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Abstract. We show that multi-window Gabor frames with windows in
the Wiener algebra W (L∞, `1) are Banach frames for all Wiener amal-
gam spaces. As a by-product of our results we prove the canonical dual
of a Gabor frame with a continuous generator in the Wiener algebra
also belongs to this space. Our proofs are mostly based on recent non-
commutative versions of Wiener’s 1/f lemma.

1. Introduction

A Gabor system is a collection of functions G(g,Λ) =
{
π(λ)g

∣∣λ ∈ Λ
}

,

where Λ = αZd× βZd is a lattice, g ∈ L2(Rd), and the time-frequency shifts
π(λ)g = π(x, ω)g of g are given by

π(x, ω)g(y) = e2πiω·yg(y − x), y ∈ Rd, λ = (x, ω) ∈ Λ.

This system is called a frame if ‖f‖22 ≈
∑

λ |〈f, π(λ)g〉|2. In this case, there
exists a dual Gabor system G(g̃,Λ) =

{
π(λ)g̃

∣∣λ ∈ Λ
}

providing the L2-
expansions

f =
∑
λ

〈f, π(λ)g〉π(λ)g̃ =
∑
λ

〈f, π(λ)g̃〉π(λ)g.(1)

It is known that under suitable assumptions on g and g̃ equations in (1)
extend to Lp spaces [3, 18, 21, 22]. To some extent, these results parallel
the theory of Gabor expansions on modulation spaces [15]. However, since
modulation spaces are defined in terms of time-frequency concentration –
and are indeed characterized by the size of the numbers 〈f, π(λ)g〉 – Gabor
expansions are also available in a more irregular context, where Λ is not a
lattice. In contrast, the theory of Gabor expansions in Lp spaces relies on
the strict algebraic structure of Λ. Indeed, as shown in [31], the Poisson sum-
mation formula implies that the frame operator Sf :=

∑
λ 〈f, π(λ)g〉π(λ)g

can be written as

Sf(x) =
1

βd

∑
j∈Zd

∑
k∈Zd

(
g(x− j/β − αk)g(x− αk)

)
f(x− j/β).(2)
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This expression allows one to transfer spatial information about g to bound-
edness properties of S and is at the core of the Lp-theory of Gabor expan-
sions.

One often has explicit information only about g, while the existence of g̃
is merely inferred from the frame inequality. It is then important to know
whether certain good properties of g are also inherited by g̃, so as to deduce
the validity of (1) in various function spaces. The key technical point is
showing that S is invertible not only in L2 but also in other relevant spaces.
This was proved for modulation spaces in [24, 20] and for Lp spaces in
[28]. In this latter case the analysis relies on the fact that S−1 is the frame
operator associated with the dual Gabor system G(g̃,Λ) and thus admits an
expansion like the one in (2).

The objective of this article is to extend the Lp-theory of Gabor expan-
sions to multi-window Gabor systems (see [2, 25]),

G(Λ1, . . . ,Λn, g1, . . . , gn) =
{
π(λi)gi

∣∣λi ∈ Λi, 1 ≤ i ≤ n
}
,

where Λ1, . . . ,Λn ⊆ R2d are lattices Λi = αiZd × βiZd and g1, . . . , gn : Rd →
C. The challenge in doing so is that, in contrast to the case of a single
lattice Λ, the corresponding dual system does not consist of lattice time-

frequency translates of a certain family of functions g̃1, . . . , g̃n. One of the
main technical contributions of this paper is to show that, nevertheless, S−1

admits a generalized expansion

S−1f(x) =
∑
k

Gk(x)f(x− xk),(3)

where the family of points {xk}k may not be contained in a lattice. We
then prove that certain spatial localization properties of g1, . . . , gn imply
corresponding localization properties for the family of functions {Gk}k and
deduce that S−1 is bounded on Lp-spaces. Moreover, the result extends to
the more general context of Wiener amalgam spaces, which are spaces of
functions that belong locally to Lq and globally to Lp.

To prove these results, we study a Banach algebra of operators admitting
an expansion as in (3) with a suitable summability condition. We then
resort to a recent Wiener-type result on non-commutative almost-periodic
Fourier series [4] to prove that this algebra is spectral within the class of
bounded operators on Lp. This means that if an operator from that algebra
is invertible on Lp, then the inverse operator necessarily belongs to the
algebra. This approach is now common in time-frequency analysis [1, 4,
5, 6, 7, 11, 15, 20, 24, 26, 27] but its application to spaces that are not
characterized by time-frequency decay is rather subtle. As a by-product,
we obtain consequences that are new even for the case of one generator. In
particular, we prove that if all the functions gi are continuous, so is every
function in the dual system. This answers positively a question that was
inspired by [28].
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This paper is organized as follows. In Section 2 we define Wiener amalgam
spaces and recall their characterization via Gabor frames. In Section 3 we
present the main technical result of this paper: a spectral invariance theorem
for a sub-algebra of weighted-shift operators in B(Lp(Rd)). In Section 4, we
use the result of the previous section to extend the theory of multi-window
Gabor frames to the class of Wiener amalgam spaces. In particular, this
last section contains a Wiener-type lemma for multi-window Gabor frames.

2. Amalgam spaces and Gabor expansions

Given x, ω ∈ Rd, the translation and modulation operators act on a func-
tion f : Rd → C by

Txf(y) := f(y − x), Mωf(y) := e2πiω·yf(y),

where ω · y is the usual dot product. The time-frequency shift associated
with the point λ = (x, ω) ∈ Rd×Rd is the operator π(λ) = π(x, ω) := MωTx.

Given two non-negative functions f, g, we write f . g if f ≤ Cg, for some
constant C > 0. If E is a Banach space, we denote by B(E) the Banach
algebra of all bounded linear operators on E.

We use the following normalization of the Fourier transform of a function
f : Rd → C:

f̂(ω) :=

∫
Rd
f(x)e−2πiω·xdx.

2.1. Definition and properties of the amalgam spaces. A function
w : Rd → (0,+∞) is called a weight if it is continuous and symmetric (i.e.
w(x) = w(−x)). A weight w is submultiplicative if

w(x+ y) ≤ w(x)w(y), x, y ∈ Rd.

Prototypical examples are given by the polynomial weights w(x) = (1+|x|)s,
which are submultiplicative if s ≥ 0. The main results in this article require
to consider an extra condition on the weights. A submultiplicative weight
w is called admissible if w(0) = 1, and it satisfies the Gelfand-Raikov-Shilov
condition,

lim
k→∞

w(kx)1/k = 1, x ∈ Rd.

It follows that any admissible weight w satisfies w(x) ≥ 1, x ∈ Rd.
Given a submultiplicative weight w, a second weight v : Rd → (0,∞) is

called w-moderate if there exists a constant Cv > 0 such that,

v(x+ y) ≤ Cvw(x)v(y), x, y ∈ Rd.(4)

For polynomial weights v(x) = (1 + |x|)t, w(x) = (1 + |x|)s, v is w-moderate
if |t| ≤ s. If v is w-moderate, it follows from (4) and the symmetry of w
that 1/v is also w-moderate (with the same constant).

In what follows we shall use a fixed submultiplicative weight w, and con-
sider classes of function spaces related to various w-moderate weights v. For
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1 ≤ p, q ≤ ∞, we define the Wiener amalgam space W (Lp, Lqv) as the class
of all measurable functions f : Rd → C such that,

‖f‖W (Lp,Lqv) :=

∑
k∈Zd
‖f‖q

Lp([0,1)d+k)
v(k)q

1/q

<∞,(5)

with the usual modifications when q = +∞. As with Lebesgue spaces, we
identify two functions if they coincide almost everywhere. For a study of
this class of spaces in a much broader context see [13, 14, 17]. We only point
out that, as a consequence of the assumptions on the weights v and w, it
can be shown that the partition {[0, 1)d + k : k ∈ Zd} in (5) can be replaced
by more general coverings yielding an equivalent norm.

Weighted amalgam spaces are solid, that is, if f ∈ W (Lp, Lqv) and m ∈
L∞(Rd), then mf ∈W (Lp, Lqv) and

‖mf‖W (Lp,Lqv) ≤ ‖m‖L∞(Rd)‖f‖W (Lp,Lqv).(6)

In addition, using the fact that v is w-moderate, it follows that W (Lp, Lqv)
is closed under translations and

‖Txf‖W (Lp,Lqv) ≤ Cvw(x)‖f‖W (Lp,Lqv),(7)

where Cv is the constant in (4).
The Köthe-dual of W (Lp, Lqv) is the space of all measurable functions

g : Rd → C such that g ·W (Lp, Lqv) ⊆ L1(Rd). It is equal to W (Lp
′
, Lq

′

1/v),

where 1/p + 1/p′ = 1/q + 1/q′ = 1 for all 1 ≤ p, q ≤ ∞. In particular, the
pairing

〈·, ·〉 : W (Lp, Lqv)×W (Lp
′
, Lq

′

1/v)→ C, 〈f, g〉 =

∫
Rd
f(x)g(x)dx,

is bounded. The linear functionals arising from integration against functions

in W (Lp
′
, Lq

′

1/v) determine a topology in W (Lp, Lqv) that will be denoted by

σ(W (Lp, Lqv),W (Lp
′
, Lq

′

1/v)).

2.2. Gabor expansions on amalgam spaces. We now recall the theory
of Gabor expansions on Wiener amalgam spaces as developed in [16, 18, 21,
22]. Let Λ = αZd × βZd be a separable lattice, and α, β > 0. The family
of sequence spaces corresponding to amalgam spaces via Gabor frames is
defined as follows. For a weight v and 1 ≤ p, q ≤ ∞, let FLp([0, 1/β)d)
be the image of Lp([0, 1/β)d) under the discrete Fourier transform, i.e., a
sequence c ≡

{
cj
∣∣ j ∈ βZd } ⊆ C belongs to FLp([0, 1/β)d) if there exists a

(unique) function f ∈ Lp([0, 1/β)d) such that,

cj = f̂(j) = βd
∫

[0,1/β)d
f(x)e−2πijxdx, j ∈ βZd.
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The space FLp([0, 1/β)d) is given the norm ‖c‖FLp([0,1/β)d) := ‖f‖Lp([0,1/β)d).

Let Sp,qv (Λ) be the set of all sequences c ≡
{
cλ
∣∣λ ∈ Λ

}
⊆ C such that, for

each k ∈ αZd, the sequence (ck,j)j∈βZd belongs to FLp([0, 1/β)d) and

‖c‖Sp,qv (Λ) :=

 ∑
k∈αZd

∥∥(ck,j)j∈βZd
∥∥q
FLp([0,1/β)d)

v(k)q

1/q

<∞,

with the usual modifications when q =∞. When 1 < p <∞ this is simply,

‖c‖Sp,qv (Λ) :=

 ∑
k∈αZd

∥∥∥ ∑
j∈βZd

ck,je
2πij·

∥∥∥q
Lp([0,1/β)d)

v(k)q

1/q

<∞,

and the usual modifications hold for q =∞.
The following Theorem from [22] describes the analysis and synthesis

operators, clarifies their precise meaning and gives their mapping properties.

Theorem 1. [22, Theorem 3.2]. Let w be a submultiplicative weight, v a
w-moderate weight, g ∈ W (L∞, L1

w), and 1 ≤ p, q ≤ ∞. Then the following
properties hold.

(a) The analysis (coefficient) operator,

Cg,Λ : W (Lp, Lqv)→ Sp,qv (Λ), Cg,Λ(f) := (〈f, π(λ)g〉)λ∈Λ

is bounded with a bound that only depends on α, β, ‖g‖W (L∞,L1
w), and

the constant Cv in (4).
(b) Let c ∈ Sp,qv (Λ) and mk ∈ Lp([0, 1/β)d) be the unique functions such

that m̂k(j) = ck,j. Then the series

Rg,Λ(c) :=
∑
k∈αZd

mkTkg,

converges unconditionally in the σ(W (Lp, Lqv),W (Lp
′
, Lq

′

1/v))-topology

and, moreover, unconditionally in the norm topology of W (Lp, Lqv)
if p, q <∞.

(c) The synthesis (reconstruction) operator Rg,Λ : Sp,qv (Λ)→W (Lp, Lqv)
is bounded with a bound that depends only on α, β, ‖g‖W (L∞,L1

w), and
the constant Cv in (4).

The definition of the operator Rg,Λ is rather abstract. As shown in [16],
the convergence can be made explicit by means of a summability method.

For g ∈W (L∞, L1
w), a sequence c ∈ Sp,qv (Λ), and N,M ≥ 0 let us consider

the partial sums

RN,M (c)(x) :=
∑

|k|∞≤αN

∑
|j|∞≤βM

ck,je
2πijxg(x− k).
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In the conditions “|k|∞ ≤ N, |j|∞ ≤M” above we consider elements (k, j) ∈
Λ = αZd × βZd; it is important that we use the max norm. We also consider
the regularized partial sums,

σN,M (c)(x) :=
∑

|k|∞≤αN

∑
|j|∞≤βM

rj,Mck,je
2πijxg(x− k),

where the regularizing weights are given by,

rj,M :=
d∏

h=1

(
1− |jh|

β(M + 1)

)
.(8)

We then have the following convergence result [16, 22].

Theorem 2. Let w be a submultiplicative weight, v a w-moderate weight,
g ∈W (L∞, L1

w), and 1 ≤ p, q ≤ ∞. Then the following properties hold.

(a) If 1 < p <∞ and q <∞, then

RN,M (c)→ Rg,Λ(c), as N,M →∞,

in the norm of W (Lp, Lqv).
(b) For each c ∈ Sp,qv (Λ),

σN,M (c)→ Rg,Λ(c), as N,M →∞,

in the σ(W (Lp, Lqv),W (Lp
′
, Lq

′

1/v))-topology and also in the norm of

W (Lp, Lqv) if p, q <∞.

Remark 1. A more refined convergence statement, with more general summa-
bility methods, can be found in [16]. We will only need the norm and weak
convergence of Gabor expansions but we point out that the problem of point-
wise summability has also been extensively studied [16, 18, 21, 22, 32].

Proof. Part (a) is proved in [22, Proposition 4.6]. The case p < +∞ of
(b) is proved in [16, Theorem 4], where only unweighted amalgam spaces
are considered. The same proof extends with simple modifications to the
weighted case and weak*-convergence for p =∞. �

We now present a representation of Gabor frame operators that will be
essential for the results to come. For proofs see [31] or [22, Theorem 4.2 and
Lemma 5.2] for the weighted version.

Theorem 3. Let w be a submultiplicative weight, v a w-moderate weight,
g, h ∈ W (L∞, L1

w) and 1 ≤ p, q ≤ +∞. Then the operator Rh,ΛCg,Λ :
W (Lp, Lqv)→W (Lp, Lqv) can be written as

Rh,ΛCg,Λf = β−d
∑
j∈Zd

GjT j
β
f,(9)

where,

Gj(x) :=
∑
k∈Zd

g(x− j/β − αk)h(x− αk), x ∈ Rd.(10)
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In addition, the functions Gj : Rd → C satisfy∑
j∈Zd
‖Gj‖∞w(j/β) . ‖g‖W (L∞,L1

w)‖h‖W (L∞,L1
w) < +∞.(11)

As a consequence, the series in (9) converges absolutely in the norm of
W (Lp, Lqv).

3. The algebra of L∞-weighted shifts

3.1. L∞-weighted shifts. Representation (9) motivates the following in-
troduction of a Banach *-algebra of operators on function spaces that will
be the key technical object of this paper. For an admissible weight w we
let Aw be the set of all families M = (mx)x∈Rd ∈ `1w(Rd, L∞(Rd)) with the
standard Banach space norm

‖M‖Aw =
∑
x∈Rd
‖mx‖L∞(Rd)w(x) < +∞.(12)

The algebra structure and the involution on Aw, however, will be non-
standard. They will come from the identification of Aw with the class of
operators on function spaces of the form

f 7→
∑
x∈Rd

mxf(· − x).(13)

Observe that due to (12) the family M = (mx)x∈Rd has countable support

and also that the operator in (13) is well-defined and bounded on all Lp(Rd),
p ∈ [1,∞] (recall that the admissibility of w implies that w ≥ 1).

With a slight abuse of notation, given a function m ∈ L∞(Rd) we also
denote by m the multiplication operator f 7→ mf . It is then convenient to
write M∈ Aw as

M =
∑
x∈Rd

mxTx, (mx)x∈Rd ∈ `1w(Rd, L∞(Rd)),

and endow Aw with the product and involution inherited from B(L2(Rd)).
More precisely, the product on Aw is given by(∑

x

mxTx

)(∑
x

nxTx

)
=
∑
x

(∑
y

mynx−y(· − y)

)
Tx,

and the involution – by(∑
x

mxTx

)∗
=
∑
x

mx(·+ x)T−x =
∑
x

m−x(· − x)Tx.

It is straightforward to verify that with this structure Aw is, indeed,
a Banach *-algebra which embeds continuously into B(L2(Rd)). We shall
establish a number of other continuity properties of the operators defined
by families in Aw in Proposition 1 below. These will be useful in dealing
with Gabor expansions on amalgam spaces.
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Observe that the identification of families inAw and operators onB(Lp(Rd))
given by the operator in (13) is one-to-one; this follows from the character-
ization of Aw in the following subsection but can also be proved directly.
Because of this we shall no longer distinguish between the families in Aw
and operators generated by them. We will write Aw ⊂ B(Lp(Rd)) if we need
to highlight that we treat members of Aw as operators on Lp(Rd). We also
point out that for m ∈ L∞(Rd) and x,w ∈ Rd

(14) MωmTxM−ω = e2πiω·xmTx.

Proposition 1. Let 1 ≤ p, q ≤ +∞ and let v be a w-moderate weight. Then
the following statements hold.

(a) Aw ↪→ B(W (Lp, Lqv)). More precisely, every M =
∑

xmxTx ∈ Aw
defines a bounded operator on W (Lp, Lqv) given by the formula

M(f) :=
∑
x

mxf(· − x).

The series defining M : W (Lp, Lqv) → W (Lp, Lqv) converges abso-
lutely in the norm of W (Lp, Lqv) and ‖M‖B(W (Lp,Lqv)) ≤ Cv‖M‖Aw ,

where Cv is the constant in (4).

(b) For every M∈ Aw, f ∈W (Lp, Lqv) and g ∈W (Lp
′
, Lq

′

1/v),

〈M(f), g〉 = 〈f,M∗(g)〉 .

(c) For every M ∈ Aw, the operator M : W (Lp, Lqv) → W (Lp, Lqv) is

continuous in the σ(W (Lp, Lqv),W (Lp
′
, Lq

′

1/v))-topology.

Proof. Part (a) follows immediately from (6) and (7). Part (b) follows from
the fact that the involution in Aw coincides with taking adjoint. The inter-
change of summation and integration is justified by the absolute convergence
in part (a). Part (c) follows immediately from (b). �

3.2. Spectral invariance. We now present our main technical result, and
note that similar and more general results appear in [8, 9, 29]. Nonetheless,
we include a self-contained proof of this result, since most of our subsequent
results are based on it. The key ingredient in the proof is the identifica-
tion of the algebra Aw with a class of almost periodic elements associated
with a certain group representation. We give a brief account of the theory
as required for our purposes. For a more general presentation see [4] and
references therein.

For y ∈ Rd and M ∈ B(Lp(Rd)), p ∈ [1,∞], let ρ(y)M := MyMM−y,
i.e.,

ρ(y)Mf(x) = e2πiy·x(Mg)(x) , g(x) = e−2πiy·xf(x)

The map ρ : Rd → B(B(Lp(Rd))) defines an isometric representation of Rd
on the algebra B(Lp(Rd)). This means that ρ is a representation of Rd on
the Banach space B(Lp(Rd)) and, in addition, for each y ∈ Rd, ρ(y) is an
algebra automorphism and an isometry.
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A continuous map Y : Rd → B(Lp(Rd)) is almost-periodic in the sense of
Bohr if for every ε > 0 there is a compact K = Kε ⊂ Rd such that for all
x ∈ Rd

(x+K) ∩ {y ∈ Rd | ‖Y (g + y)− Y (g)‖ < ε, ∀g ∈ Rd} 6= ∅

Then Y extends uniquely to a continuous map on the Bohr compactification
R̂dc of Rd, also denoted by Y . Thus, now Y : R̂dc → B(Lp(Rd)), where

R̂dc represents the topological dual group (i.e. the group of characters) of
Rd when Rd is endowed with the discrete topology. The normalized Haar
measure on R̂dc is denoted by µ̄(dy).

For each M∈ B(Lp(Rd)), we consider the map,

M̂ : Rd → B(Lp(Rd)), M̂(y) := ρ(y)M = MyMM−y.(15)

An operatorM∈ B(Lp(Rd)) is said to be ρ-almost periodic if the map M̂
is continuous and almost-periodic in the sense of Bohr. For every ρ-almost

periodic operator M, the function M̂ admits a B(Lp(Rd))-valued Fourier
series,

M̂(y) ∼
∑
x∈Rd

e2πiy·xCx(M), (y ∈ Rd).(16)

The coefficients Cx(M) ∈ B(Lp(Rd)) in (16) are uniquely determined byM
via

Cx(M) =

∫
R̂dc
M̂(y)e−2πiy·xµ̄(dy) = lim

T→∞

1

(2T )d

∫
[−T,T ]d

M̂(y)e−2πiy·xdy

(17)

and, therefore, satisfy

ρ(y)Cx(M) = e2πiy·xCx(M).(18)

Hence, they are eigenvectors of ρ (see [4] for details).
Within the class of ρ-almost periodic operators we consider AP pw(ρ),

the subclass of those operators for which the Fourier series in (16) is w-
summable, where w is an admissible weight. More precisely, a ρ-almost
periodic operator M belongs to AP pw(ρ) if its Fourier coefficients with re-
spect to ρ satisfy

‖M‖AP pw(ρ) :=
∑
x∈Rd
‖Cx(M)‖B(Lp(Rd))w(x) < +∞.(19)

Since w ≥ 1, for operators in AP pw(ρ) the series in (16) converges absolutely

in the norm of B(Lp(Rd)) to M̂(y):

M̂(y) =
∑
x∈Rd

e2πiy·xCx(M), y ∈ Rd,(20)
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where each Cx ∈ B(Lp(Rd)) satisfies (17) and, hence, (18). In particular,
for y = 0, it follows that each M∈ AP pw(ρ) can be written as

M =
∑
x∈Rd

Cx(M).(21)

Conversely, if M is given by (21), with the coefficients Cx satisfying (19)
and (18), it follows from the theory of almost-periodic series that M ∈
AP pw(ρ) and Cx satisfy (17).

A special case of [4, Theorem 3.2] proves the spectral invariance ofAP pw(ρ) ↪→
B(Lp(Rd)), p ∈ [1,∞]. Our goal here is to establish connection between Aw
and AP pw(ρ) and prove a spectral invariance result for Aw.

To achieve this goal we first characterize the eigenvectors Cx of the rep-
resentation ρ.

Lemma 1. For any 1 ≤ p ≤ ∞ and any m ∈ L∞(Rd) and x ∈ Rd, Cx =
mTx is an eigenvector of ρ : Rd → B(Lp(Rd)). For 1 ≤ p <∞ these are the
only eigenvectors.

Proof. If Cx = mTx, then, according to (14), it satisfies (19).
The converse works only for 1 ≤ p < ∞. Suppose that Cx ∈ B(Lp(Rd))

satisfies (19). Using (14) once again we have,

ρ(y)(CxT−x) = e2πiy·xCxe
−2πiy·xT−x = CxT−x.

It follows that CxT−x commutes with every modulation My. Hence, CxT−x
must be a multiplication operator m, so Cx = mTx. �

For p = ∞ there are eigenvectors of ρ which are not of the form mTx.
An example of such an eigenvector is given in [29, Section 5.1.11]. Hence,
one would need additional conditions to conclude that Cx = mTx for some
m ∈ L∞(Rd).

From the discussion above, AP pw(ρ) consists of all the operators M =∑
x∈Rd

Cx, with Cx satisfying (19) and (18). In addition, by the previous

lemma, for 1 ≤ p < ∞ an operator Cx satisfies (18) if and only if it is
of the form Cx = mTx, for some function m ∈ L∞(Rd). In this case,
‖Cx‖B(L2(Rd)) = ‖m‖∞ and, thus, (19) reduces to (12). Hence we obtain

Proposition 2. For p ∈ [1,∞) the class Aw ⊂ B(Lp(Rd)) coincides with
AP pw(ρ), the class of ρ-almost periodic elements, having w-summable Fourier
coefficients.

For p =∞, the two classes are different. Nevertheless, the results we have
obtained so far are sufficient to prove our main technical result.

Theorem 4. Let w be an admissible weight. Then, the embedding Aw ↪→
B(Lp(Rd)), p ∈ [1,∞] is spectral. In other words, if M ∈ Aw defines
an invertible operator

∑
xmxTx ∈ B(Lp(Rd)) for some p ∈ [1,∞], then

M−1 ∈ Aw.
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Proof. For 1 ≤ p <∞ the result follows from Proposition 2 and [4, Theorem
3.2]. This last result states that AP pw(ρ) is spectral.

For p =∞ we follow a different path. Given an operator

M =
∑
x∈Rd

mxTx ∈ Aw ⊂ B(L∞(Rd))

with
∑

x∈Rd w(x)‖mx‖L∞(Rd) <∞, we consider the operator

N =
∑
x∈Rd

Tx(m−x)Tx =
∑
x∈Rd

m−x(· − x)Tx ∈ Aw ⊂ B(L1(Rd)),

which is well defined since ‖Tx(m−x)‖L∞(Rd) = ‖m−x‖L∞(Rd). By direct

computation, the transpose N ′ (Banach adjoint) of N : L1(Rd) → L1(Rd)
is precisely M : L∞(Rd) → L∞(Rd). Thus, M = N ′ and by [30, Theorem
3, Chapter 20] it follows that N is invertible whenM is invertible. Now, by
spectrality of Aw in B(L1(Rd)) (as obtained earlier) and [30, Theorem 8(ii),
Chapter 15], we obtain thatM−1 = (N−1)′ ∈ Aw, that isM−1 =

∑
x∈Rd

nxTx

for some bounded functions nx such that
∑
x∈Rd

w(x)‖nx‖L∞(Rd) <∞. �

Remark 2. In [28] two of us used a special case of Theorem 4 for ρ-periodic
(rather than ρ-almost periodic) operators in B(L2(Rd)). In [28, Example
2.1], however, we neglected to mention this restriction and erroneously im-
plied that all of the operators in B(L2(Rd)) were ρ-periodic.

The following spectral invariance property follows from Theorem 4, where
we denote by σp(M) and σAw(M) the spectra of the operator M ∈ Aw in

the algebras B(Lp(Rd)), p ∈ [1,∞], and Aw, respectively.

Corollary 1. Consider M =
∑

xmxTx ∈ Aw. Then σp(M) = σAw(M) for
all p ∈ [1,∞].

We conclude the section with the following very important result.

Theorem 5. Assume that M ∈ Aw satisfies M∗ = M =
∑

xmxTx and

Ar‖f‖r ≤ ‖Mf‖r for some Ar > 0 and all f ∈ Lr(Rd) for some r ∈ [1,∞].
Then M−1 ∈ Aw.

Moreover, suppose that E ⊆ W (Lp, Lqv), 1 ≤ p, q ≤ +∞, is a closed
subspace (in the norm of W (Lp, Lqv)) such thatME ⊆ E. ThenM−1E ⊆ E
and, as a consequence, ME = E.

Proof. From Corollary 1 we deduce that σAw(M) = σr(M) = σ2(M) ⊂ R
since M ∈ B(L2(Rd)) is self-adjoint. Recall that in Banach algebras every
boundary point of the spectrum belongs to the approximative spectrum.
The boundedness below condition, however, implies that 0 does not belong
to the approximative spectrum of M∈ B(Lr(Rd)). Hence, 0 /∈ σr(M) and,
by Theorem 4, M−1 ∈ Aw.

To prove the second part, let Aw(E) be the subalgebra of Aw formed by
all those operators S such that SE ⊆ E. Since E is closed in W (Lp, Lqv)



12 R. BALAN, J. CHRISTENSEN, I. KRISHTAL, K. OKOUDJOU, AND J. L. ROMERO

and Aw ↪→ B(W (Lp, Lqv)) by Proposition 1, it follows that Aw(E) is a
closed subalgebra of Aw (we do not claim that it is closed under the in-
volution). From the first part of the proof it follows that the set C \
σAw(M) is connected. Consequently, (see for example [12, Theorem VII
5.4]), σAw(E)(M) = σAw(M). Finally, 0 /∈ σAw(M) = σAw(E)(M) which

proves that M−1 ∈ Aw(E), as desired. �

4. Dual Gabor frames on amalgam spaces

4.1. Multi-window Gabor frames. Let Λ = Λ1 × . . .×Λn be the Carte-
sian product of separable lattices Λi = αiZd × βiZd and let g1, . . . , gn ∈
W (L∞, L1

w). We consider the (multi-window) Gabor system

G =
{
giλi := π(λi)gi

∣∣λi ∈ Λi, 1 ≤ i ≤ n
}
.

We view the system G as an indexed set, so that G might contain repeated
elements. The frame operator of the system G is given by,

SG = Sg1,Λ1 + . . . Sgn,Λn ,

where Sgi,Λi = Rgi,ΛiCgi,Λi (see Section 2.2). For 1 ≤ p, q ≤ +∞ and a w-

moderate weight v, we define the space Sp,qv (Λ) := Sp,qv (Λ1)× . . .× Sp,qv (Λn)
endowed with the norm,

‖c = (c1, . . . , cn)‖Sp,qv (Λ) :=
n∑
i=1

‖ci‖Sp,qv (Λi).

The analysis map is W (Lp, Lqv) 3 f 7→ CG(f) := (Cgi,Λi(f))1≤i≤n ∈ Sp,qv (Λ),

while the synthesis map is Sp,qv 3 c 7→ RG(c) :=
∑n

i=1Rgi,Λi(c
i) ∈W (Lp, Lqv).

With these definitions, the boundedness results in Theorem 1 extend imme-
diately to the multi-window case. The frame expansions are more compli-
cated, however, since the dual system of a frame of the form of G may not
be a multi-window Gabor frame. We now investigate this matter.

4.2. Invertibility of the frame operator and expansions.

Theorem 6. Let w be an admissible weight, g1, . . . , gn ∈ W (L∞, L1
w), and

Λ = Λ1 × . . . × Λn, with Λi = αiZd × βiZd separable lattices. Suppose that
the Gabor system

G =
{
giλi := π(λi)gi

∣∣λi ∈ Λi, 1 ≤ i ≤ n
}
,

is such that its frame operator SG is bounded below in Lr(Rd) for some
r ∈ [1,∞], i.e.

Ar‖f‖r ≤ ‖SGf‖r, Ar > 0, for all f ∈ Lr(Rd).
Then the frame operator SG is invertible on W (Lp, Lqv) for all 1 ≤ p, q ≤

∞ and every w-moderate weight v. Moreover, the inverse operator SG
−1 :

W (Lp, Lqv) → W (Lp, Lqv) is continuous both in σ(W (Lp, Lqv),W (Lp
′
, Lq

′

1/v))

and the norm topologies.
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Proof. For each 1 ≤ i ≤ n, the frame operator Sgi,Λi = Rgi,ΛiCgi,Λi belongs
to the algebra Aw as a consequence of the Walnut representation in Theorem
3. Hence, SG = Sg1,Λ1 + . . . Sgn,Λn ∈ Aw. Since SG is bounded below in

Lr(Rd), Theorem 5 implies that SG
−1 ∈ Aw. The conclusion now follows

from Proposition 1. �

We now derive the corresponding Gabor expansions.

Theorem 7. Under the conditions of Theorem 6, define the dual atoms by
g̃i
λi

:= SG
−1(gi

λi
). Let 1 ≤ p, q ≤ ∞ and v be a w-moderate weight. Then

the following expansions hold.

(a) For every f ∈W (Lp, Lqv),

f = lim
N,M→∞

n∑
i=1

∑
|k|∞≤N

∑
|j|∞≤M

rβij,M

〈
f, g̃i(αik,βij)

〉
gi(αik,βij)

= lim
N,M→∞

n∑
i=1

∑
|k|∞≤N

∑
|j|∞≤M

rβij,M

〈
f, gi(αik,βij)

〉
g̃i(αik,βij),

where the regularizing weights rβij,M are given in (8) and the series

converge in the σ(W (Lp, Lqv),W (Lp
′
, Lq

′

1/v))-topology. For p, q < +∞
the series also converge in the norm of W (Lp, Lqv).

(b) If 1 < p <∞ and q <∞, for every f ∈W (Lp, Lqv),

f = lim
N,M→∞

n∑
i=1

∑
|k|∞≤N

∑
|j|∞≤M

〈
f, g̃i(αik,βij)

〉
gi(αik,βij)

= lim
N,M→∞

n∑
i=1

∑
|k|∞≤N

∑
|j|∞≤M

〈
f, gi(αik,βij)

〉
g̃i(αik,βij),

where the series converge in the norm of W (Lp, Lqv).

Remark 3. A more refined convergence statement, including more sophis-
ticated summability methods can be obtained using the results in [16].

Proof. Theorem 2 implies that for all f ∈W (Lp, Lqv),

SG(f) = lim
N,M→∞

n∑
i=1

∑
|k|∞≤N

∑
|j|∞≤M

rβij,M

〈
f, gi(αik,βij)

〉
gi(αik,βij),(22)

with the kind of convergence required in (a). Since SG
−1 ∈ Aw, Proposition 1

implies that SG
−1 : W (Lp, Lqv)→W (Lp, Lqv) is continuous both in the norm

and σ(W (Lp, Lqv),W (Lp
′
, Lq

′

1/v))-topology. Consequently, we can apply SG
−1

to both sides of (22) to obtain the first expansion in (a). The second one
follows by applying (22) to the function SG

−1(f) and using Proposition 1 to
get, 〈

SG
−1(f), giλi

〉
=
〈
f, SG

−1(giλi)
〉

=
〈
f, g̃iλi

〉
.
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The statement in (b) follows similarly, this time using the corresponding
statement in Theorem 2. �

4.3. Continuity of dual generators. We now apply Theorem 5 to Gabor
expansions.

Theorem 8. In the conditions of Theorem 6, let 1 ≤ p, q ≤ ∞ and let v be
a w-moderate weight. Let E ⊆W (Lp, Lqv) be a closed subspace (in the norm
of W (Lp, Lqv)) such that SGE ⊆ E. Suppose that the atoms g1, . . . , gn ∈ E.
Then the dual atoms, g̃i

λi
= SG

−1(gi
λi

) ∈ E.

Proof. As seen in the proof of Theorem 6, SG ∈ Aw. Hence, the conclusion
follows from Theorem 5. �

As an application of Theorem 8 we obtain the following corollary, which
was one of our main goals. The case n = 1 was an open problem in [28].

Corollary 2. In the conditions of Theorem 6, if all the atoms g1, . . . , gn

are continuous functions, so are all the dual atoms g̃i
λi

= SG
−1(gi

λi
).

Proof. We apply Theorem 8 to the subspace W (C0, L
1
w) formed by the func-

tions of W (L∞, L1
w) that are continuous. To this end we need to observe

that SGW (C0, L
1
w) ⊆ W (C0, L

1
w). Since SG = Sg1,Λ1 + . . . Sgn,Λn , it suffices

to show that each Sgi,Λi maps W (C0, L
1
w) into W (C0, L

1
w).

Let f ∈ W (C0, L
1
w). The Walnut representation of Sgi,Λi in Theorem 3

gives Sgi,Λi(f) = β−di
∑

j G
i
jTj/βif with absolute convergence in the norm

of W (L∞, L1
w). Hence it suffices to observe that each of the functions Gij is

continuous. According to Theorem 3 these are given by

Gij(x) :=
∑
k∈Zd

gi(x− j/βi − αik)gi(x− αik).

Since the function gi is continuous it suffices to note that in the last series
the convergence is locally uniform. This is an easy consequence of the fact
that ‖gi‖W (L∞,L1

w) <∞. �
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