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ABSTRACT

The recently introduced and characterized scalable frames can be considered as those frames which allow for
perfect preconditioning in the sense that the frame vectors can be rescaled to yield a tight frame. In this paper we
define m−scalability, a refinement of scalability based on the number of non-zero weights used in the rescaling
process. We enlighten a close connection between this notion and elements from convex geometry. Another
focus lies in the topology of scalable frames. In particular, we prove that the set of scalable frames with “usual”
redundancy is nowhere dense in the set of frames.
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1. INTRODUCTION

Frame theory, both in the finite and infinite dimensional setting, has become a standard tool in mathematical
signal processing and engineering. The main reason for this and, simultaneously, the key feature of frames is
their redundancy which ensures their robustness against perturbations such as noise or erasures [d92,ck03]. For
a detailed treatment of frames in theory and applications we refer the interested reader to [7, 9, 15,16].

In this paper we consider frames for finite-dimensional real Euclidean spaces RN . In this context, a frame is
a set Φ = {ϕk}Mk=1 ⊂ RN , M ≥ N , for which there exist positive constants A and B such that

A‖x‖2 ≤
M∑
k=1

|〈x, ϕk〉|2 ≤ B‖x‖2 (1)

holds for all x ∈ RN . Constants A and B as in (1) are called frame bounds of Φ. The frame Φ is called tight if

A = B is possible in (1). In this case we have A = 1
N

∑M
=1 ‖ϕk‖2. A tight frame with A = B = 1 in (1) is called

Parseval frame (see, e.g., [2, 5]).

We will sometimes identify a frame Φ = {ϕk}Mk=1 ⊂ RN with the N ×M matrix whose kth column is the
vector ϕk. This matrix is called the synthesis operator of the frame. The adjoint ΦT of Φ is called the analysis
operator. Using the analysis operator, the relation (1) reads

A‖x‖2 ≤ ‖ΦTx‖2 ≤ B‖x‖2.

Hence, a frame Φ is tight if and only if some multiple of ΦT is an isometry. Formulated in the language
of numerical linear algebra, a tight frame is perfectly conditioned since the condition number of its analysis
operator is one. It is therefore obvious that tight frames are highly advantageous over non-tight frames when
applied to real world problems. It is thus desirable to construct tight frames by modifying frames in a very
simple manner.

Recently, together with E.K. Tuley the authors introduced in [17] the so-called scalable frames (see also [18]).
Hereby, a frame Φ = {ϕk}Mk=1 is scalable if the frame vectors ϕk, k = 1, . . . ,M , can be rescaled such that the

Further author information: (Send correspondence to G. K. )
G.K.: E-mail: kutyniok@math.tu-berlin.de, Telephone: +49 (0)30 314 - 25758
K.A.O.: E-mail: kasso@math.umd.edu, Telephone: +1 301 405 5081
F.P.: E-mail: philipp@math.tu-clausthal.de, Telephone: +49 5323 72-3623



resulting frame is tight. Since the analysis operator after rescaling has the form DΦT with a diagonal matrix D,
a scalable frame is a frame whose analysis operator allows for perfect pre-conditioning (see [1, 8, 14]), meaning
that DΦT has condition number one. One of the main results in [17, 18] is a simple geometric characterization
of the complement of the set of scalable frames in the set of all frames with a fixed number of frame vectors.

After the appearance of [17], scalable frames have also been investigated in the papers [10] and [4]. In [10]
the authors analyzed the problem by making use of the properties of so-called diagram vectors [13] whereas [4]
gives a detailed insight into the set of weights which can be used for scaling.

In the present paper we refine the definiton of scalability by calling a (scalable) frame m−scalable if at most
m non-zero weights can be used for the scaling.

Subsequently, this refinement leads to a reformulation of the scalability question in terms of the properties of
certain polytopes associated to a nonlinear transformation of the frame vectors. This nonlinear transformation is
related but not equivalent to the diagram vectors used in the results obtained in [10]. Using this reformulation,
we establish new characterizations of scalable frames, based on one of the many versions of Farkas’ Lemma and
further illustrate the link between scalable frames and properties of convex polytopes. Finally, we investigate
the topological properties of the set of scalable frames. In particular, we prove that in the set of frames in RN
with M frame vectors the set of scalable frames is nowhere dense if M < N(N + 1)/2.

2. PRELIMINARIES

First of all, let us fix some notation. If X is any set whose elements are indexed xj , j ∈ J , and I ⊂ J , we
define XI := {xi : i ∈ I}. Moreover, for the set {1, . . . , n}, n ∈ N, we write [n]. The set of frames for RN with
M elements will be denoted by F(M,N). We say that a frame Φ ∈ F(M,N) is degenerate if one of its frame
vectors is the zero-vector. If X (M,N) is a set of frames in F(M,N), we denote by X ∗(M,N) the set of the
non-degenerate frames in X (M,N). For example, F∗(M,N) is the set of non-degenerate frames in F(M,N).

We begin by recalling the following definition from [17, Definition 2.1].

Definition 2.1. A frame Φ = {ϕk}Mk=1 for RN is called scalable, respectively, strictly scalable, if there exist
nonnegative, respectively, positive, scalars c1, . . . , cM ∈ R such that {ckϕk}Mk=1 is a tight frame for RN . The set
of scalable, respectively, strictly scalable, frames in F(M,N) is denoted by SC(M,N), respectively, SC+(M,N).

We now refine this definition in order to gain a better understanding of the structure of scalable frames.

Definition 2.2. Let M,N,m ∈ N be given such that N ≤ m ≤ M . A frame Φ = {ϕk}Mk=1 ∈ F(M,N) is
said to be m−scalable, respectively, strictly m−scalable, if there exists a subset I ⊆ [M ], #I = m, such that
ΦI is a scalable frame, respectively, a strictly scalable frame for RN . We denote the set of m−scalable frames,
repectively, strictly m−scalable frames in F(M,N) by SC(M,N,m), respectively, SC+(M,N,m).

It is easily seen that for m ≤ m′ we have that SC(M,N,m) ⊂ SC(M,N,m′). Therefore,

SC(M,N) = SC(M,N,M) =

M⋃
m=N

SC(M,N,m).

We often only write F , SC, SC+, SC(m), and SC+(m) instead of SC(M,N), SC+(M,N), SC(M,N,m), and
SC+(M,N,m), respectively. The notations F∗, SC∗, SC∗+, SC(m)∗, and SC+(m)∗ are to be read analogously.

Note that for a frame Φ ∈ F to be m-scalable it is necessary that m ≥ N , and given M ≥ N ≥ 2, if
Φ = {ϕk}Mk=1 ∈ SC(M,N), then Φ ∈ SC(m) for some N ≤ m ≤M . In addition, Φ ∈ SC(M,N) holds if and only
if T (Φ) ∈ SC(M,N) for one (and hence for all) orthogonal transformation(s) T on RN ; cf. [17, Corollary 2.6].

If M ≥ N , we have Φ ∈ SC(M,N,N) if and only if Φ contains an orthogonal basis of RN . This completely
characterizes the set of N−scalable frames of M ≥ N vectors in RN . For frames with M = N + 1 vectors in RN
we have the following result:

Proposition 2.3. Let N ≥ 2 and Φ = {ϕk}N+1
k=1 ∈ F∗ with ϕk 6= ±ϕ` for k 6= `. If Φ ∈ SC+(N + 1, N,N) then

Φ /∈ SC+(N + 1, N,N + 1). In particular,

SC+(N + 1, N,N + 1) ∩ SC+(N + 1, N,N) = ∅.



Proof. If Φ ∈ SC+(N + 1, N,N), then Φ must contain an orthogonal basis. By applying some orthogonal
transformation and rescaling the frame vectors, we can assume without loss of generality that {ϕk}Nk=1 = {ek}Nk=1

is the standard orthonormal basis of RN , and that ϕN+1 6= ±ek for each k = 1, 2, . . . , N , with ‖ϕN+1‖ = 1.
Thus, Φ can be written as Φ =

[
IdN ϕN+1

]
, where IdN is the N ×N identity matrix.

Assume that there exists {λk}N+1
k=1 ⊂ (0,∞) such that Φ̃ = {λkϕk}N+1

k=1 is a tight frame, i.e. Φ̃Φ̃T = A IdN .
Using a block multiplication this equation can be rewritten as

Λ + λ2
N+1ϕN+1ϕ

T
N+1 = A IdN

where Λ = diag(λ2
k) is the N ×N diagonal matrix with λ2

k, k = 1, . . . , N , on its diagonal. Consequently,

λ2
k + λ2

N+1ϕN+1(k) = A for k = 1, . . . , N and λ2
N+1ϕN+1(`)ϕN+1(k) = 0 for k 6= `.

But λN+1 > 0 and so all but one entry in ϕN+1 vanish. Since ϕN+1 is a unit norm vector, we see that ϕN+1 = ±ek
for some k = 1, . . . , N which is contrary to the assumption, so Φ cannot be strictly (N + 1)−scalable. Thus,
SC+(N + 1, N,N + 1) ∩ SC+(N + 1, N,N) = ∅.

We conclude this section with the following remark:

Remark 2.4. To determine that a frame Φ is scalable, we could always assume without loss of generality that
all the frame vectors are in the upper-half plane, that is Φ ⊂ RN−1 ×R+,0 where R+,0 = [0,∞). Indeed, given a
frame Φ ⊂ RN , assume that Φ = Φ1 ∪ Φ2 where

Φ1 = {ϕ(1)
k ∈ Φ : ϕ

(1)
k (N) ≥ 0}

and
Φ2 = {ϕ(2)

k ∈ Φ : ϕ
(2)
k (N) < 0}.

Then the frame Φ′ = Φ1 ∪ (−Φ2) = {ϕ(1)
k } ∪ {−ϕ

(2)
k } has the same frame operator as Φ. In particular, if one is

a tight frame so is the other. In addition, Φ is scalable if and only if Φ′ is scalable with exactly the same set of
weights.

3. SCALABLE FRAMES AND CONVEX POLYTOPES

Our characterizations of m−scalable frames will be stated in terms of certain convex polytopes and more generally
using tools from convex geometry. Therefore, we collect below some key facts and properties needed to state
and prove our results, and we refer to [3, 12,19,20,21] for details.

3.1 Background on Convex Geometry

Let X = {xi}Mi=1 be a finite set in a real linear space E. The convex hull generated by X is the compact convex
subset of E defined by

co(X) :=

{
M∑
i=1

αixi : αi ≥ 0,

M∑
i=1

αi = 1

}
.

The affine hull generated by X is defined by

aff(X) :=

{
M∑
i=1

αixi :

M∑
i=1

αi = 1

}
.

Hence, we have co(X) ⊂ aff(X). Recall that for fixed a ∈ aff(X), the set

V (X) := aff(X)− a = {y − a : y ∈ aff(X)}



is a subspace of E (which is independent of a ∈ aff(X)) and that one defines

dimX := dim co(X) := dim aff(X) := dimV (X).

We shall use Carathéodory’s Theorem for convex polytopes [20, Theorem 2.2.12], in deciding whether a frame is
scalable:

Theorem 3.1 (Carathéodory). Let X = {x1, . . . , xk} be a finite subset of E with d := dimX. Then for
each x ∈ co(X) there exists I ⊂ [k] with #I = d+ 1 such that x ∈ co(XI).

The relative interior of the polytope co(X) denoted by ri co(X), is the interior of co(X) in the topology
induced by aff(X). It is true that ri co(X) 6= ∅ as long as #X ≥ 2; cf. [20, Lemma 3.2.8]. Furthermore,

ri co(X) :=

{
M∑
i=1

λixi : λi > 0,

M∑
i=1

λi = 1

}
,

see [21, Theorem 2.3.7]. Moreover, the interior of co(X) in E is non-empty if and only if aff(X) = E.

The following lemma characterizes dimX in terms of dim spanX.

Lemma 3.2. Let X be a finite set of points in E. Put m := dim spanX. Then dimX ∈ {m− 1,m}. Moreover,
the following statements are equivalent:

(i) dimX = m− 1.

(ii) For all linearly independent X ′ ⊂ X with dim spanX ′ = m we have X \X ′ ⊂ aff(X ′).

(iii) For some linearly independent X ′ ⊂ X with dim spanX ′ = m we have X \X ′ ⊂ aff(X ′).

Proof. Let X = {x1, . . . , xk}. First of all, we observe that for a linearly independent set X ′ = {xi1 , . . . , xim}
as in (ii) or (iii) we have

dimV (X ′) = dim span{xil − xi1 : l = 2, . . . ,m} = m− 1.

Therefore, V (X ′) ⊂ V (X) ⊂ spanX implies m − 1 ≤ dimX ≤ m. Let us now prove the moreover-part of the
lemma.

(i)⇒(ii). Assume that dimX = m − 1 and let X ′ = {xi1 , . . . , xim} be a linearly independent set as in (ii).
From dimV (X) = dimX = m − 1 we obtain V (X) = V (X ′). Therefore, for each xj ∈ X \ X ′ there exist
µ2, . . . , µm ∈ R such that

xj − xi1 =

m∑
i=2

µi(xi − xi1) =

m∑
i=2

µixi −

(
m∑
i=2

µi

)
xi1 .

And this implies

xj =

(
1−

m∑
i=2

µi

)
xi1 +

m∑
i=2

µixi ∈ aff(X ′).

(ii)⇒(iii). This is obvious.

(iii)⇒(i). Let X ′ = {xi1 , . . . , xim} be a linearly independent set as in (iii). If x ∈ X \ X ′, then we have
x ∈ aff(X ′) by (iii). Consequently, there exist λ1, . . . , λm ∈ R with

∑m
l=1 λl = 1 such that x =

∑m
l=1 λlxil .

Hence, we obtain

x− xi1 =
m∑
l=1

λlxil −

(
m∑
l=1

λl

)
xi1 =

m∑
l=1

λl(xil − xi1) ∈ V (X ′).

This implies V (X) = V (X ′) and hence (i).



In the sequel we shall use a special case of Lemma 3.2, where X is a set of rank-one orthogonal projections.
More specifically,

Corollary 3.3. If the set X in Lemma 3.2 consists of rank-one orthogonal projections acting on a real Hilbert
space, then we have

dimX = dim spanX − 1.

Proof. Let X = {P1, . . . , Pk}, m := dim spanX, and let X ′ ⊂ X be a linearly independent subset of X such
that dim spanX ′ = m. Without loss of generality assume that X ′ = {P1, . . . , Pm}. Let j ∈ {m+1, . . . , k}. Then
there exist λ1, . . . , λm ∈ R such that Pj =

∑m
i=1 λiPi. This implies

1 = TrPj = Tr

(
m∑
i=1

λiPi

)
=

m∑
i=1

λi Tr(Pi) =

m∑
i=1

λi,

which shows that Pj ∈ aff(X ′). The statement now follows from Lemma 3.2.

3.2 Scalability in Terms of Convex Combinations of Rank-One Matrices

For a frame Φ = {ϕi}Mi=1 in F(M,N) we set XΦ := {ϕiϕTi : i ∈ [M ]}. This is a subset of SN , the space
of all real symmetric N × N -matrices. We shall also denote the set of positive multiples of the identity by
I+ := {t IdN : t > 0}.
Proposition 3.4. For a frame Φ ∈ F(M,N) the following statements are equivalent:

(i) Φ is scalable, respectively, strictly scalable.

(ii) I+ ∩ co(XΦ) 6= ∅, respectively, I+ ∩ ri co(XΦ) 6= ∅.

Proof. Assume that the frame Φ = {ϕi}Mi=1 is scalable. Then there exist non-negative scalars c1, . . . , cM such
that

M∑
i=1

ciϕiϕ
T
i = Id .

Put α :=
∑M
i=1 ci. Then α > 0 and with λi := α−1ci we have

M∑
i=1

λiϕiϕ
T
i = α−1 Id and

M∑
i=1

λi = 1.

Hence α−1 Id ∈ co(XΦ). The converse direction is obvious.

As pointed out earlier, for m ≤ m′, SC(m) ⊂ SC(m′). The next result shows that given Φ ∈ SC(M,N), there
is a generic N ≤ m := mΦ ≤M such that Φ ∈ SC(m).

Proposition 3.5. A frame Φ = {ϕk}Mk=1 ∈ F is scalable if and only if it is m-scalable, where m := dim spanXΦ.

Proof. Clearly, an m-scalable frame is scalable. Conversely, let Φ = {ϕi}Mi=1 be scalable. After possibly
removing zero vectors from the frame and thereby reducing M (which does not affect the value of m), we may
assume that Φ is unit-norm. By Proposition 3.4, there exists α > 0 such that α Id ∈ co(XΦ).

Therefore, from Theorem 3.1 it follows that there exists I ⊂ [M ] with #I = dimXΦ + 1 such that α Id ∈
co(XI). Hence, ΦI is scalable by Proposition 3.4. And since dimXΦ = dim spanXΦ − 1 by Corollary 3.3, the
claim follows.

As XΦ ⊂ SN and dimSN = N(N + 1)/2, we immediately obtain the following corollary.

Corollary 3.6. For M ≥ N(N + 1)/2 we have

SC(M,N) = SC
(
M,N,

N(N + 1)

2

)
.



3.3 Convex Polytopes Associated with m−Scalable Frames

The m−scalability of a frame Φ = {ϕk}Mk=1 is equivalent to the existence of nonnegative numbers {ck}k∈I with
#I = m ≥ N such that

ΦC2ΦT = A IdN , (2)

where A > 0 and C is the diagonal matrix with the weights ck on its diagonal for k ∈ I and 0 on for k /∈ I. Note
that this automatically implies N ≤ #{k ∈ I : ck > 0} ≤ m ≤ M . Comparing corresponding entries from left-
and right-hand side of (2), it is seen that for a frame to be m−scalable it is necessary and sufficient that there
exists a vector u = (c21, c

2
2, . . . , c

2
M )T with ‖u‖0 := #{k ∈ [M ] : ck 6= 0} ≤ m which is a solution of the following

linear system of N(N+1)
2 equations in M unknowns:

M∑
j=1

ϕj(k)2yj = A for k = 1, . . . , N,

M∑
j=1

ϕj(`)ϕj(k)yj = 0 for `, k = 1, . . . , N, k > `.

(3)

Subtraction of equations in the first system in (3) leads to the new homogeneous linear system
M∑
j=1

(
ϕ1(1)2 − ϕj(k)2

)
yj = 0 for k = 2, . . . , N,

M∑
j=1

ϕj(`)ϕj(k)yj = 0 for `, k = 1, . . . , N, k > `.

(4)

It is not hard to see that we have not lost information in the last step, hence Φ is m−scalable if and only if there
exists a nonnegative vector u ∈ RM with ‖u‖0 ≤ m which is a solution to (4). In matrix form, (4) reads

F (Φ)u = 0,

where the (N − 1)(N + 2)/2×M matrix F (Φ) is given by

F (Φ) =
(
F (ϕ1) F (ϕ2) . . . F (ϕM )

)
,

where F : RN → Rd, d := (N − 1)(N + 2)/2, is defined by

F (x) =


F0(x)
F1(x)

...
FN−1(x)

 , F0(x) =


x2

1 − x2
2

x2
1 − x2

3
...

x2
1 − x2

N

 , Fk(x) =


xkxk+1

xkxk+2

...
xkxN

 ,

and F0(x) ∈ RN−1, Fk(x) ∈ RN−k, k = 1, 2, . . . , N − 1. Summarizing, we have just proved the following
proposition.

Proposition 3.7. A frame Φ for RN is (strictly) m−scalable if and only if there exists a nonnegative u ∈
kerF (Φ) \ {0} with ‖u‖0 ≤ m (respectively, ‖u‖0 = m).

We will now utilize the above reformulation to characterize m−scalable frames in terms of the properties
of convex polytopes of the type co(F (ΦI)), I ⊂ [M ]. One of the key tools will be the Farkas lemma (see,
e.g., [19, Lemma 1.2.5]).

Lemma 3.8. For every real N ×M -matrix A exactly one of the following cases occurs:

(i) The system of linear equations Ax = 0 has a nontrivial nonnegative solution x ∈ RM (all components of x
are nonnegative and at least one of them is strictly positive.)

(ii) There exists y ∈ RN such that yTA is a vector with all entries strictly positive.



Theorem 3.9. Let M ≥ N ≥ 2, and let m be such that N ≤ m ≤ M . Assume that Φ = {ϕk}Mk=1 ∈ F∗(M,N)
is such that ϕk 6= ϕ` when k 6= `. Then the following statements are equivalent:

(i) Φ is (strictly) m−scalable.

(ii) There exists a subset I ⊂ [M ] with #I = m such that 0 ∈ co(F (ΦI)) (respectively, 0 ∈ ri co(F (ΦI))).

(iii) There exists a subset I ⊂ [M ] with #I = m for which there is no h ∈ Rd with 〈F (ϕk), h〉 > 0 for all k ∈ I
(respectively, with 〈F (ϕk), h〉 ≥ 0 for all k ∈ I, with at least one of the inequalities being strict).

Proof. (i)⇔(ii). This equivalence follows directly if we can show the following equivalences for Ψ ⊂ Φ:

0 ∈ co(F (Ψ)) ⇐⇒ kerF (Ψ) \ {0} contains a nonnegative vector and

0 ∈ ri co(F (Ψ)) ⇐⇒ kerF (Ψ) contains a positive vector.
(5)

The implication ”⇒” is trivial in both cases. For the implication ”⇐” in the first case let I ⊂ [M ] be such
that Ψ = ΦI , I = {i1, . . . , im}, and let u = (c1, . . . , cm)T ∈ kerF (Ψ) be a non-zero nonnegative vector. Then
A :=

∑m
k=1 ck > 0 and with λk := ck/A, k ∈ [m], we have

∑m
k=1 λk = 1 and

∑m
k=1 λkF (ϕik) = A−1F (Ψ)u = 0.

Hence 0 ∈ co(F (Ψ)). The proof for the second case is similar.

(ii)⇔(iii). In the non-strict case this follows from (5) and Lemma 3.8 In the strict case this is a known fact;
e.g., see [21, Lemma 3.6.5].

We now derive a few consequences of the above theorem. A given a vector v ∈ Rd defines a hyperplane by

H(v) = {y ∈ Rd : 〈v, y〉 = 0},

which itself determines two open convex cones H−(v) and H+(v), defined by

H−(v) = {y ∈ Rd : 〈v, y〉 < 0} and H+(v) = {y ∈ Rd : 〈v, y〉 > 0}.

Using these notations we can restate the equivalence (i)⇔(iii) in Theorem 3.9 as follows:

Proposition 3.10. Let M ≥ N ≥ 2, and let m be such that N ≤ m ≤ M . Assume that Φ = {ϕk}Mk=1 ∈ F∗ is
such that ϕk 6= ϕ` when k 6= `. Φ is m−scalable if and only if there exists a subset I ⊂ [M ] with #I = m such
that

⋂
i∈I H

+(F (ϕi)) = ∅.

The following result is an application of Proposition 3.10 which provides an easy condition for Φ /∈ SC(M,N).
It relies on the fact that Φ ∈ SC(M,N) if and only if T (Φ) ∈ SC(M,N) for all orthogonal transformations T on
RN , [17, Corollary 2.6].

Proposition 3.11. Let Φ = {ϕk}Mk=1 be a frame for RN , N ≥ 2. If there exists an isometry T such that
T (Φ) ⊂ RN−2 × R2

+, then Φ is not scalable.

Proof. Without any loss of generality assume that Φ ⊂ RN−2 × R2
+, and let {ek}dk=1 be the standard ONB

for Rd. Then for each k ∈ [M ] we have that

〈ed, F (ϕk)〉 = ϕk(N − 1)ϕk(N) > 0.

Hence, ed ∈
⋂
i∈[M ]H

+(F (ϕi)). By Proposition 3.10, Φ is not scalable.

The characterizations stated above can be recast in terms of the convex cone C(F (Φ)) generated by F (Φ).
We state this result for the sake of completeness. But first, recall that for a finite subset X = {x1, . . . , xM} of
Rd the polyhedral cone generated by X is the closed convex cone set C(X) defined by

C(X) =

{
M∑
i=1

αixi : αi ≥ 0

}
.



Let C be a cone in Rd. The polar cone of C is the closed convex cone C◦ defined by

C◦ := {x ∈ RN : 〈x, y〉 ≤ 0 for all y ∈ C}.

The cone C is said to be pointed if C ∩ (−C) = {0}, and blunt if the linear space generated by C is RN , i.e.
spanC = RN .

Corollary 3.12. Let Φ = {ϕk}Mk=1 ∈ F∗, and let N ≤ m ≤ M be fixed. Then the following conditions are
equivalent:

(i) Φ is strictly m−scalable .

(ii) There exists I ⊂ [M ] with #I = m such that C(F (ΦI)) is not pointed.

(iii) There exists I ⊂ [M ] with #I = m such that C(F (ΦI))
◦ is not blunt.

(iv) There exists I ⊂ [M ] with #I = m such that the interior of C(F (ΦI))
◦ is empty.

Proof. (i)⇔(ii). By Proposition 3.7, Φ is strictly m−scalable if and only if there exist I ⊂ [M ] with #I = m
and a nonnegative u ∈ kerF (ΦI) \ {0} with ‖u‖0 = m. By [20, Lemma 2.10.9], this is equivalent to the cone
C(F (ΦI)) being not pointed. This proves that (i) is equivalent to (ii).

(ii)⇔(iii). This follows from the fact that the polar of a pointed cone C is blunt and vice versa, as long as
C◦◦ = C, see [20, Theorem 2.10.7]. But in our case C(F (ΦI))

◦◦ = C(F (ΦI)), see [20, Lemma 2.7.9].

(iii)⇒(iv). If C(F (ΦI))
◦ is not blunt, then it is contained in a proper hyperplane of Rd whose interior is

empty. Hence, also the interior of C(F (ΦI))
◦ must be empty.

(iv)⇒(iii). We use a contra positive argument. Assume that C(F (Φ))◦ is blunt. This is equivalent to
spanC(F (Φ))◦ = Rd. But for the nonempty cone C(F (Φ))◦ we have aff(C(F (Φ))◦) = spanC(F (Φ))◦. Hence,
aff(C(F (Φ))◦) = Rd, and so the relative interior of C(F (Φ))◦ is equal to its interior, which therefore is nonempty.

4. TOPOLOGY OF THE SET OF SCALABLE FRAMES

In this section, we present some topological features of the set SC(M,N). Hereby, we identify frames in F(M,N)
with real N ×M matrices as we already did before, see, e.g., (2) in subsection 3.3. Hence, we consider F(M,N)
as the set of all matrices in RN×M of rank N . Note that under this identification the order of the vectors in a
frame becomes important.

In [17] it was proved that SC(M,N) is a closed set in F(M,N) (in the relative topology of F(M,N)). The
next proposition refines this fact.

Proposition 4.1. If N ≤ m ≤M , then SC(M,N,m) is closed in F(M,N).

Proof. We prove that the complement F \ SC(m) is open, that is, if Φ = {ϕk}Mk=1 ∈ F is a frame which is
not m−scalable, we prove that there exists ε > 0 such that for any frame Ψ = {ψk}Mk=1 ∈ F for which

‖ϕk − ψk‖ < ε for all k ∈ [M ],

we have that Ψ is not m−scalable. Thus assume that Φ = {ϕk}Mk=1 is a frame which is not m−scalable and
define the finite set I of subsets by

I := {I ⊂ [M ] : #I = m}.

By Proposition 3.10, for each I ∈ I there exists yI ∈
⋂
k∈I H

+(F (ϕk)), that is, mink∈I〈yI , F (ϕk)〉 > 0. By the
continuity of the map F , there exists ε > 0 such that for each {ψk}Mk=1 ⊂ RN with ‖ψk−ϕk‖ < ε for all k ∈ [M ]
we still have mink∈I〈yI , F (ψk)〉 > 0. We can choose ε > 0 sufficiently small to guarantee that Ψ = {ψk}Mk=1 ∈ F .
Again from Proposition 3.10 we conclude that Ψ is not m−scalable for any N ≤ m ≤M . Hence, SC(m) is closed
in F .



The next theorem is the main result of this section. It shows that the set of scalable frames is nowhere dense
in the set of frames if only M is not “too large” with respect to N .

Theorem 4.2. Let M ≥ N ≥ 2. If M < d+ 1 = N(N + 1)/2 then SC(M,N) does not contain interior points.
In other words, for the boundary of SC(M,N) we have

∂SC(M,N) = SC(M,N).

For the proof of Theorem 4.2 we shall need two lemmas. Recall that for a frame Φ = {ϕk}Mk=1 ∈ F we use
the noptation

XΦ = {ϕiϕTi : i ∈ [M ]}.

Lemma 4.3. Let {ϕk}Mk=1 ⊂ RN be such that dim spanXΦ < N(N+1)
2 . Then there exists ϕ0 ∈ RN with ‖ϕ0‖ = 1

such that ϕ0ϕ
T
0 /∈ spanXΦ.

Proof. Assume the contrary. Then each rank-one orthogonal projection is an element of spanXΦ. But by the
spectral decomposition theorem every symmetric matrix in RN×N is a linear combination of such projections.
Hence, spanXΦ coincides with the linear space SN of all symmetric matrices in RN×N . Therefore,

dim spanXΦ =
N(N + 1)

2
,

which is a contradiction.

The following lemma shows that for a generic M -element set {ϕi}Mi=1 ⊂ RN (or matrix in RN×M , if the ϕi
are considered as columns) the subspace spanXΦ has the largest possible dimension.

Lemma 4.4. Let D := min{M,N(N + 1)/2}. Then the set{
Φ ∈ RN×M : dim spanXΦ = D

}
is dense in RN×M .

Proof. Let Φ = {ϕi}Mi=1 ∈ RN×M and ε > 0. We will show that there exists Ψ = {ψi}Mi=1 ∈ RN×M with
‖Φ − Ψ‖ < ε and dim spanXΨ = D. For this, set W := spanXΦ and let k be the dimension of W. If k = D,
nothing is to prove. Hence, let k < D. Without loss of generality, assume that ϕ1ϕ

T
1 , . . . , ϕkϕ

T
k are linearly

independent. By Lemma 4.3 there exists ϕ0 ∈ RN with ‖ϕ0‖ = 1 such that ϕ0ϕ
T
0 /∈ W. For δ > 0 define the

symmetric matrix
Sδ := δ

(
ϕk+1ϕ

T
0 + ϕ0ϕ

T
k+1

)
+ δ2ϕ0ϕ

T
0 .

Then there exists at most one δ > 0 such that Sδ ∈ W (regardless of whether ϕk+1ϕ
T
0 + ϕ0ϕ

T
k+1 and ϕ0ϕ

T
0 are

linearly independent or not). Therefore, we find δ > 0 such that δ < ε/M and Sδ /∈ W. Now, for i ∈ [M ] put

ψi :=

{
ϕi if i 6= k + 1

ϕk+1 + δϕ0 if i = k + 1

and Ψ := {ψi}Mi=1. Let λ1, . . . , λk+1 ∈ R such that

k+1∑
i=1

λiψiψ
T
i = 0.

Then, since ψk+1ψ
T
k+1 = ϕk+1ϕ

T
k+1 + Sδ, we have that

λk+1Sδ = −
k+1∑
i=1

λiϕiϕ
T
i ∈ W,



which implies λk+1 = 0 and therefore also λ1 = . . . = λk = 0. Hence, we have dim spanXΨ = k + 1 and
‖Φ − Ψ‖ < ε/M . If k = D − 1, we are finished. Otherwise, repeat the above construction at most D − k − 1
times.

Remark 4.5. For the case M ≥ N(N + 1)/2, Lemma 4.4 has been proved in [4, Theorem 2.1]. In the proof,
the authors note that XΦ spans SN if and only if the frame operator of XΦ (considered as a system in SN ) is
invertible. But the determinant of this operator is a polynomial in the entries of ϕi, and the complement of the
set of roots of such polynomials is known to be dense.

Proof of Theorem 4.2. Assume the contrary. Then, by Lemma 4.4, there even exists an interior point
Φ = {ϕi}Mi=1 ∈ SC(M,N) of SC(M,N) for which the linear space W := spanXΦ has dimension M . Since Φ is
scalable, there exist c1, . . . , cM ≥ 0 such that

M∑
i=1

ciϕiϕ
T
i = Id .

Without loss of generality we may assume that c1 > 0.

By Lemma 4.3 there exists ϕ0 ∈ RN with ‖ϕ0‖ = 1 such that ϕ0ϕ
T
0 /∈ W. As in the proof of Lemma 4.4, we

set
Sδ := δ

(
ϕ1ϕ

T
0 + ϕ0ϕ

T
1

)
+ δ2ϕ0ϕ

T
0 .

Then, for δ > 0 sufficiently small, we have that Sδ /∈ W and Ψ := {ϕ1 + δϕ0, ϕ2, . . . , ϕM} ∈ SC(M,N). Hence,
there exist c′1, . . . , c

′
M ≥ 0 such that

M∑
i=1

ciϕiϕ
T
i = Id = c′1(ϕ1 + δϕ0)(ϕ1 + δϕ0)T +

M∑
i=2

c′iϕiϕ
T
i =

M∑
i=1

c′iϕiϕ
T
i + c′1Sδ.

This implies c′1Sδ ∈ W, and thus c′1 = 0. But then we have

c1ϕ1ϕ
T
1 +

M∑
i=2

(ci − c′i)ϕiϕTi = 0,

which yields c1 = 0 as ϕ1ϕ
T
1 , . . . , ϕMϕ

T
M are linearly independent. A contradiction.
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[16] Kovačević, J. and Chebira, A., “Life beyond bases: The advent of frames (part ii),” Signal Processing
Magazine, IEEE 24 (5) (2007) 115–125.

[17] Kutyniok, G., Okoudjou, K. A., Philipp, F., and Tuley, E. K., “Scalable frames,” Linear Algebra Appl 438
(2013) .

[18] Kutyniok, G., Okoudjou, K. A., and Philipp, F., “Perfect preconditioning of frames by a diagonal operator,”
SampTa’13, Proceedings (2013) 2225-2238.
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