD-Tag sequencing (Hohenlohe et al.

2010) techniques. These methods provide a cost-effective

way of identifying variant sites throughout the genome

(Davey et al. 2011), because many individuals can be

combined in one sequencing run by using barcoded

adapters, while still maintaining a high coverage over

the reduced representation library. These techniques

have successfully been used for genome-wide associa-

tion studies in species with high chromosomal linkage,

such as the Diamondback moth and Barley (Baxter et al.

2011; Chutimanitsakun et al. 2011), and are very useful

for studying phenomena such as introgression and
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genome-wide population differentiation with a high

number of loci.

Because data from these approaches are scattered at

sites across the genome, they usually occur in nongenic

regions, which do not provide any information on the

function of the variant-containing sequence unless anno-

tated genomic sequence information also is available or

the sites in question are tightly linked to particular genes.

Another genome-reducing framework is RNA-Seq

(Wang et al. 2009), in which the focus is on sequencing

only mRNA from the genes that are expressed in a tissue

(the ‘transcriptome’), wherein a significant proportion of

adaptively interesting variation is located. Jones et al.

(2012), for example, found that up to 60% of putatively

adaptive sites in sticklebacks were located in protein-

coding positions, the rest being located in regulatory

regions. The great advantage of RNA-Seq is that func-

tional information for sequences can be obtained by

comparing to known genes in other organisms,

side-stepping the need for pre-existing species-specific

genomic information. Also, this method provides gene

expression data in addition to variant DNA bases, as it is

possible to compare counts of reads that map to any

given gene between individuals. An important issue

when working with RNA, however, is RNA instability;

mRNA degrades very quickly, so it is very important to

promptly process tissue samples in buffer solutions and

at low temperatures to avoid degradation.

Purpose and scope of the SFG

In the SFG, we focus on RNA-Seq data, although the

approach we outline also is useful for other high-

throughput sequencing methods. This is by no means an

exhaustive protocol, and there are many other ways to

process and analyse high-throughput sequencing data.

However, the methods outlined herein provide an

approachable, functional starting platform with which to

build the bioinformatic skills required to subsequently

create a custom analysis protocol. The protocol can be

used for organisms for which there are no current geno-

mic resources, or for those with fully sequenced and

annotated genomes or transcriptomes, in which case

some steps can be omitted. All instructions are written

for Mac OS X, but will also work (with slight modifica-

tions) on a machine running Linux or in Windows

through a UNIX/Linux portal.

The SFG is divided into eight sections. An initial sec-

tion on sample preparation is followed by a guide on

how to set up a Macintosh computer properly, after

which there are six major sections on data processing

(Fig. 1). Within the data processing pipeline, if there are

genomic resources available for the study organism, the

de novo assembly and annotation sections can be omitted.

Sections on quality control processing, de novo

assembly, BLAST comparison and mapping to reference

are data processing steps, whereas the gene expression

and SNP detection and analysis sections start addressing

biological questions. For each section, we provide a nar-

rative guide with some of the intrinsic trade-offs of

different approaches. Most of the technical details – from

specific laboratory protocols to scripts to statistical

approaches – change rapidly enough that we provide

them as an online resource available at http://sfg.

stanford.edu.

Tissue collection and sample preparation

Basic themes

Depending on the goal of the project and resources avail-

able for the study organism, the user will want to pre-

pare samples in accordance with the sequencing

technique that provides the most information. Whole-

genome sequencing can provide information on

sequence variation throughout the entire genome. How-

ever, this approach works best if there already is a

conspecific genomic resource available. To create and

annotate a de novo assembly of a genome is still a daunt-

ing task; it requires long reads (preferably from 454

sequencing), high coverage and time to discover genes

and annotate them. By combining reads from different

sequencing technologies, some of these issues can be

dealt with (Nowrousian et al. 2010). Restriction enzyme–

based approaches, such as Genotyping-by-Sequencing

(GBS), can also provide genome-wide sequence variant

information, without the need for a reference genome.

GBS does not, however, provide any information on

whether the variation detected is located in genes or not.

Transcriptome sequencing (RNA-Seq) only provides

information for expressed genes, but it gives two kinds

of information: it is a record of how many mRNAs from

a particular exon are in the sample, and it includes vari-

ants in the sequence that tell us about polymorphisms in

the DNA. This is currently the only method for acquiring

gene expression data in addition to sequence variation in

genes, although issues such as sequencing error and

amplification bias always need to be kept in mind when

dealing with high-throughput sequencing data.

There is a major difference in collecting strategies for

these different empirical approaches. As genes are

expressed differently in different tissues and times,

mRNAs extracted from different parts of the same spe-

cies will not be identical. Thus, an important first consid-

eration is tissue sampling – the user needs to be

consistent in tissue type and processing. The genes not

expressed in these tissues will be invisible to the analy-

sis, so think about what tissues would be optimal.

© 2012 Blackwell Publishing Ltd
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Individuals sampled from the wild have had a different

environmental and evolutionary history, so they are not

expected to have identical expression patterns. Also, the

user may be working in a system where gene expression

is highly circadian, so sample timing is also important to

consider. In most cases, it is the variation between indi-

viduals within a group compared with the variation

between groups that will be the heart of a SNP or expres-

sion analysis, so choose sampling scheme carefully to

reduce gene expression variance within groups or to

maximize the chances of finding rare/local variants in a

SNP analysis.

Approach

Whole-genome or GBS library creation begins with high-

molecular-weight DNA and generates a genome library

by shearing the genomic DNA into an optimal size range

or using restriction enzymes to cut the genomic DNA at

certain sites that will be the starting point of all reads.

RNA-Seq begins with extraction of RNA from fresh, fro-

zen (at �80 °C) or preserved [in RNAlater (Qiagen,

Valencia, CA, USA) or Trizol (Invitrogen, Grand Island,

NY, USA)] tissue samples. This demands a series of extra

steps including purification of mRNA from total RNA,

fragmentation and synthesis of complementary DNA

(cDNA) from the mRNA.

Unlike DNA, RNA is highly labile: RNAlater makes it

possible to preserve tissues in field settings. It is also

quite easy to make a buffer solution acting like RNAlater

(recipe available at http://sfg.stanford.edu). RNAlater

works by quickly diffusing into cells, stabilizing mRNA

and inactivating RNA-degrading RNases. It cannot dif-

fuse into frozen tissue, so samples should be stored in

RNAlater at refrigerator temperatures for a day or so

before freezing. RNAlater samples can be kept at room

temperature, but they decay at a slow rate. In our proto-

col, we use Qiagen’s ‘RNeasy’ RNA extraction kit

(Qiagen) to extract total RNA from tissue, after which we

use Illumina’s ‘TruSeq RNA Sample Prep Kit’ (Illumina,

San Diego, CA, USA) to create cDNA libraries. The full

SFG has more information, although the kits’ protocol

worksheets are extensive and (eventually) self-explana-

tory. The cDNA libraries are then quality-assayed (gen-

erally using an Agilent Bioanalyzer or quantitative PCR)

and sent to a sequencing centre for sequencing.

No matter where the library DNA comes from (e.g.

from sheared DNA, from restriction digested DNA, or

from cDNA preparations), library constructions is simi-

lar. Tags (‘barcodes’) are placed on the ends of DNA

molecules from each library, allowing each sample to be

identified after sequencing. This means that several sam-

ples can be mixed into one sequencing run, thereby

decreasing cost. There are many different tags available;

for RNA-Seq, it is currently possible to multiplex 24 indi-

viduals in one run – although whether this renders

enough data for each individual depends on the question

being asked and the analytical power needed. The GBS

protocol of Elshire et al. (2011) allows for a nearly unlim-

ited set of individual DNA labels.

Once the DNA libraries are created and amplified,

they are ready to be sequenced, and it is time for a deci-

sion: what kind of sequencing platform would be most

relevant? As of this writing, Illumina sequencing is most

commonly performed in one of two ways: single-end 50

base pair reads or paired end 100 base pair reads. The

latter tends to cost about twice the former, although four

times more data are returned. Assemblies of transcripto-

mes of new organisms tend to be easier with paired end

100 bp reads. But if a reference transcriptome already

exists, shorter reads might be adequate for mapping and

analysing gene expression patterns or genotyping. Every

Tissue collection -

Library preparation
    Computer

    setup

 Quality control

 processing of 

 raw data

De novo
    assembly

BLAST 

Mapping reads 

to a reference

Gene expression

analysis

SNP detection 

Sequencing

Fig. 1 Workflow of the Simple Fool’s Guide to Population Genomics via RNA-Seq: Gene expression and SNP data analysis in the age

of high-throughput sequencing.
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project is unique, and the data type should be chosen

with the project goal in mind.

Computer setup

Basic themes

The promise of high-throughput sequencing is a flood of

data. Taking the time to set up the files and programs on

a computer, so that it is possible to move step by step

through the large number of different protocols is an effi-

cient way to build the virtual laboratory bench needed.

The SFG walks the user through the installation process

on a Macintosh with an Intel processor and the Lion (OS

X version 10.7) or Snow Leopard (OS X version 10.6) oper-

ating system. This does not mean that a Mac is required,

but Mac OS X is currently one of the most commonly used

operating systems for bioinformatics, along with various

versions of the Linux operating system family. Properly

setting up the computer is a challenge and will take at

least a full day. Yet, the rewards are great in that the user

will not have to stop constantly to troubleshoot cryptic

error messages or install new software during data analy-

sis steps. However, even with a properly configured com-

puter, some tasks will take a long time or even be

infeasible on a standard desktop computer. For most

tasks, we recommend purchasing a new computer with

as many processor cores as possible and the maximum

possible RAMmemory. For the most intensive tasks, such

as de novo assembly (depending on software used) and

gene annotation, access to computer clusters or online

cloud services will be highly beneficial; many universities

offer this type of services, so it might be worthwhile for

the user to investigate what options are available.

Approach

The protocol includes more than ten different software

packages, using different file formats, programming lan-

guages and command line arguments, so making sure

that the computer understands these is crucial before

starting the data analysis. Detailed information on how

to install software and set up a computer is given in the

online version of the SFG. We propose creating one

folder for scripts and one for programs in the home

directory, where all software can be located, as well as

one folder for data files (sub-folders optional). Modifying

output files from one program into input files from the

next or conducting statistical analyses on large amounts

of data can also be a major hurdle. For this purpose, we

also distribute a package of scripts along with the SFG,

which can be found at http://sfg.stanford.edu.

The scripts provided in the repository are free soft-

ware with no warranty of any kind: they can by redis-

tributed and/or modified under the terms of the GNU

General Public License (Free Software Foundation,

version 3 of the License). A list of all software mentioned

in the SFG, along with information on where to find it, can

be found in table 1 of the SFG (see http://sfg.stanford.

edu/software.html).

Quality control processing of high-throughput
sequencing data

Basic themes

The day has arrived when the sequencing centre returns

an immense number of short DNA sequences, ‘reads’,

from the libraries submitted. Ideally, these would all be

of perfect quality and represent the full diversity of

mRNA (or genomic DNA, depending on method used)

in a tissue. Yet, to make sure that this is the case, we need

to scan through the huge data files using specialized soft-

ware. We are looking for reads that are too short, reads

with poor-quality base pair calls and artefacts from the

sample preparation procedure.

Approach

This section guides the user through the process of initial

data processing of short reads generated with high-

throughput sequencing. The first objective is to remove

any adapter sequences (the tags put onto the DNA dur-

ing sample preparation) and to perform a few simple

quality control steps, such as graphing the distributions

of quality scores (e.g. confidence levels for the DNA

sequences) and calculating the fractions of duplicate and

singleton reads in the data. A duplicate read is one that

is identical to another in the data set. These should be

rare, yet poor initial sample quality or bias during the

final PCR step can elevate the numbers significantly

(Note that GBS data can be expected to contain a higher

fraction of duplicates).

To perform these tasks, the software package ‘fastx

toolkit’ (http://hannonlab.cshl.edu/fastx_toolkit/) is

used in combination with provided scripts. Graphing is

conducted on the Galaxy Web server (http://main.g2.bx.

psu.edu/). At the end of this process, the user will have

a list of high-quality DNA reads that will form the basis

for the rest of the analysis.

De novo assembly

Basic themes

When dealing with nonmodel organisms, the lack of

published genomes or transcriptomes onto which the

reads can be mapped can be a major hurdle. Depending
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on what species the user is working with, an EST library

might be available on NCBI’s database. However, even

these lists do not generally encompass all the expressed

material in the new data. The next step is called ‘assem-

bly’, and it searches for overlap among short reads and

thereby builds longer and longer ‘contigs’.

With restriction site–directed libraries, all reads start

at a set of a few thousand up to millions of restriction

sites. As a result, the ‘contigs’ will be aggregations of

reads near those sites, no longer than the read length.

For other approaches, the libraries are derived from ran-

domly sheared DNA and so reads start at different

places. This variability allows these reads to be joined

together into contigs.

De novo assemblies are tricky to create – ideally only

reads from the same genes should line up, but there are

many duplicate genes in some genomes and reads can

get switched. In addition, whole gene sequences are sel-

dom generated this way – except for very highly

expressed genes, there are often several contigs per gene.

Longer reads (say 100 bases vs. 50) produce better

assemblies because the overlap can be better. Paired end

reads (where sequences are read from both ends of a

cDNA molecule) are also helpful. Lastly, the cDNA

library includes sequences from more than the study

organism. Bacterial and viral reads can be very common:

there might also be gut content sequences present if gut

tissues have been sampled. As a result, some contigs are

not from the intended species. The basic idea in de novo

assemblies is to use as much data as possible in creating

contigs that represent genes in the species of interest and

to take the results cautiously.

Approach

The objective of this section is to use the graphical user

interface application ‘CLC genomics workbench’

(http://www.clcbio.com/index.php?id=1240) (CLC bio,

Cambridge, MA) to combine reads from all sequenced

individuals into a de novo assembly. The assembly will be

used as a reference transcriptome in the following sec-

tions. If a transcriptomic resource is available, this step

can be omitted. There are many other approaches avail-

able (see e.g. Martin & Wang 2011; Baker 2012; Scally

et al. 2012), but the CLC algorithm is less memory-inten-

sive than most others and is currently the only practical

option for desktop computers. Unless the transcriptome

assembly is a major part of the research program,

remember that the assembly is largely a means to an

end, and it will not be perfect no matter what software is

being used. The key aspect of the transcriptome is not

that it is comprehensive, but that the contigs in it repre-

sent valid and unique sections of genes from the genome

of interest.

BLAST comparison to known sequence databases
and functional annotation

Basic themes

One of the major advantages of transcriptome sequenc-

ing is that the data come from functional, expressed

genes. But this value will be minimal unless it is possi-

ble to identify these genes. The same is true of whole-

genome assemblies, where some of the contigs are from

exons within genes. One way to identify contigs is to

compare each contig sequence with known genes and

assume that homology tells something about function.

Doing this for one or a few genes is easy using the

BLAST search algorithm on the NCBI Web page – but

with 10 000s or 100 000s of contigs, an automated

approach is necessary. Also, BLAST searches against

large databases take a long time (a BLASTx against

NCBI’s nr database typically takes around 1 min per

contig, so with 100 000 contigs, the search will take

70 days), so access to a computer cluster or a cloud ser-

vice will be essential for this step. This way, the list of

contigs can be split into many small files, BLAST searches

can be run in parallel, and the run duration can be

reduced to hours.

Approach

Establishing links between observed sequence variation

and gene function is a major challenge when analysing

transcriptome data from nonmodel organisms (Pop &

Salzberg 2008; Yandell & Ence 2012). Here, we describe

a pipeline using the Basic Local Alignment Search Tool

(BLAST; http://blast.ncbi.nlm.nih.gov/) to compare de

novo assembled contigs to sequence databases to anno-

tate them with similarity to known genes/proteins/

functions. Usually, the best way to look for homology

is not at the nucleotide level, but rather at the protein

level. By querying three major databases, GenBank’s

nonredundant protein database (NR) and Uniprot’s

Swiss-Prot and TrEMBL protein databases, we can

identify the most similar known proteins for the trans-

lation of each contig.

In addition to the gene name, there is a wealth of

information in code form about the metabolic functions

of many genes. To access these codes, we also describe a

method to extract gene names, general descriptions and

Gene Ontology (GO) categories (http://www.geneontology.

org/) for significant BLAST matches. GO categories are

alphanumeric codes that correspond with the metabolic

roles known for a gene. These codes can be used in sub-

sequent enrichment analyses for gene expression or SNP

data. Finally, because all these data sets are complex, we

provide a simple, single-reference data framework that
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houses all the de novo assembly annotation information

for easy access by the user.

Mapping reads to a set of reference sequences

Basic themes

Mapping refers to the process of aligning short reads to a

reference sequence, whether the reference is a complete

genome, transcriptome or a de novo assembly. Reads are

compared with the whole length of every contig in the

assembly and the position where they match the best is

noted. Does the match have to be perfect? No, and the

criteria for calling something a match is something that

needs to be adjusted. If a read matches more than one

place, it must be discarded, as there is no way to figure

out where the correct location is. Thus, it is important to

choose mapping parameters to maximize the fraction of

reads that match one place in the reference, yet minimize

the fraction of reads that map to more than one place.

Approach

There are numerous programs that have been developed

to map reads to a reference sequence that vary in their

algorithms and therefore speed (see Flicek & Birney 2009

and references therein). The program that we utilize in

this pipeline is called BWA (Li & Durbin 2009). It uses a

Burrow’s Wheeler Transform method that results in

much faster processing than the first wave of programs

that used a hash-based algorithm such as MAQ (Li et al.

2008). The sequence alignment files created in this step

are also used in subsequent steps to extract expression

information (the number of reads that map to each gene)

and to identify polymorphisms across a data set.

To obtain the highest number of high-quality mapped

reads, it is important to optimize the alignment parame-

ters for each study organism. For example, the number

of differences between reference and query sequences is

expected to vary with the polymorphism and recombina-

tion rates specific to a species.

Gene expression analysis from RNA-Seq data

Basic themes

Gene expression analysis from RNA-Seq data starts with

extracting the number of reads that map uniquely to

each contig or gene from alignment files. These count

data will serve as a proxy for the magnitude of gene

expression because transcripts of greater abundance in

the cell will have more reads generated from libraries

prepared from RNA. Gene expression may vary between

samples or individuals in a study owing to experimental

design, for example control vs. treatment, or among

ecotypes or morphs, time of sampling, tissue or origin.

Once obtained, the density of data is likely to be dif-

ferent among individuals because of initial differences in

RNA yield or library density. To compare among

individuals, then, the data need to be bioinformatically

‘normalized’ (Oshlack et al. 2010) to account for differ-

ences in sequencing depth (note that this is different

from normalizing cDNA libraries prior to sequencing).

The simplest way would be to calculate the fraction of

reads mapping to a contig out of the total number of

reads. More complex procedures have been developed,

but they have similar goals, making it possible to

compare data sets.

Approaches

The main objectives of this section are to (i) extract gene

expression data for the sequence alignment files gener-

ated in the mapping step, (ii) detect differential gene

expression among treatments, and (iii) identify transcrip-

tome-wide patterns of enrichment for functional classes

of proteins. Although it is not included in the SFG, RNA-

Seq data can also be used to explore alternative splicing

and allele-specific expression.

This is a fairly detailed section, divided up into the

three sub-sections above. Extracting read numbers per

gene is straightforward – the reads associated with each

contig are counted up. However, there are several impor-

tant nuances to the data. In particular, different individu-

als in the data set will have different numbers of reads

just because of chance or differences in mRNA, cDNA or

library quality. To adjust for this, data for each sample

need to be normalized against one another. A simple

way to accomplish this is to estimate the number of reads

per million mapped (Wang et al. 2009). Other, more

sophisticated procedures normalize across samples for a

particular contig, taking into account whether a particu-

lar individual tends to have lower or higher counts

among all contigs than others (Oshlack et al. 2010; Robin-

son & Oshlack 2010).

We begin with a popular software package, DESeq

(Anders 2010). However, there are many other ways to

operate, including producing a large spreadsheet of

expression levels, arranged with contigs in different

rows and individuals in different columns, principal

components, statistical functions in R such as ANOVA or

any other method that can deal with large data sets. The

rule here is that the data are generally messy and that

variation from individual to individual is common. The

answers tend to be based on whether there is more varia-

tion between groups (say between experimental treat-

ments) rather than within them. The other key feature of

the analysis is that there are many statistical tests

© 2012 Blackwell Publishing Ltd

1064 P . DE WIT ET AL .



involved; thus, corrections for multiple tests are critical.

A P-value of 0.05 means nothing when differential

selection is being tested for in 20 000 genes: one would

expect 1000 to be different purely by chance. Benjamini–

Hochberg correction, false discovery rate corrections and

q-value calculation are common methods employed with

genomic data to correct for multiple tests (Benjamini &

Hochberg 1995; Storey & Tibshirani 2003).

Last, it is important to realize that the gene (or contig)

is not the only unit of analysis and that it is possible that

entire metabolic pathways are differentially expressed

without a single gene in the pathway being significant

(often because of among-individual variation and multi-

ple test corrections, see above). In this analysis, we group

genes by function and ask whether the groups of genes

differ in expression between individuals. There are sev-

eral common sources of gene groups: UniProt, Gene

Ontology, PANTHER and KeGG (Ogata et al. 1999; Ash-

burner et al. 2000; Thomas et al. 2003; Bairoch et al. 2009).

Keep in mind that the gene functions coded in the above

lists are generally the functions of that gene in mammals:

their function in the study organism may be different.

It is also possible to make up a list for metabolic func-

tions under particular interest, such as biomineralization;

these genes could be well characterized in the study

organism. The nested nature and seeming redundancy of

functional categories can make interpreting functional

enrichment results a challenge. For example, the single

transcription factor NF-kappaB may belong to 20 func-

tional categories related to transcriptional regulation,

inflammatory response, apoptosis and so on, all signifi-

cantly enriched in the data. There are several tools that

have been developed to simplify, visualize and help

interpret functional enrichment results. Some useful pro-

grams include REViGO (Supek et al. 2011), Ontologizer

(Bauer et al. 2008) and model-based gene set analysis

[MGSA (Bauer et al. 2010)]. The GO website maintains

an extensive list of programs (http://www.geneontology.

org/GO.tools.microarray.shtml).

SNP detection and analysis

Basic themes

Single nucleotide polymorphisms (SNPs) are one of the

fundamental types of genetic variation, and with the

growing popularity of next-generation sequencing, they

are becoming the most ubiquitously utilized genetic

markers in analyses of both model and nonmodel organ-

isms (Kim & Misra 2007; Dereeper et al. 2011; Geraldes

et al. 2011; Helyar et al. 2011). Recall that when reads

were mapped to the contigs, they did not have to be

100% perfect matches. When a read is mismatched to a

contig at a single base, this is either a mistake or a

polymorphism. When several reads include the mis-

match (ideally, about half), then this individual may be a

heterozygote for that single nucleotide polymorphism.

By looking at all the base calls at all the polymorphic

sites at all the reads in the data set, we can estimate the

genotype of an individual at all these SNPs. This tends to

be a huge number for a decently covered genome or

transcriptome and represents a repository of much infor-

mation about genetic structure and adaptation. The algo-

rithms that detect SNPs and assign genotypes also take

uncertainty (because of sequencing/PCR/alignment

errors) into account and assign quality scores to each

individual SNP and genotype, making it possible to filter

out and ignore SNP sites or genotypes that fall below a

quality threshold. In addition, maximum-likelihood and

Bayesian models have been developed for improving the

accuracy of detecting allele frequencies from next-gener-

ation sequencing data for population genomic analyses

(Lynch 2009; Gompert & Buerkle 2011). A major chal-

lenge for the user is thus to find an optimal balance

between quantity and quality of data.

Approaches

Short reads from a single lane of an Illumina sequencer

can easily result in the identification and genotyping of

10 000s of SNPs. An issue, however, is to separate true

polymorphisms from sequencing or alignment artefacts

(DePristo et al. 2011). The main objective of this section

is to provide a step-by-step pipeline through third-

party software packages [SAMtools (http://samtools.

sourceforge.net/) (Li et al. 2009), Picard (http://picard.

sourceforge.net/) and GATK (http://www.broadinstitute.

org/gsa/wiki/index.php/The_Genome_Analysis_Toolkit)

(McKenna et al. 2010; DePristo et al. 2011)] to convert a

raw sequence alignment file for any species into

high-quality SNPs and individual genotypes. A common

feature of these analyses is to discard questionable data

when sequence quality is low. Another key aspect of the

analysis is that different individuals by chance will have

different genes expressed, and so the high-quality SNP

list for each individual is not the same. However, most

highly expressed genes are present in high copy number

in most if not all individuals, and so the data set tends to

be more complete for these genes (although biologically

important genes are not necessarily highly expressed at

all times). An additional challenge when using RNA-Seq

data for determining genotypes of individuals or allele

frequencies of populations or pooled samples is that het-

erozygous individuals may only be expressing one allele

at the time of sampling and therefore be mistaken as ho-

mozygotes (Hawkins et al. 2010). It is therefore in general

prudent to confirm allele frequencies for variants of spe-

cial interest by targeted sequencing from genomic DNA.
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We also present two quick ways to begin exploring

genetic patterns in the data set using a combination of

custom scripts and open source software packages:

(i) principal component analysis (smartPCA (eigensoft)

(Patterson et al. 2006) and (ii) FST outlier analysis [Baye-

Scan (Foll & Gaggiotti 2008)]. Both packages examine

patterns across mind-numbing amounts of data points

and return patterns that can be interpreted in terms of

individual differences (PCA) or locus-by-locus differ-

ences (BayeScan).

Summary

The Simple Fool’s Guide to Population Genomics via

RNA-Seq is intended to guide a user through the data

processing and analysis steps required to be able to

answer a number of important biological questions using

high-throughput sequencing data. The SFG walks the

user through sample preparation, computer setup, qual-

ity control processing, differential gene expression and

functional enrichment analyses, as well as principal com-

ponent and FST outlier analyses with SNP data. This is

by no means an exhaustive protocol, but provides one

method of analysis that can be expanded upon by the

user. The SFG, together with custom-made scripts and

example files, is freely available for download at http://

sfg.stanford.edu. This resource simplifies and integrates

the many steps involved to get biologically relevant data

from large quantities of short-read sequences, enabling

biologists from all fields to take advantage of the full

power of high-throughput sequencing. Our hope is that

this document will accelerate the adoption of the geno-

mic and transcriptomic techniques that are presently

changing the field of biology by population biologists.
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