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Abstract. We use the existence of localized eigenfunctions of the
Laplacian on the Sierpiński gasket (SG) to formulate and prove
analogues of the strong Szegö limit theorem in this fractal setting.
Furthermore, we recast some of our results in terms of equally
distributed sequences.

1. Introduction

Let Pn be the orthogonal projection of L2([0, 2π) onto the linear
subspace spanned by the functions {eimθ : 0 ≤ m ≤ n; 0 ≤ θ < 2π}.
For any function f defined on [0, 2π), let [f ] be the linear operator
corresponding to multiplication by f .

In 1952, G. Szegö proved that for a positive function f ∈ C1+α where
α > 0, the following holds

(1) lim
n→∞

1
n+1

log det Pn[f ]Pn = 1
2π

∫ 2π

0

log f(θ) dθ.

Equivalently, (1) can be expressed as

(2) lim
n→∞

1
n+1

Trace log Pn[f ]Pn = 1
2π

∫ 2π

0

log f(θ) dθ.

The above result is known as the strong Szegö limit theorem and we
refer to [6, 19] for more details and related results.

Today, the strong Szegö limit theorem can be proved under much
weaker conditions on f , see e.g., [5, 8, 9]. For high dimensional ex-
tensions of the strong Szegö limit theorem, we refer to [13] and the
references therein.
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In fact, the strong Szegö limit theorem is a special case of a more
general result proved by Szegö using the fact that Pn[f ]Pn is a Toeplitz
form [6]. More specifically, let f be a real-valued integrable function

such that m ≤ f(x) ≤ M . Then the eigenvalues {λ
(n)
k }n+1

k=1 of Pn[f ]Pn

are contained in [m, M ]. For any continuous function F defined on this
interval, it was proved in [6, Section 5.3] that

(3) lim
n→∞

1
n+1

n+1
∑

k=1

F (λ
(n)
k ) = 1

2π

∫ 2π

0

F (f(x)) dx.

Notice that (1) is a specific case of (3), when F (x) = log x. It follows

from (3) that the bounded sequences {λ
(n+1)
k }n+1

k=1 and {f( 2kπ
n+1

)}n+1
k=1 are

equally distributed in the interval [m, M ]; see [6, Chapter 5].

By noticing that eimθ is an eigenfunction of ∆ = d2

dx2 , one can view
the above results as special cases of Szegö limit theorem for the Laplace-
Beltrami operator (or more generally for pseudodifferential operators)
on manifolds [7, 12, 13, 21].
In the present paper, we prove the analogue of the strong Szegö limit
theorem on the Sierpiński gasket (SG). This set is an example of fractal
on which a well established theory of Laplacian exists [1, 10, 16, 18].
In this fractal setting, the non-periodicity of the eigenfunctions of the
Laplacian implies that the analogue of the matrix Pj[f ]Pj is no longer
related to a Toeplitz form. Thus our results no longer follow from
any known proof of (1), but rather rely on the existence of localized
eigenfunctions for the Laplacian on SG [2].

The paper is organized as follows: In Section 2 we briefly introduce
some key notions from analysis on fractals and give a precise description
of the Dirichlet spectrum of the Laplacian on SG. In Section 3 we prove
a special case of the strong Szegö theorem that we use in Section 4 to
prove an analogue of (1). Finally, Section 5 contains a further extension
of the strong Szegö limit theorem on SG.

2. Analysis on the Sierpíski gasket

2.1. Basic features. In this section we collect some key facts from
analysis on SG that we need to state and prove our results. These
come from Kigami’s theory of analysis on fractals, and may be found
in [10]. An elementary exposition may be found in [16, 18].

Let F1, F2 and F3 be the contractions defined on R
2 respectively

by F1(x) = 1
2
x, F2(x) = 1

2
x + (1

2
, 0) and F3(x) = 1

2
x + (1

4
,
√

3
4

). The
Sierpiński gasket denoted by SG is the unique nonempty compact sub-
set of R

2 such that SG = ∪3
i=1Fi(SG). Alternatively, SG can be defined
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as a limit of graphs. For a word ω = (ω1, ω2, . . . , ωm) of length m, the
set Fω(SG) = Fω1

◦ · · · ◦ Fωm−1
◦ Fωm

(SG) with ωi ∈ {1, 2, 3}, is called

an m-cell. Let V0 = {(0, 0), (1, 0), (1
2
,
√

3
2

)}, be the boundary of SG and
Vn = ∪3

i=1FiVn−1, n ≥ 1. Define a sequence of graphs Γm with vertices
in Vm and edge relation x ∼m y given inductively by: Γ0 is the complete
graph with vertices in V0, and x ∼m y if and only if x and y belong to
the same m-cell Fω(SG).

In all that follows, we assume that SG is equipped with the proba-
bility measure µ that assigns the measure 3−m to each m−cell. We will
also need the energy or Dirichlet form that is naturally defined on SG
and denoted E . The precise definition of E will not be given here but
can be found in [10, 18]. All we will need in the sequel is that E gives
rise to a natural distance on SG called the effective resistance metric

on SG, and defined for x, y ∈ SG by

(4) d(x, y) =

(

min{E(u, u) : u(x) = 0 andu(y) = 1}

)−1

.

It is known that d(x, y) is bounded above and below by constant mul-
tiples of |x − y|log(5/3)/ log 2, where |x − y| is the Euclidean distance.

For any integer N > 1 we will consider a partition of the Sierpiński
gasket (SG) into

(5) SG = ∪|ω|=NFωSG,

where for each word ω of length N , Fω(SG) is an N−cell. Note that
there are exactly 3N such cells, each of which has a measure 3−N . If u
is a function having support entirely contained in a single N -cell then
we will say that u is localized at scale N .

2.2. The Laplacian and its spectrum. A Laplacian can be defined
on SG either through a weak formulation using the energy and mea-
sure or as a renormalized limit of graph Laplacians in the following
manner [10, 18]. Define the graph Laplacian ∆m on Γm by

(6) ∆mf(x) =
∑

y∼mx

f(y) − 4f(x)

for x ∈ Vm \ V0. The Laplacian on SG can now be defined by

(7) ∆ = 3
2

lim
m→∞

5m∆m.

A complete description of the spectrum of ∆ on SG was given in [4]
using the method of spectral decimation introduced in [15], and a de-
scription of the eigenfunctions was obtained by this method in [3], see
also [20]. In a nutshell, the spectral decimation method completely
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determines the eigenvalues and the eigenfunctions of ∆ on SG from
the eigenvalues and eigenfunctions of the graph Laplacians ∆m. More
specifically, for every Dirichlet eigenvalue λ of ∆ on SG, there exists
an integer j ≥ 1, called the generation of birth, such that if u is a
λ-eigenfunction and k ≥ j then u

∣

∣

Vk
is an eigenfunction of ∆k with

eigenvalue γk. The only possible initial values γj are 2, 5 and 6, and
subsequent values can be obtained from

(8) γk =
1

2

(

5 + ǫk

√

25 − 4γk−1

)

for k > j

where ǫk can take the values ±1. The sequence γk is related to λ by

(9) λ = 3
2

lim
k→∞

5kγk.

In particular the convergence of (9) implies that ǫk = 1 for at most a
finite number of k values. We let l = min{k : ǫk = −1} and call it the
generation of fixation.

An interesting and useful feature is that there are a great many
eigenfunctions which satisfy both Dirichlet and Neumann boundary
conditions; this is a general property of the Laplacian on fractals with
sufficient symmetry [2], and in the case of SG it implies both that most
eigenfunctions are localized on small sets, and that eigenspaces have
high multiplicity.

Using the spectral decimation algorithm and elementary properties
of the map in (8) one can see that the size of an eigenvalue depends (up
to constant factors) on its generation of fixation, and its multiplicity
depends on its generation of birth. We summarize the relevant features
of eigenvalues at the bottom of the spectrum and their eigenspaces in
Proposition 1 below, and refer the reader to the original treatments [2,
3, 4], or the exposition in [18] for proofs.

Proposition 1. There is a constant κ such that the 1
2
(3m+1−3) small-

est eigenvalues of −∆ are precisely those with size at most κ5m, and all

have generation of fixation l ≤ m. The eigenvalues, their multiplicities,

and bases for their eigenspaces may be described as follows.

• The 2-series eigenvalues are those obtained from (8) and (9)
with generation of birth j = 1 and γj = 2. Each such eigenvalue

has multiplicity 1.
• The 5-series eigenvalues are those obtained from (8) and (9)

with any generation of birth j ≥ 1 and γj = 5. There are

2m−j such eigenvalues for each 1 ≤ j ≤ m, every one having

multiplicity 1
2
(3j−1 + 3). For each such eigenvalue, there is a

basis for the corresponding eigenspace in which all but two of
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the basis functions have support in a collection of (j − 1)-cells
arranged in a loop around a “hole” of scale at least (j − 1) in

SG. There are 1
2
(3j−1−1) such holes and one eigenfunction for

each hole.

• The 6-series eigenvalues are those obtained from (8) and (9)
with any generation of birth j ≥ 2, γj = 6 and ǫj+1 = +1. There

are 2m−j−1 such eigenfunctions for each 2 ≤ j < m and 1 for

j = m, every one having multiplicity 1
2
(3j − 3). For each such

eigenvalue there is a basis for the corresponding eigenspace that

is indexed by points of Vj−1\V0, and in which each basis element

is supported on the union of the two j-cells that intersect at the

corresponding point in Vj−1 \ V0.

Recall that a function is said to be localized at scale N if its support
is contained entirely in a single N -cell. It is apparent from the above
that there are eigenfunctions that are localized at scale N provided
j > N . For later use, we compute the number of these that occur in
each of the 5 and 6-series.

Let j > N and consider a 6-series eigenvalue with generation of birth
j. In the associated eigenspace there are 1

2
(3N+1 − 3) basis functions

corresponding to the vertices in VN \ V0, and which are not localized
at scale N . The remaining 1

2
(3j − 3N+1) basis functions correspond to

vertices in Vj−1 \ VN and are localized at scale N .
For j > N and a fixed 5-series eigenvalue, the basis elements for the

eigenspace are supported on loops or chains. A loop is contained in a
cell of scale N if and only if the hole it encircles has scale at least N +1.
The number of holes of scale at most N is 1

2
(3N − 1), so the number

of basis elements not localized at scale N is this plus the two that are
not loops, giving 1

2
(3N + 3) in total. The remaining 1

2
(3j−1 − 3N) basis

eigenfunctions are localized at scale N .

3. Szegö limit theorem on SG for a single eigenspace

In this section we prove a Szegö limit theorem for a single 5-series
or 6-series eigenspace of the Laplacian on SG.

Let λj be a 6-series eigenfunction with generation of birth j and
eigenspace Ej . Denote the span of those eigenfunctions corresponding
to λj that are localized at scale N < j by EN

j . Let dN
j = dim EN

j =
1
2
(3j − 3N+1) and αN

j = 1
2
(3N+1 − 3) be the dimension of the com-

plementary space in Ej . Since there are 3N cells of scale N , we see
that the number of eigenfunctions supported on a single cell is mN

j =
1
2
(3j−N − 3).
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An analogous construction may be done for a 5-series eigenfunction,
with the only change being that in this case αN

j = 3N−3
2

, dN
j = 1

2
(3j−1−

3N) and mN
j = 1

2
(3j−N−1 − 1).

For each N -cell, use the Gram-Schmidt process to orthonormalize the
collection of eigenfunctions supported on that cell. Since functions on
separate cells are already orthogonal, taking the union over all N -cells

gives an orthonormal basis {ũk}
dN

j

k=1 for EN
j . Adjoining the remaining

basis elements of Ej and again using the Gram-Schmidt process extends
this to an orthonormal basis

{uk}
dj

k=1 = {ũk}
dN

j

k=1 ∪ {vk}
αN

j

k=1,

for Ej, where only the vk are not localized at scale N .
Let Pj be the projection of L2(SG) onto Ej . For g ∈ L2(SG), Pj is

defined by

(10) Pjg(x) :=

dj
∑

k=1

gkuk(x) =

dj
∑

k=1

〈g, uk〉uk(x).

For a real-valued function f on SG, we recall that [f ] the operator
corresponding to the pointwise multiplication by f .

3.1. The case of simple functions.

Lemma 1. Let f =
∑3N

k=1 akχCk
where we assume that ak > 0 for all

k and χCk
denotes the characteristic function of the N-cell Ck. Then

for Pj as above,

lim
j→∞

1
dj

log det Pj [f ]Pj =

∫

SG

log f(x) dµ(x).

Furthermore, for j large enough,

1
dj

log det Pj [f ]Pj −

∫

SG

log f(x) dµ(x) = O(d−1
j ).

Proof. For j > N set Mj = Pj[f ]Pj. Then Mj is a dj ×dj matrix which
has block structure

(11) Mj =

[

Rj ⋆
0 Nj

]

with respect to the basis {uk}
dj

k=1. Here Rj is an invertible dN
j × dN

j

matrix corresponding to the “localized” part, while Nj is an invertible
αN

j × αN
j matrix corresponding to the “non-localized” part. Further-

more, Rj is a block diagonal matrix, where each block is an mN
j ×mN

j

matrix that corresponds to a single N−cell Ck, and is therefore simply
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akImN
j

where Id is notation for the d × d identity matrix. It follows

immediately that

log det Mj = log det Rj + log det Nj

= log

( 3N
∏

k=1

a
mN

j

k

)

+ log det Nj

= mN
j

( 3N
∑

k=1

log ak

)

+ log det Nj .

Using dN
j = 3NmN

j we conclude

1
dj

log det Mj =
mN

j 3N

dj

3N
∑

k=1

3−N log ak + 1
dj

log det Nj

=
dN

j

dj

∫

SG

log f(x) dµ(x) + 1
dj

log det Nj ,

and since dj − dN
j = αN

j , we have

1
dj

log det Mj −

∫

SG

log f(x) dµ(x)

=
−αN

j

dj

∫

SG

log f(x) dµ(x) + 1
dj

log det Nj .(12)

We can now afford a crude estimate of the term log det Nj . Since
f ∈ L∞, the multiplier [f ] is bounded on L2 by ‖f‖∞. It follows that
〈Njg, g〉 ≤ ‖f‖∞ for any g ∈ Ej with ‖g‖2 = 1, and therefore that

det Nj ≤ ‖f‖
αN

j
∞ . Combining this with (12) we see

∣

∣

∣

∣

1
dj

log det Mj −

∫

SG

log f(x) dµ(x)

∣

∣

∣

∣

≤
αN

j

dj

(

‖ log f(x)‖1 + ‖f‖∞

)

which completes the proof because αN
j is bounded by a constant mul-

tiple of 3N and dj is comparable to 3j . �

3.2. The case of continuous positive functions.

Theorem 1. Let f be a positive and continuous function on SG. Then

(13) lim
j→∞

1
dj

log det Pj [f ]Pj =

∫

SG

log f(x) dµ(x).

If in addition, we assume that f is Hölder continuous of order α in the

resistance metric R on SG, then

(14) 1
dj

log det Pj [f ]Pj −

∫

SG

log f(x) dµ(x) = O(d−β
j )
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where

β = α log(5/3)
log 3+α log(5/3)

= 1 − log 3
α log(5/3)+log 3

.

Proof. Since SG is compact, minx∈SG f(x) = m > 0. Given ǫ > 0,

uniform continuity provides N and a simple function fN =
∑3N

k=1 akχCk

such that
‖f − fN‖∞ < min

(

1
2
, m

2
, ǫm

2

)

,

from which the following are immediate,
∣

∣f(x)−fN (x)

∣

∣

∣

∣fN (x)

∣

∣

≤ ǫ,

1 − ǫ ≤ f(x)
fN (x)

≤ 1 + ǫ,(15)

−2ǫ ≤ log(1 − ǫ) ≤ log
(

f(x)
fN (x)

)

≤ log(1 + ǫ) ≤ ǫ.(16)

Note that (16) implies
∣

∣

∫

SG
log f −

∫

SG
log fN

∣

∣ ≤ 2ǫ.
Now let us estimate log det Pj [f ]Pj in the same manner as was done

in Lemma 1. It has a block structure like (11), but the diagonal blocks
in Rj are no longer multiples of the identity matrix ImN

j
. However it

follows from (15) that the values on the diagonal corresponding to Ck

are bounded below by ak(1 − ǫ) and above by ak(1 + ǫ), and thus

dN
j

dj
log(1 − ǫ) ≤ 1

dj
log det Rj −

dN
j

dj

∫

SG

fN dµ ≤
dN

j

dj
log(1 + ǫ)

and in particular
∣

∣d−1
j log det Rj − dN

j d−1
j

∫

SG
fN

∣

∣ ≤ 2ǫ.

Combining these estimates with the same log det Nj ≤ αN
j ‖f‖∞

bound used in Lemma 1 we have
∣

∣

∣

∣

1
dj

log det Pj[f ]Pj −

∫

SG

log f dµ

∣

∣

∣

∣

≤

∣

∣

∣

∣

1
dj

log det Rj −
dN

j

dj

∫

SG

log fN dµ

∣

∣

∣

∣

+
αN

j

dj

∣

∣

∣

∣

∫

SG

log fN dµ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

SG

log fN − log f dµ

∣

∣

∣

∣

+ 1
dj

log det Nj

≤ 4ǫ + c
αN

j

dj

(

‖f‖∞ + ‖ log f‖1

)

≤ 4ǫ + c3N−j
(

‖f‖∞ + ‖ log f‖1

)

.(17)

This gives the first statement of the theorem.
In the case that f is Hölder continuous of order α in the resistance

metric we see that

ǫ = ‖f − fN‖L∞ = O((3
5
)Nα).
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For a fixed large j we may then choose N such that the bound in (17)
is minimized, which occurs when ǫ ≈ 3N−j. Setting (3/5)Nα = 3N−j we
compute

3N−j = 3
−jα log(5/3)

log 3+α log(5/3)

and substitute into (17) to obtain (14), using dj ≈ 3j . �

Remark 1. The following special cases of (14) are worth pointing out.
If α = 1/2 (which is the case when f ∈ domE), then β = 1 − log 9

log 15
.

If α = 1 (which is the case if f ∈ dom∆), then β = 1 − log 3
log 5

.

4. General Szegö Theorem on SG

In this section we prove analogues of the results proved in Section 3
for the situation where we look at all eigenvalues up to a certain value
Λ. We therefore let EΛ be the span of all eigenfunctions corresponding
to eigenvalues λ of −∆ for which λ ≤ Λ, let PΛ be projection onto EΛ,
and set dΛ = dim(EΛ). We also suppose that a scale N is fixed.

Since −∆ is self-adjoint the eigenspaces of distinct eigenvalues are
orthogonal. For each λ < Λ from either the 5-series or the 6-series, and
having generation of birth j > N we take an orthonormal basis for the
corresponding eigenspace of the type described in Section 3. For all
other eigenspaces in EΛ we simply take orthonormal bases. The union
of the basis vectors is then a basis for EΛ and in this basis the operator
PΛ[f ]PΛ is a block diagonal matrix MΛ with one block Mλ for each
eigenvalue λ ≤ Λ.

Theorem 2. Let f > 0 be a continuous function on SG. Then,

(18) lim
Λ→∞

1
dΛ

log det MΛ =

∫

SG

log f(x) dµ(x).

If in addition we assume that f is Hölder continuous of order α in the

resistance metric R on SG then

(19) 1
dΛ

log det MΛ −

∫

SG

log f(x) dµ(x) = O(d−β̃
Λ )

where

β̃ = β(1 − log 2
log 3

) = ( α log(5/3)
log 3+α log(5/3)

)(1 − log 2
log 3

).

Proof. Fix ǫ > 0. It is clear that log det MΛ =
∑

λ≤Λ log det Mλ. If λ
is one of the 5 or 6-series eigenvalues with j > N then replacing f by
fN0

as in the proof of Theorem 1 we have from (17)

(20)

∣

∣

∣

∣

log det Mλ − dλ

∫

SG

log f dµ

∣

∣

∣

∣

≤ 4ǫdλ + c3N
(

‖f‖∞ + ‖ log f‖1

)

.
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Now we let ΓN be the set of λ < Λ with generation of birth j > N and
sum (20) over λ ∈ ΓN , noting that d−1

Λ

∑

λ∈ΓN
dλ ≤ 1. Using the trivial

bound log det Mλ ≤ dλ‖f‖∞ for the remaining terms in log det MΛ, and
dλ‖ log f‖1 for those making up the integral, we obtain

∣

∣

∣

∣

1
dΛ

log det MΛ −

∫

SG

log f dµ

∣

∣

∣

∣

≤ 4ǫ +
(

‖f‖∞ + ‖ log f‖1

)

(

(

c3N

dΛ

∑

λ∈ΓN

1
)

+
(

∑

λ6∈ΓN

dλ

dΛ

)

)

.(21)

The remaining work in the proof is to estimate the number of eigen-
values in ΓN and the sum of the dimensions dλ for λ 6∈ ΓN , which we
do using Proposition 1. For this purpose, take m ∈ N so κ5m−1 ≤
Λ < κ5m, where κ is as in Proposition 1. Since ΓN is empty and the
estimate is trivial if N ≥ m, we assume without loss of generality that
N < m. The eigenvalues less than κ5m and having generation of birth
j ≤ N number 2m−1 with multiplicity 1 from the 2-series, 2m−j with
multiplicity 1

2
(3j−1 + 3) from the 5-series and 2m−j−1 with multiplicity

1
2
(3j − 3) if 2 ≤ j ≤ N from the 6−series. Summing these gives

2m−1 +

N
∑

1

2m−j−1(3j−1 + 3) +

N
∑

2

2m−j−2(3j − 3) = O(2m−N3N).

so

(22)
∑

{λ6∈ΓN :λ≤Λ}
dλ ≤

∑

{λ6∈ΓN :λ≤κ5m}
dλ = O(2m−N3N).

Moreover the number of λ ∈ ΓN such that λ ≤ κ5m is
∑m

N+1 2m−j from

the 5 series and
∑m

N+1 2m−j−1 from the 6 series, giving a total that is

O(2m−N). This implies

c3N

dΛ

∑

λ∈ΓN

1 = O(2m−N3Nd−1
Λ ),

and substituting this and (22) into (21), along with dΛ ≥ 1
2
(3m − 3)

because Λ ≥ κ5m−1, we have
∣

∣

∣

∣

1
dΛ

log det MΛ −

∫

SG

log f dµ

∣

∣

∣

∣

≤ 4ǫ + c
(

3
2

)N−m

,

which proves the first statement of the theorem.
For Hölder continuous f and fixed Λ we may now optimize the choice

of N as in the proof of Theorem 1 to obtain 19. �
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Remark 2. Observe that in comparison with (14), the error in (19) is
decaying at a slower rate. This is a consequence of the fact that, at the
optimal N , the eigenfunctions that are not localized at scale N make
up a larger proportion (in terms of dimension) of the space EΛ than
they do in the spaces Eλ with λ ≈ Λ.

5. “Almost” equally distributed sequences

As mentioned to in the Introduction, (3) can be translated into re-
sults on equally distributed sequences. In this section we shall prove
an analogue of (3) on SG. This will be used to define the notion of
“almost” equally distributed sequences on SG. We recall the definition
of equally distributed sequences due to H. Weyl, for which we refer to
[6, Chapter 5].

Definition 1. Fix K > 0. For each n let a
(n)
1 , . . . , a

(n)
n+1 and b

(n)
1 , . . . , b

(n)
n+1

be sets of n + 1 numbers from the interval [−K, K]. We say that the

sets {a
(n)
j } and {b

(n)
k }, n → ∞, are equally distributed in the interval

[−K, K], if given any continuous function F on [−K, K] we have

lim
n→∞

1
n+1

n+1
∑

j=1

[F (a
(n)
j ) − F (b

(n)
j )] = 0.

We first consider an extension of the results proved in Section 3.
Recall that Mj = Pj[f ]Pj, where Pj is the orthogonal projection onto
the eigenspace Ej corresponding to a 5 or 6-series eigenvalue λj of −∆

with generation of birth j. Let
{

σ
(j)
k

}dj

k=1
be the eigenvalues of Mj

Lemma 2. Let f =
∑3N

k=1 akχCk
with all ak > 0 and let m = mink ak,

M = maxk ak. Let F be continuous on [m, M ]. Then

lim
j→∞

1
dj

dj
∑

k=1

F (σ
(j)
k ) =

∫

SG

F (f(x)) dµ(x).

Moreover there is a set of points {s
(j)
k }

dj

k in SG such that {σ
(j)
k } and

{f(s
(j)
k )} are “almost” equally distributed in [m, M ] when j → ∞.

Remark 3. We use the term “almost” equally distributed because the
above limit is computed along the subsequence dj of the positive inte-
gers.

Proof. Note from the proof of Lemma 1 that all eigenvalues of Mj

satisfy m ≤ σ
(j)
k ≤ M , and that each ak is an eigenvalue of Mj with
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multiplicity mN
j . The remaining eigenvalues form a set Υj with #Υj ≤

αN
j . Using the fact that mN

j = 3−NdN
j we compute

∣

∣

∣

∣

1
dj

dj
∑

k=1

F (σ
(j)
k ) −

∫

SG

F (f(x)) dµ

∣

∣

∣

∣

=

∣

∣

∣

∣

1
dj

∑

Υj

F (σ
(j)
k ) +

mN
j

dj

3N
∑

k=1

F (ak) −

∫

SG

F (f(x)) dµ

∣

∣

∣

∣

≤
αN

j

dj
‖F‖L∞([m,M ]) +

∣

∣

∣

∣

(

dN
j

dj
− 1

)

∫

SG

F (f(x)) dµ

∣

∣

∣

∣

≤
2αN

j

dj
‖F‖L∞([m,M ]).

The last part of the result follows from approximating
∫

SG
F (f(x)) dµ(x)

with Riemann sums. �

With this result we can prove the following extension of Theorem 1

Theorem 3. Let f > 0 be continuous on SG and M = maxSG f(x). If

F is continuous on [0,∞), then

lim
j→∞

1
dj

dj
∑

k=1

F (σ
(j)
k ) =

∫

SG

F (f(x)) dµ(x).

Moreover there is a set of points {s
(j)
k }

dj

k in SG such that {σ
(j)
k } and

{f(s
(j)
k )} are “almost” equally distributed in [0, ‖f‖L∞] as j → ∞.

Proof. Let δ > 0 be given and let 0 < ǫ < δ be such that |a−b| ≤ ǫ and
a, b ∈ [0, M ] implies |F (a) − F (b)| < δ. Take fN a simple function as
in the proof of Theorem 1. We saw in that proof that the eigenvalues
of Pj[f ]Pj that correspond to the eigenfunctions localized at scale N

are bounded below by (1− ǫ)ak and above by (1 + ǫ)ak. Writing ρj
k for

the eigenvalues of Pj [fN ]Pj we have
∣

∣

∣

∣

1
dj

dj
∑

k=1

F (σ
(j)
k ) −

∫

SG

F (f(x)) dµ

∣

∣

∣

∣

≤

∣

∣

∣

∣

1
dj

dj
∑

k=1

F (ρ
(j)
k ) −

∫

SG

F (fN(x)) dµ

∣

∣

∣

∣

+

∣

∣

∣

∣

1
dj

dj
∑

k=1

(

F (σ
(j)
k ) − F (ρ

(j)
k )

)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

SG

(

F (f(x)) − F (fN(x))
)

dµ(x)

∣

∣

∣

∣

≤
2αN

j

dj
‖F‖L∞([m,M ]) + δ + ǫ.
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This proves the first statement, and the second statement follows using
Riemann sums as before. �

More generally we have the following extension of Theorem 2, in

which we denote the eigenvalues of MΛ by {σ
(Λ)
k }dΛ

k=1.

Theorem 4. Let f > 0 be continuous on SG and F be continuous on

[0,∞). Then

(23) lim
Λ→∞

1
dΛ

dΛ
∑

k=1

F (σ
(Λ)
k ) =

∫

SG

F (f(x)) dµ(x).

Moreover there is a set of points {s
(Λ)
k }dΛ

k in SG such that {σ
(Λ)
k } and

{f(s
(Λ)
k )} are “almost” equally distributed in [0, ‖f‖L∞] as Λ → ∞.

Proof. For δ > 0 and N as in Theorem 3 we decompose the sum into
terms corresponding to λ ∈ ΓN and λ 6∈ ΓN as in Theorem 2. For
λ ∈ ΓN we estimate as in the proof of Theorem 3, and follow the
argument of Theorem 2 to find that the left and right sides of (23)
differ by at most 2δ + O(2m−N3N) where Λ ≈ 5m. �

Remark 4. The results proved here for SG should extend to other frac-
tals on which localized eigenfunctions come to predominate in the spec-
trum as the eigenvalues increase. Sufficient symmetry conditions for
the existence of high multiplicity eigenspaces with localized eigenfunc-
tions were given in [2].

Acknowledgment. The authors are grateful to Victor Guillemin for
suggesting that we investigate these questions.
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