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1 Introduction

There is a well developed theory (see [5, 9]) of analysis on certain types of fractal sets,
of which the Sierpinski Gasket (SG) is the simplest non-trivial example. In this the-
ory the fractals are viewed as limits of graphs, and notions analogous to the Dirichlet
energy and the Laplacian are constructed as renormalized limits of the corresponding
objects on the approximating graphs. The nature of this construction has naturally led
to extensive study of the eigenfunctions of this Laplacian, and to functional-analytic
notions based on the eigenfunctions. However, more recent work [7, 2] has exam-
ined other elementary functions on SG, including analogues of polynomials, analytic
functions and certain exponentials. A forthcoming paper [8] will extend this investiga-
tion to study smooth bump functions and a method for partitioning smooth functions
subordinate to an open cover.

In the present work we prove there are exponentially decaying generalized eigen-
functions on a blow-up 0% Gwith boundary (which we denot®G,,), proving:

Theorem 1.1. For each < O and j € N there is a smooth function/le)n S G, such
that for each j we havé + A)E) = —jEI ™. Moreover E decays exponentially away
from the boundary point of SGand satisfie$Ei| < jhari.

There are dficiently many of these generalized eigenfunctions that they can be
used to prove a Borel-type theorem 81&,,, thereby answering a question asked in
[7, 2]. Using the ternjet for the sequence of values of the natural derivatives at a
junction point ofS Gour result may be summarized as:

Theorem 1.2. Given an arbitrary jet there is a smooth function on S @ith that jet
at the boundary point.

Our motivation for studying generalized eigenfunctions and for proving Theorem
1.1 was to prove Theorem 1.2. The structure of the paper reflects this motivation: apart
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from some background in Section 2 our first results (in Section 3) are those showing
that Theorem 1.2 follows from Theorem 1.1 and some known results about localized
eigenfunctions o1 G Section 4 is then devoted to the construction of the generalized
eigenfunctions and the proof of Theorem 1.1.
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2 Setting

We give a brief description of some parts of the theory of analysis on the Sierpinski
Gasket, more details of which are in [9]. For the general theory of analysis on fractals
the standard reference is [5].

SGand SG,,

The Sierpinski gaske® Gis the unique non-empty compact sefifthat is invariant
under the iterated function systefn= %(x + i), 1 = 0,1,2 in the sense tha G =
Ui2=o fi(S G, where the pointsj; are the vertices of an equilateral triangle. Foe N
and {,i2,...,im) €{0,1,2}™"we callfi, o fi,o---o fi_ (SG acell of level m The points
Vo =1{G : j = 0,1,2} are the boundary db Gand we viewS Gas the limit of graphs
['m with vertices defined inductively by, = U2, fi(Vim-1) and edge relatior ~p, y if
x andy are in the samecell. The set of all vertices ¥, = U, Vm and thejunction
pointsareV,, \ Vo. We letu be the usual self-similar probability measure®6 with
1(fu(SG) = 3™, and also usg to denote the obvious extension$@z..

The infinite blow-up ofS Gwith boundary pointy is denoteds G, and defined by

sG.={ s (2.1)
m=0

This is the simplest blow-up 08 G we could also consider arbitrary sequences of
blow-upsU_; f;* 71+ f-%(SG), but all that have a boundary point necessarily have
{im} to be constant after sorm, and are isometric, so among those with boundary it
sufices to conside® G, (see Lemma 2.3 in [11]). The work in this paper will crucially
use that we are on a blow-up with boundary. We refer to [10, 11] for more information
about blow-ups and the Laplacian 8iG..

Laplacian, derivatives and jets

Each graph approximatiori, of S G supports a graph Laplaciaky, defined at non-
boundary pointx € Vi, \ Vo, and we define a Laplaciakat junction points o5 Gas



a renormalized limit of the graph Laplacians

At = D" (u(y) = u(x) (2.2)
Y~mX
Au(X) = :—23 nLanm 5" Amu(X). (2.3)

A continuous functioru is in the domain of the Laplaciam, € dom(), if there is a
continuousf such that the right side of (2.3) converges uniformlyfton V., \ Vo.
Then we writeAu = f, extendingAu to all points ofS G by continuity. The factor
3/2 in (2.3) is for consistency with an alternative definition of the Laplacian using a
renormalized Dirichlet energy (see [5, 9]). We make the obvious definitiafwand
dom(Ak), and call a function smooth if it is in dom{) = N, dom(Ak). One additional
property of the Laplacian that we will use extensively is its scaling; it is immediate
from (2.3) that foru € dom(A)

A(uo 3ty = 5(Au) o f;* on fo(SG (2.4)

In addition to the Laplacian there are two derivatives at boundary points, the normal
derivatived, and tangential derivativér, defined by

anu) = im (2)"2u(@) ~ ;@) - U@ ) 25)
aru@) = im 5U(T™(1.0)) - u(F™(@1.2) 26)

(with g+3 = ). The former exists for any € dom() and the latter exists under
the additional assumption thatu is Holder continuous. Both may be localized to
boundary points of cells. The normal derivatives are much better understood than the
tangential derivatives, and have considerable application; for this paper their important
feature is thematching conditiorfor the normal derivatives: i e dom(A) then at any
junction point of two cells the normal derivatives corresponding to these cells sum to
zero. Conversely, ifi is continuous andu = f on eachm-cell thenAu = f on SGif
and only if f is continuous and the matching condition holds at each poi¥it,ofVo.

At a boundary point; we will call the values of\ku(q), 9,AXu(q) anddrAu(q) the
Laplacian powers, normal derivatives and tangential derivatives, respectively-jd@he
of uatq s (u(g), dnu(q), dru(q), . . ., Alu(g), d,Alu(g), dr Alu(g)) and the infinite jet is
the corresponding sequence of Laplacian powers and derivatives.

Spectral decimation

A useful feature of the Laplacian @GandS G, is that restricting a Laplcaian eigen-
function E, to the graph approximatioh,, produces an eigenfunction of the graph
Laplacian, with a shift in the eigenvalue. This phenomenon is known as spectral deci-
mation [4, 3, 11]. Specifically, if + 2)E; = 0onSGor SG, then A, + A)E, =0



onIy,, where
A= § lim 5™y, (2.8)
2 m—oo

2E(%) + (4 = Am)(Ea(Xi+1) + Ea(Xi+2))
(2= Am)(5 = Am)

Ealyi) = (2.9)

in which the pointsg are the vertices of am{— 1)-cell, and eacly; is the point from
Vm Opposite ta; as shown in Figure 1. For proofs we refer to [3] or [9]; an explanation
of spectral decimation in a more general context is in [6].

X2

Y1 Yo

Figure 1: Pointsg in Vi1 andy; in Vi,

We will need one technical result about spectral decimatiors @that is well-
known but for which there does not appear to be a proof in the literature.

Lemma 2.1. For A < O there is an entire functiol such thatl,, = ¥(5™1).

Proof. Considering (2.7) we define functions by.Z7) = 5+ /25— 47, so thatdy,
is one of¢.(Ayn-1). Observe that ifty,.1 > O thendy, > 0, so from (2.8) andl < O
we must havely, < 0 andAd, = ¢-(An-1) for all m. The renormalized limitb(0) =
g limmoe 5M¢™(Z) is analytic in a neighborhood of the origin and ti$0) = 3/2 by
virtue of the fact thap_(¢) = ¢/5+ O(¢?) for sufficiently smallz. It follows that® has
an analytic invers&(¢) = ®71(0) = 3, ax* in a neighborhood of 0.

Using (2.7) and (2.8) we fin#(5"™1) = Ay, for all suficiently small 5™1. This
gives a recursion for the cfigcientsay, beginning withag = 0, @1 = 2/3 and continu-
ing according to

k1
(5" - By = - Z @@ (2.10)
=

for k > 2. An almost identical recursion appears for #&atent purpose in [7] (as
Equation 2.9 and in Theorem 2.7) and their argument showsathiat C(k!)~'095/1092,
It follows immediately tha® is entire, whiled,, = ¥(5-™1) is true by construction. o



3 The Borel Theorem

In this section we prove Theorem 1.2 under the assumption of Theorem 1.1. First we
construct smooth functions with finitely many prescribed values of the Laplacian pow-
ers and tangential derivativesgatusing known results about the existence of localized
eigenfunctions. Then we use Theorem 1.1 and linear algebra to prove that there are
smooth functions with finitely many prescribed normal derivatives. Finally we state a
precise version of Theorem 1.2 and show that its validity for finite jets gives the full
result by a scaling and convergence argument.

Localized eigenfunctions

A curious feature of many highly symmetric fractals is that their Laplacians have lo-
calized eigenfunctions. We will not need the details of the theory, for which we refer
to [1, 5], but only the existence of two specific eigenfunctiopsindu, onSG The
values ofu; onV; andu, onV, are shown in Figure 2. From the values shown we can

0 0
1 -1
-1 1 0 G 0
-1 0 0 1
2 -1 0 0 1 0 -1 0

Figure 2: The functions; andus,.

computeu; andu, at any scale by the method of spectral decimation given in (2.7)-
(2.9) (with the caveat that far, the positive root must be taken at the first step of the
recursion (2.7)). What is important here is that the normal derivatives oflbetnish

at the pointsy; andgp, which we see from (2.5) and the antisymmetry of then the
cells f1(SGQ and f5(S Q. Since they; are eigenfunctions we then find that all of the
valuesAku; andd,AXu; vanish aty; anday, and (2.4) shows the same is true fips fo™

at fi"(q) and f;"(g) for anym. It follows from the matching condition that

G = uo f;™ onf;MSQ
"m0 otherwise

are smooth functions, and therefore are Laplacian eigenfunctions with eigenvalues
—5M2;. For obvious reasons they are calledalized eigenfunctions

The jets of theu, , at qo are easily computed. The eigenfunction equatidus=
—A;u; give the higher order terms from the initial ones, so by simple algebra from (2.9)



and some symmetry arguments

2(=A7)kskM =1
Ak, =
Ul,m(qO) {O i=2

0
6TAkui,m(qO) = {2(_/12)k5km i=2

A U m(qe) =0 i=1,2

With these functions as building blocks we show that there is a smooth function with
finitely prescribed values of the Laplacian powers and tangential derivatiggsaatd
whose normal derivatives are all zero.

Lemma 3.1. For n € N and valuegy, ..., ¢, andfy, ..., 6, there is ue dom@A*) such
that Aku(qo) = &, dnA*u(gp) = 0, anddrTAku(qe) = 6k for all 0 < k < n.

Proof. We observe that the vectors

(Um(Go), AuLm(Qo), - - -, A"Urm(G0)) = 2(1, (-12)5™, ..., (—=11)"5"™)

are linearly independent with respectrto A similar result is true for the vector of
tangential derivatives af, ,. We may then obtain the desirads a linear combination
of the functionau; , for 0 < m < n by linear algebra. ]

We remark that this method cannot be applied to prescribe values of the normal
derivatives atjy using localized eigenfunctions. The structure of the localized eigen-
functions is well understood (see [9]) and non-zero normal derivatives can occur only
in “closed loops” circling the holes in the gasket. As each junction point corresponds
to a hole of precisely one size, our scaling arguments are not applicable. Similar ar-
guments are needed in Lemma 3.4 below, so any proof of Theorem 1.2 using only
localized eigenfunctions would need to be quitetent from ours.

Generalized eigenfunctions and normal derivatives

The generalized eigenfunctions produced in Theorem 1.1 aréiaienutly rich class
that we can use a finite linear combination of them to match finitely many prescribed
normal derivatives alp.

Lemma 3.2. For n € N, 2 < 0 and valuesyq, ..., 7, there is ue dom@>) which
is a finite linear combination of thel£0 < j < n, and hasd,A*u(do) = 7 for all
O<k<n.

Proof. Let ajx = dnAXE;(qo). It clearly suffices to show that the matribe; ]},
is invertible, so we examine its determinant. Writing the generalized eigenfunction
equation 4 + A)E} = —jEj’l in terms ofa;x we haveajx + 1ajx-1 = —jaj-1k-1,
which suggests a column operation @q]. For all columnsk > 1 we replacea;
with —ja;j_1 k-1, which makes the first row zero except in the first place simply because



j = 0 on this row. For concreteness the result of this computation for the determinant
in the casen = 2 is given below.

do0 0 0
a0 —do —Ao1
Ao —-2ap -2a11

doo Qo1 dp2
a0 11 aA12
o A1 A2

—3p0 —Ao1
—231’0 —2a1,1

= doo

This operation can be repeated inductively, because it shows
n . n . n-1
del[aj,k]o = a0 det[_Jaj—l,k—l]l = agodef—(j + 1)ai,k]0
and the only change to the matrix at each stage is to multiply each row by a constant

and reduce the degree, so the same column operations apply each time. We conclude
that de[aj,k]g = (—1)”n!agj51, and is non-zero by (4.2) below. ]

Corollary 3.3. Given valueg, 17k, 6k) for 0 < k < n there is a finite linear combina-
tion u of localized eigenfunctions and generalized eigenfunctions such'tv@j) =
Lk» OnA*U(0p) = nx anddt AXu(qo) = 6k for all 0 < k < n.

Proof. Apply Lemma 3.2 to match the normal derivatives and then Lemma 3.1 to cor-
rect the Laplacian powers and tangential derivatives withffatting the values of the
normal derivatives. O

Proof of the Borel theorem

Corollary 3.3 supplies the natural building blocks for obtaining a smooth function with
any given jet atjp. Define for eachj functionsF; from which we will determine the
Laplacian powersG; for the normal derivatives ankl; for the tangential derivatives
by requiring that for all < k < j

AXF(qo) = 6k InA*Fj(go) = 0 d1A*Fj(q0) = 0
A*Gj(qo) = 0 A G(qo) = Sjx d1A*Gj(qo) = 0
A*Hj(qo) = 0 InA*Hj(qo) = 0 A1 A*H;(00) = 6jx

wheredjy is the Kronecker delta. The natural goal is to construct a smooth function
with prescribed (infinite) jet by using the terms of the jet adiécients in a series with
functions like theF;, G; andH;. To make the series converge to a smooth function
we will need some estimates on these functions and their Laplacian powers. What we
know so far is that they are finite linear combinations of the localized eigenfunctions
Uumwith0 <m< jandi = 1,2, and the generalized eigenfuncti(ﬂ$for a fixeda

and 0< k < j. All of these functions and their Laplacian powers of order at njost

are bounded: for the localized eigenfunctions this is obvious, while for the generalized
eigenfunctions it follows from the bound in Theorem 1.1 and the recursion (4.3). We
conclude that for eachthere is a constari(j) such that for all (x k < j

IAKF | < C(j) IAG;| < C(j) IAH;| < C())

and turn now to a scaling argument that allows us to make these as small as desired.



Lemma 3.4. If m € N then the functions
Fim=51"F; o fy™ Gjm=51"Gjo f;™ Him=5H;0 f;™

have the same j-jets ap@s Fj, G; and H; respectively, but fob < k < j they satisfy
the following estimates on SG

IAKFiml < C()BEIM  AKG ol < C(j)BEIM  JAKH, ml < C(j)5*I™.

Proof. The result is an elementary consequence of the scaling property of the Lapla-
cian. By induction from (2.4) we see th&lf(uo fo™) = 5kM(AKu)o fy ™. Both statements

of the lemma are immediate consequences of this and the definitions (2.5) and (2.6) of
the normal and tangential derivatives. ]

Proof of Theorem 1.2We are supplied with valuegi( nk, 6k) for k e N and seek a
smooth functioru such thatAku(go) = &, dnAKU(qo) = nx anddrAku(ge) = 6 for all
k. This will be certainly be the case for the function

u= Z({ij»mJ +17iGjm; + GJHj,mJ) (3.1)
i=0

provided only that applying any power of the Laplacian yields a uniformly convergent
series. However by Lemma 3.4 we may choose the sequepsach that terms after
the j-th have only a smallféect on the Laplacian powers of order at mpsSpecifi-
cally, given anye > 0 we may maken; so large thatfor & k< j-1

Ak(é'j 5-im; ijj + 77j5_jijj,mj + 9]5_jmj Hj,mj)
< C(j)5% D™ max(|ul, Il 16kl : 0 < k < j -1
< 2K
providing a bound on the tail of the series obtained by applyfitp (3.1). We con-

clude thatu is smooth, that it has the desired jetggt and moreover that most of the
contribution to thek-th jet is from the firsk terms in the sum:

K
|Au| < €+ C(K) Z(I(jl + [nj| + 16j1).

i=0

4 Generalized eigenfunctions with decay

In this section we prove Theorem 1.1, showing that there are exponentially decaying
generalized eigenfunctiori‘s; of the Laplacian or8 G,,. Our results depend on work

in [7], where the negative-eigenvalue eigenfunctionsfwere studied using spectral
decimation. Using notation from (2.7), the results we need may be summarized as:



Proposition 4.1 ([7], Section 6) For eachA < 0 there is an eigenfunction jEFon
S G, which is symmetrical under the reflection that fixgggd exchanges;qvith o,
and which satisfiegA + 1)E; = 0. There is an explicit formula for Eat the points

Zym = f7™(qw)

Eaam) =1- 1+ 7 ﬁ(1+ - im) (4.1)

which is uniformly continuous on compacta ip,\and E, is the limit of this on S G.
These functions have exponential def@yz.)| = O(Am| ™) = 0(2‘2’m> as m— —oo
and the normal derivative atygs given by

anEA(qo)z/lﬁ(1+ )ﬁ(; ;A”) . 4.2)
m=0 n

n=1

Our construction is motivated as follows. Formally settEﬂg: (%)‘Eﬂ we find
that theE), satisfy the generalized eigenfunction equation

(A+)E! = —jEIT (4.3)

and we hope that the decayBf will ensure exponential decay fﬁd. This argument
is made rigorous by Lemma 4.2, but it will initially be simpler to constructEhérom
(4.3) than by provinds, can be diferentiated with respect tb

Observe that or§ G we can inductively obtain solut|or'I§.J of 4.3) forj e N
starting W|thE° E,, merely becausg < 0 and the spectrum df is positive. The
resulting functions are clearly in doaf{), and depend on the boundary data we assign.
Guided by the formal idea th&) should be(&)'E, we set

el = (2) e (4.4)

at each of the three boundary poiats qo, q;, 2. The definition is legitimate because
Am = ¥(5"™1) and ¥ is entire (Lemma 2.1), so the rapid growth &f ensures the
expression (4.1) is analytic with respectito

Lemma 4.2. Using the supremum norm, the function§ d&e diferentiable with re-
specttol and SE/ T = EJ.

Proof. We require a standard estimate (like Lemma 5.2.8 of [5]). Le¢ in domf)
and subtract the harmonic functiopwith the same boundary values. It is well known
that then|ju — Upll < cJ|Aull2, and by the maximum principle we conclufiéd|., <
cllAullz + maxy, |ul. Let2 < 0, and letk; > 0 be the first Dirichlet eigenvalue efA.
The spectral representation dimmediately shows

|4
lulleo < ¢(1+ K—l)||(A + )], + max|ul. (4.5)



Now suppose inductively that the lemma is true upjte 1. For the diference
betweerEj and the Newton quotient for the derivativelf)j”1 we have

. 1 . .
(A+)(E) - Y(E;H1 =)

_ _ipirt : -2 _ il g j-2
= -jE! —¥(—(J—1)E/m—tE/l+t+(j—l)E/l )
A+t A+t

-0 inL%SOQ

:(EJl—Ejl)+(J—1)Y(E'Z—Eiz)—(J—l)Eil

by induction. From (4.5) and the fact that the boundary data varies analyticallylwith
we conclude

o1 i1
“E; - Z(EL-E) )HOO 0.
The same reasoning reduces the base case of the induction to shByireg=,|l, — O,
which is a consequence of the fact (from Proposition 4.1)Ehas uniformly approx-
imated by the analytic function afin (4.1). |

With this in hand we can describe the natural scaling behavior oEgheFrom
(2.4) we know thaEs, = E,; o 1, whence onfy(SG

i d\i d\j -
-1 _ -1 _ _
Ejofo=(g7) Erofol=(g;) Es1 = 5'E,
and therefore the natural definition Eﬁ on f(;l(SG) is to setEj =5l Eéd o fo. Induc-
tively we let . _
E)=5"Es,0 f§ onfy"(SQ (4.6)

for eachn € N to extendE! to all of S G.. We remark that this gives the same result as
solving (4.3) onf;"(S G with boundary data (4.4) at the poirts: qo, f3"(qu), f;"(2).

Combining the above results we have proven the existence statements of Theorem
1.1. What remains to be proven is the content of the following lemma, which is regret-
tably but perhaps unavoidably technical.

Lemma 4.3. The generalized eigenfunctions satilﬁﬂﬂ < j"147 and have decay
|El@m)|=0(2%") asm— —c.

Proof. We first prove the decay. Recall that the recursion (2.7) guarapitges C22 "
asm — —oo. SetB), = (d/dA)iAy. Itis elementary to verify thaBl| = O(Am|) as

m — —oo from the definition of¥ and the recursion (2.10). Using the explicit formula
(4.1) we writeE (zy) = 1+ (Pm — Am)/4, where

= 4
szamljo(u 2_Am)

10



and defines}, by (d/dA)iPy, = PnSh. ExaminingS:, we have

1_Bh N 46L
Sm= 0t Z 2= ) (6= A

4ﬂm 2 4ﬂ%ﬂ—n
Am g, O ”Z 2= A )6 Amn)
= ﬁ—: + 4/7182"“ +0(1;2)

where the penultimate estimate uses the series expansiop(for 1,)(6 — Ar), and
the final one uses the structure of the series. This series consists of terms which are
rational functions oftm_n andg?, ., and in which the degree of the denominator strictly
exceeds that of the numerator. The rapid growtigf ensures this is bounded by a
multiple of the first term, which i©(|Am-117) = O(|Am72).

We will call a series in which the terms are rational functions that depend on
Amens B s -8 for n > 1, but must always have the degree of the denominator
to be strictly greater than the numerator, a good rational series or GRS. Notice that the
derivative of a GRS is a GRS, and that the product of a GRS with a GRS or a rational
function in which the numerator has the same or lesser degree than the denominator is
also a GRS. Our estimates @p_, andg:, ,, guarantee that any GRS sums to a value
which isO(jAm~2). o _

Using induction overj we see that the functioB), — 8in/Am — 485/ 12, is always a
GRS, s0 i90(|Am[72). Indeed, this is true foj = 1, and if we assume it to be true for
j — 1 and apply the recursio®l, = SLSh* + (dSh 1/dxl) then both

1 11 Jl
Stsi-tm = ﬁ—: + 4;;”“ + GRS)[

_Breht | esipht
= /l%] —+ 3

3 /12 + GRS)
m

+ GRS

m

and

. =11 j i-151
dSJ—lam ﬁm m Pm 478rjn m m

+ + GRS
di  An 2 A

m

so we may sum them to complete the induction. In particular we conclude that

: dip .
= Pmsrjn_ﬁgn
_ j ]
- po[sh -2 %), Bt 4) 4 4’8:( n— )

= O(Aml ™) = 0(272")

11



where in the last step we used that the first bracketed te®iig,| %), and thatP, =
O(IAml), (Pm—Am+4) = O(| A1) and Pm— Am) = O(1), all of which are from the fact
that|E,(zm)| = O(11m| 1) (see Proposition 4.1) and the definitionRy.

Now that we knoWEjl has exponential decay it must be the case that its maximum
occurs at an interior point of sonfg™(S G. Itis well known (see [7] Proposition 2.11)

that Ei and AEi must have opposite signs at any local extreme poinEﬁf Since
AE) = —aE) — JEJ anda < 0 we find that sgn{E)) = —sgn€)) implies |AE}| <
|jEi‘1|. The bound or’Eﬁ follows by induction and the fact thi,| < |E (qo)| = 1. O
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