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Abstract. We define higher categorical invariants (gerbes) of codimension two algebraic cycles and provide

a categorical interpretation of the intersection of divisors on a smooth proper algebraic variety. This
generalization of the classical relation between divisors and line bundles furnishes a new perspective on the

Bloch-Quillen formula.
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Des buissons lumineux fusaient comme des gerbes;
Mille insectes, tels des prismes, vibraient dans l’air;

Le vent jouait avec l’ombre des lilas clairs,
Sur le tissu des eaux et les nappes de l’herbe.

Un lion se couchait sous des branches en fleurs;
Le daim flexible errait là-bas, près des panthères;
Et les paons déployaient des faisceaux de lueurs

Parmi les phlox en feu et les lys de lumière.
–Emile Verhaeren (1855-1916),

Le paradis (Les rythmes souverains)

1. Introduction

This aim of this paper is to define higher categorical invariants (gerbes) of codimension two algebraic cycles
and provide a categorical interpretation of the intersection of divisors on a smooth proper algebraic variety.
This generalization of the classical relation between divisors and line bundles furnishes a new perspective on
the classical Bloch-Quillen formula relating Chow groups and algebraic K-theory.

Our work is motivated by the following three basic questions.

(i) Let A and B be abelian sheaves on a manifold (or algebraic variety) X. Given α ∈ H1(X,A) and
β ∈ H1(X,B), one has their cup-product α∪ β ∈ H2(X,A⊗B). We recall that H1 and H2 classify
equivalence classes of torsors and gerbes1:

H1(X,A) ←→ Isomorphism classes of A-torsors

H2(X,A) ←→ Isomorphism classes of A-gerbes;

we may pick torsors P and Q representing α and β and ask

Question 1.1. Given P and Q, is there a natural construction of a gerbe GP,Q which manifests the
cohomology class α ∪ β = [P ] ∪ [Q]?

The above question admits the following algebraic-geometric analogue.
(ii) Let X be a smooth proper variety over a field F . Let Zi(X) be the abelian group of algebraic cycles

of codimension i on X and let CHi(X) be the Chow group of algebraic cycles of codimension i
modulo rational equivalence. The isomorphism

CH1(X)
∼−→ H1(X,O∗)

connects (Weil) divisors and invertible sheaves (or Gm-torsors). While divisors form a group, Gm-
torsors on X form a Picard category TorsX(Gm) with the monoidal structure provided by the Baer
sum of torsors. Any divisor D determines a Gm-torsor OD; the torsor OD+D′ is isomorphic to the
Baer sum of OD and OD′ . In other words, one has an additive map [20, II, Proposition 6.13]

(1.0.1) Z1(X)→ TorsX(Gm) D 7→ OD.
Question 1.2. What is a natural generalization of (1.0.1) to higher codimension cycles?

Since TorsX(Gm) is a Picard category, one could expect the putative additive maps on Zi(X)
to land in Picard categories or their generalizations.

Question 1.3. Is there a categorification of the intersection pairing

(1.0.2) CH1(X)× CH1(X)→ CH2(X)?

1For us, the term ”gerbe” signifies a stack in groupoids which is locally non-empty and locally connected (§2.1). It is slightly
different from the ancient gerbes of Acids, alkalies and salts: their manufacture and applications, Volume 2 (1865) by Thomas
Richardson and Henry Watts, pp. 567-569:

§4. Gerbes
This firework is made in various ways, generally throwing up a luminous and sparkling jet of fire, somewhat resembling

a water-spout: hence its name. Gerbes consist of a straight, cylindrical case, sometime made with wrought iron (if

the gerbe is of large dimensions). ... Mr. Darby has invented an entirely novel and beautiful gerbe, called the Italian
gerbe...”
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More generally, one can ask for a categorical interpretation of the entire Chow ring of X.

Main results. Our first result is an affirmative answer to Question 1.1; the key observation is that a certain
Heisenberg group animates the cup-product.

Theorem 1.4. Let A,B be abelian sheaves on a topological space or scheme X.

(i) There is a canonical functorial Heisenberg2 sheaf HA,B on X which sits in an exact sequence

0→ A⊗B → HA,B → A×B → 0;

the sheaf HA,B (of non-abelian groups) is a central extension of A×B by A⊗B.
(ii) The associated boundary map

∂ : H1(X,A)×H1(X,B) = H1(X,A×B)→ H2(X,A⊗B)

sends the class (γ, δ) to the cup-product γ ∪ δ.
(iii) Given torsors P and Q for A and B, view P ×Q as a A×B-torsor on X. Let GP,Q be the gerbe of

local liftings (see §2.2) of P ×Q to a HA,B-torsor; its band is A⊗B and its class in H2(X,A⊗B)
is [P ] ∪ [Q].

(iv) The gerbe GP,Q is covariant functorial in A and B and contravariant functorial in X.
(v) The gerbe GP,Q is trivial (equivalent to the stack of A⊗B-torsors) if either P or Q is trivial.

We prove this theorem over a general site C. We also provide a natural interpretation of the (class of the)
Heisenberg sheaf in terms of maps of Eilenberg-Mac Lane objects in §3.4; it is astonishing that the explicit
cocycle (3.1.3) for the Heisenberg group (when X = a point) turns out to coincide with the map on the level
of Eilenberg-Mac Lane objects over a general site C; cf. 3.4.

Here is another rephrasing of Theorem 1.4: For abelian sheaves A and B on a site C, there is a natural
bimonoidal functor

(1.0.3) TorsC(A)×TorsC(B) −→ GerbesC(A⊗B) (P,Q) 7→ GP,Q
where TorsC(A), TorsC(B) are the Picard categories of A and B-torsors on C and GerbesC(A⊗B) is the
Picard 2-category of A⊗B-gerbes on C. Thus, Theorem 1.4 constitutes a categorification of the cup-product
map

(1.0.4) ∪ : H1(A)×H1(B)→ H2(A⊗B).

Let us turn to Questions 1.2 and 1.3. Suppose that D and D′ are divisors on X which intersect in
the codimension-two cycle D.D′. Applying Theorem 1.4 to OD and OD′ with A = B = Gm, one has a
Gm ⊗Gm-gerbe GD,D′ on X. We now invoke the isomorphisms (the second is the fundamental Bloch-Quillen
isomorphism)

Gm
∼−→ K1, CHi(X)

∼−→
(5.1.3)

Hi(X,Ki)

where Ki is the Zariski sheaf associated with the presheaf U 7→ Ki(U).
Pushforward of GD,D′ along K1×K1 → K2 gives a K2-gerbe still denoted GD,D′ ; we call this the Heisenberg

gerbe attached to the codimension-two cycle D.D′. This raises the possibility of relating K2-gerbes and
codimension-two cycles on X, implicit in (5.1.3).

Theorem 1.5. (i) Any codimension-two cycle α ∈ Z2(X) determines a K2-gerbe Cα on X.
(ii) the class of Cα in H2(X,K2) corresponds to α ∈ CH2(X) under the Bloch-Quillen map (5.1.3).
(iii) the gerbe Cα+α′ is equivalent to the Baer sum of Cα and Cα′ .
(iv) Cα and Cα′ are equivalent as K2-gerbes if and only if α = α′ in CH2(X).

The Gersten gerbe Cα of α admits a geometric description, closely analogous to that of the Gm-torsor OD
of a divisor D; see Remark 5.6. The Gersten sequence (5.1.1) is key to the construction of Cα. One has an
additive map

(1.0.5) Z2(X)→ GerbesX(K2) α 7→ Cα.

2The usual Heisenberg group, a central extension of A×B by C∗, arises from a biadditive map A×B → C∗.
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When α = D.D′ is the intersection of two divisors, there are two K2-gerbes attached to it: the Heisenberg
gerbe GD,D′ and the Gersten gerbe Cα; these are abstractly equivalent as their classes in H2(X,K2) correspond
to α. More is possible.

Theorem 1.6. If α ∈ Z2(X) is the intersection D.D′ of divisors D,D′ ∈ Z1(X), then there is a natural
equivalence Θ : Cα → GD,D′ between the Gersten and Heisenberg K2-gerbes attached to α = D.D′.

Thus, Theorems 1.4, 1.5, 1.6 together provide the following commutative diagram thereby answering
Question 1.3:

Z1(X)× Z1(X) Z2(X)

TorsX(Gm)×TorsX(Gm) GerbesX(K2)

CH1(X)× CH1(X) CH2(X).

no map

(1.0.1) (1.0.5)

(1.0.3)

(1.0.2)

We begin with a review of the basic notions and tools (lifting gerbe, four-term complexes) in §2 and then
present the construction and properties of the Heisenberg group in §3 before proving Theorem 1.4. After a
quick discussion of various examples in §4, we turn to codimension-two algebraic cycles in §5 and construct
the Gersten gerbe Cα and prove Theorems 1.5, 1.6 using the tools in §2.

Dictionary for codimension two cycles. The above results indicate the viability of viewing K2-gerbes
as natural invariants of codimension-two cycles on X. Additional evidence is given by the following points: 3

• K2-gerbes are present (albeit implicitly) in the Bloch-Quillen formula (5.1.3) for i = 2.
• The Picard category P = TorsX(Gm) of Gm-torsors on X satisfies

π1(P) = H0(X,O∗) = CH1(X, 1), π0(P) = H1(X,O∗) = CH1(X).

Similarly, the Picard 2-category C = GerbesX(K2) of K2-gerbes is closely related to Bloch’s higher
Chow complex [3] in codimension two:

π2(C) = H0(X,K2) = CH2(X, 2), π1(C) = H1(X,K2) = CH2(X, 1), π0(C) = H2(X,K2)
(5.1.3)

= CH2(X).

• The additive map arising from Theorem 1.5

Z2(X)→ GerbesX(K2), α 7→ Cα
gives the Bloch-Quillen isomorphism (5.1.3) on the level of π0. It provides an answer to Question
1.2 for codimension two cycles.
• The Gersten gerbe Cα admits a simple algebro-geometric description (Remark 5.5): Any α determines

a Kη
2 /K2-torsor; then Cα is the gerbe of liftings of this torsor to a Kη

2 -torsor on X.
• The gerbe Cα is canonically trivial outside of the support of α (Remark 5.5).
• Pushing the Gersten gerbe Cα along the map K2 → Ω2 produces an Ω2-gerbe which manifests the

(de Rham) cycle class of α in H2(X,Ω2).

The map (1.0.1) is a part of the marvellous dictionary [20, II, §6] arising from the divisor sequence (5.2.1):

Divisors ←→ Cartier divisors ←→ K1-torsors ←→ Line bundles ←→ Invertible sheaves.

More generally, from the Gersten sequence (5.1.1) we obtain the following:

Z1(X)
∼=−→ H0(X,Kη

1 /K1) � H1(X,K1) ∼= CH1(X)

Z2(X) � H1(X,Kη
2 /K2)

∼=−→ H2(X,K2) ∼= CH2(X).

Inspired by this and by ref. [2, Definition 3.2], we call Kη
2 /K2-torsors as codimension-two Cartier cycles

on X. Thus the analog for codimension two cycles of the above dictionary reads

Codimension two cycles ←→ Cartier cycles ←→ K2-gerbes.

3Let η : Spec FX → X be the generic point of X and write Kη
i for the sheaf η∗Ki(FX); one has the map Ki → Kη

i .
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Since the Gersten sequence (5.1.1) exists for all Ki, it is possible to generalize Theorem 1.5 to higher
codimensions thereby answering Question 1.2; however, this involves higher gerbes. Any cycle of codimension
i > 2 determines a higher gerbe [6] with band Ki (see §5.7 for an example); this provides a new perspective
on the Bloch-Quillen formula (5.1.3). The higher dimensional analogues of (1.0.3), (1.0.2), and Theorem 1.5
will be pursued elsewhere.

Other than the classical Hartshorne-Serre correspondence between certain codimension-two cycles and
certain rank two vector bundles, we are not aware of any generalizations of this dictionary to higher
codimension. In particular, our idea of attaching a higher-categorical invariant to a higher codimension cycle
seems new in the literature. We expect that Picard n-categories play a role in the functorial Riemann-Roch
program of Deligne [14].

Our results are related to and inspired by the beautiful work of S. Bloch [2], L. Breen [7], J.-L. Brylinski
[9], A. N. Parshin [27], B. Poonen - E. Rains [28], and D. Ramakrishnan [30] (see §4). Brylinski’s hope4

[9, Introduction] for a higher-categorical geometrical interpretation of the regulator maps from algebraic
K-theory to Deligne cohomology was a major catalyst. In a forthcoming paper, we will investigate the
relations between the Gersten gerbe and Deligne cohomology.

Acknowledgements. The second author’s research was supported by the 2015-2016 “Research and Schol-
arship Award” from the Graduate School, University of Maryland. We would like to thank J. Rosenberg,
J. Schafer, and H. Tamvakis for comments and suggestions.

Notations and conventions. Let C be a site. We write C∼ for the topos of sheaves over C, C∼ab the abelian
group objects of C∼, namely the abelian sheaves on C, and by C∼grp the sheaves of groups on C. Our notation

for cohomology is as follows. For an abelian object A of a topos T, Hi(A) denotes the cohomology of the
terminal object e ∈ T with coefficients in A, namely ith derived functor of HomT(e,A). This is the same
as ExtiTab

(Z, A). More generally, Hi(X,A) denotes the cohomology of A in the topos T/X. We use H for
hypercohomology.

2. Preliminaries

2.1. Abelian Gerbes [18, 15, 6]. A gerbe G over a site C is a stack in groupoids which is locally non-empty
and locally connected.
G is locally nonempty if for every object U of C there is a cover, say a local epimorphism, V → U such that

the category G(V ) is nonempty; it is locally connected if given objects x, y ∈ G(U) as above, then, locally on U ,
the sheaf Hom(x, y) defined above has sections. For each object x over U we can introduce the automorphism
sheaf AutG(x), and by local connectedness all these automorphism sheaves are (non canonically) isomorphic.

In the sequel we will only work with abelian gerbes, where there is a coherent identification between the
automorphism sheaves AutG(x), for any choice of an object x of G, and a fixed sheaf of groups G. In this case
G is necessarily abelian5, and the class of G determines an element in H2(G), [6, §2] (and also [23]), where
Hi(G) = ExtiC∼ab(Z, G) denotes the standard cohomology with coefficients in the abelian sheaf G in the topos

C∼ of sheaves over C.
Let us briefly recall how the class of G is obtained using a Čech type argument. Assume for simplicity that

the site C has pullbacks. Let U = {Ui} be a cover of an object X of C. Let xi be a choice of an object of
G(Ui). For simplicity, let us assume that we can find morphisms αij : xj |Uij → xi|Uij . The class of G will be
represented by the 2-cocycle {cijk} of U with values in G obtained in the standard way as the deviation for
{αij} from satisfying the cocycle condition:

αij ◦ αjk = cijk ◦ αik.
In the above identity—which defines it—cijk ∈ Aut(xi|Uijk) ∼= G|Uijk . It is obvious that {cijk} is a cocycle.

Returning to stacks for a moment, a stack G determines an object π0(G), defined as the sheaf associated
to the presheaf of connected components of G, where the latter is the presheaf that to each object U of C
assigns the set of isomorphism classes of objects of G(U). By definition, if G is a gerbe, then π0(G) = ∗. In

4“In principle such ideas will lead to a geometric description of all regulator maps, once the categorical aspects have been
cleared up. Hopefully this would lead to a better understanding of algebraic K-theory itself.”

5The automorphisms in Aut(G) completely decouple, hence play no role.
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general, writing just π0 in place of π0(G), by base changing to π0, namely considering the site C/π0, every
stack G is (tautologically) a gerbe over π0 [24].

Example 2.1.

(i) The trivial gerbe with band G is the stack Tors(G) of G-torsors. Moreover, for any gerbe G, the
choice of an object x in G(U) determines an equivalence of gerbes G|U ∼= Tors(G|U ), over C/U ,
where G = AutG(x). There is an equivalence Tors(G) ∼= BG, the topos of (left) G-objects of C∼

([18]).
(ii) Any line bundle L over an algebraic variety X over Q determines a gerbe Gn with band µn (the

sheaf of nth roots of unity) for any n > 1 as follows: Over any open set U , consider the category of

pairs (L, α) where L is a line bundle on U and α : L⊗n ∼−→ L is an isomorphism of line bundles over
U . These assemble to the gerbe Gn of nth roots of L. This is an example of a lifting gerbe §2.2.

Remark. One also has the following interpretation, which shows that, in a fairly precise sense, a gerbe is
the categorical analog of a torsor. Let G be a gerbe over C, let {Ui} be a cover of U ∈ Ob(C), and let
{xi} be a collection of objects xi ∈ G(Ui). The G-torsors Eij = Hom(xj , xi) are part of a “torsor cocycle”
γijk : Eij ⊗Ejk → Eik, locally given by cijk, above, and subject to the obvious identity. Let Tors(G) be the
stack of G-torsors over X. Since G is assumed abelian, Tors(G) has a group-like composition law given by
the standard Baer sum. The fact that G itself is locally equivalent to Tors(G), plus the datum of the torsor
cocycle {Eij}, show that G is equivalent to a Tors(G)-torsor.

The primary examples of abelian gerbes occurring in this paper are the gerbe of local lifts associated to a
central extension and four-term complexes, described in the next two sections.

2.2. The gerbe of lifts associated with a central extension. (See [18, 6, 8].) A central extension

(2.2.1) 0 −→ A
ı−→ E

p−→ G −→ 0

of sheaves of groups determines a homotopy-exact sequence

Tors(A) −→ Tors(E) −→ Tors(G),

which is an extension of topoi with characteristic class c ∈ H2(BG, A). (Recall that A is abelian and that
Tors(G) is equivalent to BG.) If X is any topos over Tors(G) ∼= BG, the gerbe of lifts is the gerbe with
band A

E = HomBG(X,BE),

where Hom denotes the cartesian morphisms. The class c(E) ∈ H2(X, A) is the pullback of c along the map
X→ BG. By the universal property of BG, the morphism X→ BG corresponds to a G-torsor P of X, hence
the A-gerbe E is the gerbe whose objects are (locally) pairs of the form (Q,λ), where Q is an E-torsor and
λ : Q→ P an equivariant map. It is easy to see that an automorphism of an object (Q,λ) can be identified
with an element of A, so that A is indeed the band of E .

Let us take X = C∼, and let P be a G-torsor. With the same assumptions as the end of § 2.1, let X be
an object of C with a cover {Ui}. In this case, the class of E is computed by choosing E|Ui-torsors Qi and
equivariant maps λi : Qi → P |Ui . Up to refining the cover, let αij : Qj → Qi be an E-torsor isomorphism

such that λi ◦ αij = λj . With these choices the class of E is given by the cocycle αij ◦ αjk ◦ α−1ik .

Remark 2.2. The above argument gives the well known boundary map [18, Proposition 4.3.4]

∂1 : H1(G) −→ H2(A)

(where we have omitted X from the notation). Dropping down one degree we get [ibid., Proposition 3.3.1]

∂0 : H0(G) −→ H1(A).

In fact these are just the boundary maps determined by the above short exact sequence when all objects are
abelian. The latter can be specialized even further: if g : ∗ → G, then by pullback the fiber Eg is an A-torsor
[19].
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2.3. Four-term complexes. Let C∼ab be the category of abelian sheaves over the site C. Below we shall be
interested in four-term exact sequences of the form:

(2.3.1) 0 −→ A
ı−→ L1

∂−→ L0
p−→ B −→ 0.

Let Ch+(C∼ab) be the category of positively graded homological complexes of abelian sheaves. The above
sequence can be thought of as a (non-exact) sequence

0 −→ A[1] −→ [L1 −→ L0] −→ B −→ 0

of morphisms of Ch+(C∼ab). This sequence is short-exact in the sense of Picard categories, namely as a short
exact sequence of Picard stacks

0 −→ Tors(A) −→ L p−→ B −→ 0,

where L is the strictly commutative Picard stack associated to the complex L1 → L0 and the abelian object B
is considered as a discrete stack in the obvious way. We have isomorphisms A ∼= π1(L) and B ∼= π0(L), where
the former is the automorphism sheaf of the object 0 ∈ L and the latter the sheaf of connected components
(see [6, 7, 12]). It is also well known that the projection p : L → B makes L a gerbe over B. In this case the
band of L over B is AB , thereby determining a class in H2(B,A).6

Rather than considering L itself as a gerbe over B, we shall be interested in its fibers above generalized
points β : ∗ → B. Let us put A = Tors(A). By a categorification of the arguments in [19], the fiber Lβ
above β is an A-torsor, hence an A-gerbe, by the observation at the end of § 2.1 (see also the equivalence
described in [5]). Lβ is canonically equivalent to A whenever β = 0. Writing

HomC∼(∗, B) ∼= HomC∼ab
(Z, B) = H0(B),

we have the homomorphism

(2.3.2) ∂2 : H0(B) −→ H2(A),

which sends β to the class of Lβ in H2(A). The sum of β and β′ is sent to the Baer sum of Lβ +Lβ′ , and the
characteristic class is additive. In the following Lemma we show this map is the same as the one described in
[18, Théorème 3.4.2].

Lemma 2.3.

(i) The map ∂2 in (2.3.2) is the canonical cohomological map (iterated boundary map) [18, Théorème
3.4.2]

d2 : H0(B) −→ H1(C) −→ H2(A)

(C is defined below) arising from the four-term complex (2.3.1).
(ii) The image of β under d2 is the class of the gerbe Lβ.

Proof. We keep the same notation as above. Let us split (2.3.1) as

0

0 A L1 C 0

L0

B

0

ı π

∂


p

with C = Im ∂. By Grothendieck’s theory of extensions [19], with β : ∗ → B, the fiber (L0)β is a C-torsor
(see the end of Remark 2.2). According to section 2.2, we have a morphism Tors(L1)→ Tors(C), and the
object (L0)β of Tors(C) gives rise to the gerbe of lifts Eβ ≡ EL0,β , which is an A-gerbe. Now, consider the

6This is part of the invariant classifying the four-term sequence, see the remarks in [7, §6].
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map assigning to β ∈ H0(B) the class of Eβ ∈ H2(A). By construction, this map factors through H1(C)
by sending β to the class of the torsor (L0)β . We then lift that to the class of the gerbe of lifts in H2(A).
All stages are compatible with the abelian group structures. This is the homomorphism described in [18,
Théorème 3.4.2].

It is straightforward that this is just the classical lift of β through the four-term sequence (2.3.1). Indeed,
this is again easily seen in terms of a Čech cover {Ui} of ∗. Lifts xi of β|Ui are sections of the C-torsor (L0)β ,
therefore determining a standard C-valued 1-cocycle {cij}. From section 2.2 we then obtain an A-valued 2-
cocycle {aijk} arising from the choice of local L1-torsors Xi such that Xi → (L0)β |Ui is (L1 → C)-equivariant.
Note that in the case at hand, π : L1 → C being an epimorphism, the lifting of the torsor (L0)β is done by
choosing local trivializations, i.e. the xi above, and then choosing Xi = L1|Ui .

The same argument shows that the class of Lβ , introduced earlier, is the same as that of Eβ . This follows
from the following well known facts: objects of Lβ are locally lifts of β to L0; morphisms between them are
given by elements of L1 acting through ∂. As a result, automorphisms are sections of A and clearly the class
so obtained coincides with that of Eβ . Therefore Eβ and Lβ are equivalent and the homomorphism of [18,
Théorème 3.4.2] is equal to (2.3.2), as required. �

From the proof of the above lemma, we obtain the following two descriptions of the A-gerbe Lβ .

Corollary 2.4. (i) For any four-term complex (2.3.1) and any generalized point β of B, the fiber Lβ is a
gerbe. Explicitly, it is the stack associated with the prestack which attaches to U the groupoid Lβ(U) whose
objects are elements g ∈ L0(U) with p(g) = β and morphisms between g and g′ given by elements h of L1(U)
satisfying ∂(h) = g − g′.

(ii) The A-gerbe Lβ is the lifting gerbe of the C-torsor (L0)β to a L1-torsor. �

We will use both descriptions in §5 especially in the comparison of the Gersten and the Heisenberg gerbe
of a codimension two cycle, in the case that it is an intersection of divisors.

A slightly different point of view is the following. Recast the sequence (2.3.1) as a quasi-isomorphism

A[2]
∼=−→
[
L1 −→ L0 −→ B

]
of three-term complexes of Ch+(C∼ab), where now A has been shifted two places to the left. Also, relabel the
right hand side as L′2 → L′1 → L′0 (where again we employ homological degrees) for convenience. By [32],
the above morphism of complexes of Ch+(C∼ab), placed in degrees [−2, 0], gives an equivalence between the
corresponding associated strictly commutative Picard 2-stacks

A
∼=−→ L

over C. Here L = [L′2 → L′1 → L′0]∼ and A = [A→ 0→ 0]∼ ∼= Tors(A) ∼= Gerbes(A). This time we have
π0(L) = π1(L) = 0, and π2(L) ∼= A, as it follows directly from the quasi-isomorphism above. Thus L is
2-connected, namely any two objects are locally (i.e. after base change) connected by an arrow; similarly, any
two arrows with the same source and target are—again, locally—connected by a 2-arrow.

Locally, any object of L is a section β ∈ B = L′0. By the preceding argument, the Picard stack Lβ = AutL(β)
is an A-gerbe, and the assignment β 7→ Lβ realizes (a quasi-inverse of) the equivalence between A and L. It
is easy to see that Lβ is the same as the fiber over β introduced before.

In particular, for the Gersten resolution (5.1.1), (5.1.2), for K2, we get the equivalence of Picard 2-stacks

(2.3.3) Gerbes(K2) ∼=
[
GX2
]∼
.

3. The Heisenberg group

The purpose of this section is to describe a functor H : Ab×Ab→ Grp, where Ab is the category of abelian
groups and Grp that of groups. If C is a site, the method immediately generalizes to the categories of abelian
groups and of groups in C∼, the topos of sheaves on C. For any pair A,B of abelian sheaves on C, there is a
canonical Heisenberg sheaf HA,B (of non-commutative groups on C), a central extension of A×B by A⊗B.

The definition of H is based on a generalization of the Heisenberg group construction due to Brylinski [9,
§5]. A pullback along the diagonal map A→ A⊗A gives the extension constructed by Poonen and Rains
[28].
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3.1. The Heisenberg group. Let A and B be abelian groups. Consider the (central) extension

(3.1.1) 0→ A⊗B → HA,B → A×B → 0

where the group HA,B is defined by the group law:

(3.1.2) (a, b, t) (a′, b′, t′) = (aa′, bb′, t+ t′ + a⊗ b′).

Here a, a′ are elements of A, b, b′ of B, and t, t′ of A⊗B. The nonabelian group HA,B is evidently a functor
of the pair (A,B), namely a pair of homomorphisms (f : A → A′, g : B → B′) induces a homomorphism
Hf,g : HA,B → HA′,B′ . The special case A = B = µn occurs in Brylinski’s treatment of the regulator map to
étale cohomology [9].

The map

(3.1.3) f : (A×B)× (A×B) −→ A⊗B, f(a, b, a′, b′) = a⊗ b′,

is a cocycle representing the class of the extension (3.1.1) in H2(A × B,A ⊗ B) (group cohomology). Its
alternation

ϕf : ∧2Z (A×B) −→ A⊗B, ϕf ((a, b), (a′, b′)) = a⊗ b′ − a′ ⊗ b,
coincides with the standard commutator map and represents the value of the projection of the class of f
under the third map in the universal coefficient sequence

0 −→ Ext1(A×B,A⊗B) −→ H2(A×B,A⊗B) −→ Hom(∧2Z(A×B), A⊗B).

As for the commutator map, it is equal to [s, s] : ∧2Z (A × B) → A ⊗ B, where s : A × B → HA,B is a
set-theoretic lift, but the map actually is independent of the choice of s. (For details see, e.g. the introduction
to [7].)

Remark 3.1. The properties of the class of the extension HA,B, in particular that it is a cup-product of
the fundamental classes of A and B, as we can already evince from (3.1.3), are best expressed in terms of
Eilenberg-Mac Lane spaces. We will do this below working in the topos of sheaves over a site.

3.2. Extension to sheaves. The construction of the Heisenberg group carries over to the sheaf context.
Let C be a site, and C∼ the topos of sheaves over C. Denote by C∼ab the abelian group objects of C∼, namely
the abelian sheaves on C, and by C∼grp the sheaves of groups on C.

For all pairs of objects A,B of C∼ab, it is clear that the above construction of HA,B carries over to a functor

H : C∼ab × C∼ab −→ C∼grp.

In particular, since HA,B is already a sheaf of sets (isomorphic to A× B × (A⊗ B)), the only question is
whether the group law varies nicely, but this is clear from its functoriality. Note further that by definition of
HA,B the resulting epimorphism HA,B → A × B has a global section s : A × B → HA,B as objects of C∼,
namely s = (idA, idB , 0), which we can use this to repeat the calculations of § 3.1.

In more detail, from § 2.2, the class of the central extenson (3.1.1) is to be found in H2(BA×B , A ⊗ B)
(A⊗B is a trivial A×B-module). This replaces the group cohomology of § 3.1 with its appropriate topos
equivalent. By pulling back to the ambient topos, say X = C∼, this is the class of the gerbe of lifts from
BA×B to BH . We are ready to give a proof of Theorem 1.4. This proof is computational.

Proof of Theorem 1.4. Let us go back to the cocycle calculations at the end of § 2.2, where X is an object of
C equipped with a cover U = {Ui}. An A×B-torsor (P,Q) over X would be represented by a Čech cocycle
(aij , bij) relative to U . The cocycle is determined by the choice of isomorphisms (P,Q)|Ui ∼= (A × B)|Ui .
Now, define Ri = HA,B |Ui with the trivial HA,B-torsor structure, and let λi : Ri → (P,Q)|Ui equal the
epimorphism in (3.1.1). Carrying out the calculation described at the end of 2.2 with these data gives
αij ◦ αjk ◦ α−1ik = aij ⊗ bjk, which is the cup-product in Čech cohomology of the classes corresponding to
the A-torsor P and the B-torsor Q. In other words, the gerbe of lifts corresponding to the central extension
determined by the Heisenberg group incarnates the cup product map

H1(X,A)×H1(X,B)
∪−→ H2(X,A⊗B).
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For the choice αij = (aij , bij , 0), one has the following explicit calculation in the Heisenberg group

αij ◦ αjk ◦ α−1ik = (aij , bij , 0)(ajk, bjk, 0)(aik, bik, 0)−1

= (aik, bik, aij ⊗ bjk)(a−1ik , b
−1
ik , aik ⊗ bik)

= (1, 1, aij ⊗ bjk + aik ⊗ bik − aik ⊗ bik)

= (1, 1, aij ⊗ bjk);

We used that the inverse of (a, b, t) in the Heisenberg group is (a−1, b−1,−t+ a⊗ b):
(a, b, t)(a−1, b−1,−t+ a⊗ b) = (1, 1, a⊗ b−1 + t− t+ a⊗ b) = (1, 1, 0).

It is well known [8, Chapter 1, §1.3, Equation (1-18), p. 29] that the Čech cup-product of a = {aij} and
b = {bij} is given by the two-cocycle

{a ∪ b}ijk = {aij ⊗ bjk}.
This proves the first three points of the statement, whereas the fourth is built-in from the very construction.

The fifth follows from the fact that the class of the gerbe of lifts is bilinear: this is evident from the expression
computed above. �

As hinted above, the cup product has a more intrinsic explanation in terms of maps between Eilenberg-
Mac Lane objects in the topos. Passing to Eilenberg-Mac Lane objects in particular “explains” why the
cup-product realizes the cup-product pairing. First, we state

Theorem 3.2. The class of the extension (3.1.1) in C∼ corresponds to (the homotopy class of) the cup
product map

K(A×B, 1) ∼= K(A, 1)×K(B, 1) −→ K(A⊗B, 2)

between the identity maps of K(A, 1) and K(B, 1); its expression is given by (3.1.3).

Proof. Observe the epimorphism HA,B → A × B has global set-theoretic sections. The statement follows
from Propositions 3.3 and 3.4 below. �

The two main points, which we now proceed to illustrate, are that Eilenberg-Mac Lane objects represent
cohomology (and hypercohomology, once we take into account simplicial objects) in a topos, and that the
cohomology of a group object in a topos (such as A×B in C∼) with trivial coefficients can be traded for the
hypercohomology of a simplicial model of it. In this way we calculate the class of the extension as a map,
and such map is identified with the cup product. We assemble the necessary results to flesh out the proof of
Theorem 3.2 in the next two sections.

3.3. Simplicial computations. The class of the central extension (2.2.1) can be computed simplicially.
(For the following recollections, see [22, VI.5, VI.6, VI.8] and [4, §2].)

Let T be a topos, G a group-object of T (for us it will be T = C∼) and BG = K(G, 1) the standard
classifying simplicial object with BnG = Gn [13]. Let A be a trivial G-module. We will need the following
well known fact.7

Proposition 3.3. Hi(BG, A) ∼= Hi(BG,A).

Proof. The object on the right is the hypercohomology as a simplicial object of T. Let X be a simplicial
object in a topos T. One defines

Hi(X,A) = Exti(Z[X]∼, A)

where M∼, for any simplicial abelian object M of T, denotes the corresponding chain complex defined by
M∼n = Mn, and by taking the alternate sum of the face maps. ZXn denotes the abelian object of T generated
by Xn. Of interest to us is the spectral sequence [4, Example (2.10) and below]:

Ep,q1 = Hq(Xp, A) =⇒ H•(X,A).

Let X be any simplicial object of T. The levelwise topoi T/Xn, n = 0, 1, . . . , form a simplicial topos
X = T/X or equivalently a topos fibered over ∆op, where ∆ is the simplicial category. The topos BX of X-
objects essentially consists of descent-like data, that is, objects L of X0 equipped with an arrow a : d∗1L→ d∗0L

7Unfortunately we could not find a specific entry point in the literature to reference, therefore we assemble here the necessary
prerequisites. See also [10, §§2,3] for a detailed treatment in the representable case.
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the cocycle condition d∗0a d
∗
2a = d∗1a and s∗0a = id (the latter is automatic if a is an isomorphism). By [22,

VI.8.1.3], in the case where X = BG, BX is nothing but BG, the topos of G-objects of T. One also forms
the topos Tot(X), whose objects are collections Fn ∈ Xn such that for each α : [m]→ [n] in ∆op there is a
morphism Fα : α∗Fm → Fn, where α∗ is the inverse image corresponding to the morphism α : Xn → Xm. There
is a functor ner : BX→ Tot(X) sending (L, a) to the object of Tot(X) which at level n equals (d0 · · · d0)∗L
(a enters through the resulting face maps), see loc. cit. for the actual expressions. The functor ner is the
inverse image functor for a morphism Tot(X) → BX, and, X satisfying the conditions of being a “good
pseudo-category” ([22, VI 8.2]) we have an isomorphism

RΓ(BX, L)
∼=−→ RΓ(Tot(X),ner(L))

and, in turn, a spectral sequence

Ep,q1 = Hq(Xp,nerp(L)) =⇒ H•(BX, L),

[22, VI, Corollaire 8.4.2.2]. On the left hand side we recognize the spectral sequence for the cohomology of a
simplicial object in a topos [4, §2.10].

Applying the foregoing to X = BG, and L a left G-object of T, we obtain [22, VI.8.4.4.5]

Ep,q1 = Hq(Gp, L) =⇒ H•(BG, L).

(We set Y = e, the terminal object of T, in the formulas from loc. cit.)
Thus if L = A, the trivial G-module arising from a central extension of G by A, by comparing the spectral

sequences we can trade H2(BG, A) for the hypercohomology H2(K(G, 1), A). �

3.4. The cup product. The class of the extension extension (3.1.1) corresponds to the homotopy class of a
map K(A×B, 1)→ K(A⊗B, 2). We interpret it in terms of cup products of Eilenberg-Mac Lane objects.

Recall that for an object M of C∼ab we have K(M, i) = K(M [i]), where M [i] denotes M placed in
homological degree i, and K : Ch+(C∼ab)→ sC∼ab is the Dold-Kan functor from nonnegative chain complexes
of C∼ab to simplicial abelian sheaves. Explicitly:

K(M, i)n =

{
0 0 ≤ n < i,⊕

s : [n]�[i]M n ≥ i.

In particular, K(M, i)i = M . K is a quasi-inverse to the normalized complex functor N : sC∼ab → Ch+(C∼ab).
If X is a simplicial object X of C∼, we have

(3.4.1) Hi(X,M) ∼= [X,K(M, i)],

where the right-hand side denotes the hom-set in the homotopy category [21, 4]. In particular, there is a
fundamental class ınM ∈ Hn(K(M,n),M), corresponding to the identity map.

Returning to the objects A and B of C∼ab, also recall the morphism [4, Chapter II, Equation (2.22), p. 64]

(3.4.2) δi,j : K(A, i)×K(B, j) −→ K(A⊗B, i+ j).

It is the composition of two maps. The first is:

K(A, i)×K(B, j) −→ d((K(A, i) �K(B, j)) = (K(A, i)⊗K(B, j))),

where � denotes the external tensor product of simplicial objects of C∼ab and d the diagonal; the second is the
map in sC∼ab corresponding to the Alexander-Whitney map under the Dold-Kan correspondence. We have:

Proposition 3.4. The class of the extension (3.1.1) is equal to ı1A ⊗ ı1B = δ1,1(ı1A × ı1B).

Proof. Observe that any simplicial morphism f : X → K(M, i) is determined by fi, the rest, for n > i, being
determined by the simplicial identities. Therefore we need to compute:

K(A×B, 1)2 ∼= K(A, 1)2 ×K(B, 1)2 −→ K(A⊗B, 2)2,

namely
(A×B)× (A×B) −→ (A×A)× (B ×B) −→ A⊗B.

From the expression of the Alexander-Whitney map, in e.g. [21], the image of the second map in Ch+(C∼ab) is
the sum of dv0d

v
0, dh1d

h
1 , and dh2d

v
0. Only the third one is nonzero, giving ((a, b), (a′, b′))→ a⊗ b′, which equals

f in the construction of the extension (3.1.1). Using (3.4.1) we obtain the conclusion. �
11



The morphism (3.4.2) represents the standard cup product in cohomology. By Proposition 3.4, for an
object X of sC∼, the cup product

H1(X,A)×H1(X,B) −→ H2(X,A⊗B)

factors through X → K(A, 1)×K(B, 1) and the extension (3.1.1).

Remark. Proposition 3.4 and the above map provide a more conceptual proof of Theorem 1.4.

4. Examples and connections to prior results

In this section, we collect some examples and briefly indicate the connections with earlier results [2, 9, 27,
28, 30].

4.1. Self-cup products of Poonen-Rains. In [28], Poonen and Rains construct, for any abelian group A,
a central extension of the form

0→ A⊗A→ UA→ A→ 0,

providing a functor U : Ab→ Grp. The group law in UA is obtained from (3.1.2) by setting a = a′ and b = b′.
Hence the above extension can be obtained from (3.1.1) by pulling back along the diagonal homomorphism
∆A : A→ A×A. Similarly, both the cocycle and its alternation for the extension constructed in loc. cit. are
obtained from ours by pullback along ∆A, for A ∈ Ab. Similar remarks apply over an abelian sheaf A on any
site C. They use UA to describe the self-cup product α ∪ α of any element α ∈ H1(A).

4.2. Brylinski’s work on regulators and étale analogues. In [9], Brylinski has proved Theorem 1.4
in the case A = B = µn, the étale sheaf µn of nth roots of unity on a scheme X over SpecZ[ 1n ] using the
Heisenberg group Hµn,µn (in our notation). He used it to provide a geometric interpretation of the regulator
map

c1,2 : H1(X,K2) −→ H3(X,µ⊗2n ), (n odd),

a special case of C. Soulé’s regulator. If X is a smooth projective variety over C (viewed as an complex
analytic space) and f, g are invertible functions on X, P. Deligne (and Bloch) [14] constructed a holomorphic
line bundle (f, g) on X and Bloch showed that this gives a regulator map from K2(X) to the group of
isomorphism classes of holomorphic line bundles with connection, later interpreted by D. Ramakrishnan [30]
in terms of the three-dimensional Heisenberg group.

Write [f ]n, [g]n ∈ H1(X,µn) for the images of f, g under the boundary map H0(X,OXan)→ H1(X,µn)
of the analytic Kummer sequence

1 −→ µn −→ O∗Xan
u7→un−−−−→ O∗Xan −→ 1.

The gerbe G[f ]n,[g]n from Theorem 1.4 is compatible with Bloch-Deligne line bundle (f, g), in a sense made
precise in [9, Proposition 5.1 and after].

4.3. Finite flat group schemes. Let X be any variety over a perfect field F of characteristic p > 0. For
any commutative finite flat group scheme N killed by pn, consider the cup product pairing

H1(X,N)×H1(X,ND)→ H2(C,µpn)

of flat cohomology groups where ND is the Cartier dual of N . Theorem 1.4 provides a µpn -gerbe on X given

a N -torsor and a ND-torsor. When N is the kernel of pn on an abelian scheme A so that ND is the kernel of
pn on the dual abelian scheme AD of A, the cup-product pairing is related to the Néron-Tate pairing [25,
p. 19].

4.4. The gerbe associated with a pair of divisors. Let X be a smooth variety over a field F . Let D
and D′ be divisors on X. Consider the non-abelian sheaf H on X obtained by pushing the Heisenberg group
HK1,K1 along the multiplication map m : K1⊗K1 → K2. So H is a central extension of K1×K1 by K2 which
we write

0 −→ K2 −→ H
π−→ K1 ×K1 −→ 0.

Let L = LD,D′ denote the K1 × K1-torsor defined by the pair D,D′. Applying Theorem 1.4 gives a
K2-gerbe on X as follows. Since H is a central extension (so K1 ×K1 acts trivially on K2), the category of
local liftings of L to a K2-torsor provide (§2.2, [18, IV, 4.2.2]) a canonical K2-gerbe GD,D′ .
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Definition 4.1. The Heisenberg gerbe GD,D′ with band K2 is the following: For each open set U , the category
GD,D′(U) has objects pairs (P, ρ) where P is a H-torsor on U and

ρ : P ×π (K1 ×K1)
∼−→ L

is an isomorphism of K1 ×K1-torsors; a morphism from (P, ρ) to (P ′, ρ′) is a map f : P → P ′ of H-torsors
satisfying ρ = ρ′ ◦ f . It is clear that the set of morphisms from (P, ρ) to (P ′, ρ′) is a K2-torsor.

Example 4.2. Assume X is a curve (smooth proper) and put Y = X ×X.
(i) Assume F = Fq is a finite field. Let D be the graph on Y of the Frobenius morphism π : X → X and D′

be the diagonal, the image of X under the map ∆ : X → X ×X. Theorem 1.4 attaches a K2-gerbe on Y to
the zero-cycle D.D′, the intersection of the divisors D and D′. Since the zero cycle D.D′ is the pushforward

∆∗β of β =
∑

x∈X(Fq)

x on X, we obtain that the set of rational points on X determines a K2-gerbe on X ×X.

(ii) Note that the diagonal ∆Y (a codimension-two cycle on Y × Y ) can be written as an intersection of
divisors V and V ′ on Y × Y = X ×X ×X ×X where V (resp. V ′) are the set of points of the latter of the
form {(a, b, a, c)} (resp. {(a, b, d, b)}). Theorem 1.4 says that ∆Y determines a K2-gerbe on Y × Y .

4.5. Adjunction formula. Let X be a smooth proper variety and D be a smooth divisor of X. The classical
adjunction formula states:

The restriction of the line bundle L−1D to D is the conormal bundle ND (a line bundle on D).
Given a pair of smooth divisors D,D′ with E = D ∩D′ smooth of pure codimension two, write ι : E ↪→ X

for the inclusion. There is a map π : ι∗K2 → KE2 , where KE2 indicates the usual K-theory sheaf K2 on E. An
analogue of the adjunction formula for E would be a description of the KE2 -gerbe π∗ι

∗GD,D′ obtained from
the K2-gerbe GD,D′ on X.

Proposition 4.3. Let D and D′ be smooth divisors of X with E = D ∩ D′ smooth of pure codimension
two. Consider the line bundles V = (ND)|E and V ′ = (ND′)|E on E. Then, π∗ι

∗GD,D′ is equivalent to the
KE2 -gerbe GV,V ′ .

Proof. Since the restriction map H∗(X,Ki)→ H∗(E,KEi ) respects cup-product, this follows from the classical
adjunction formula for D and D′. �

4.6. Parshin’s adelic groups. Let S be a smooth proper surface over a field F . For any choice of a curve
C in S and a point P on C, Parshin [27, (18)] has introduced a discrete Heisenberg group

0→ Z→ Γ̃P,C → ΓP,C → 0,

where ΓP,C is isomorphic (non-canonically) to Z⊕ Z; he has shown [27, end of §3] how a suitable product of
these groups leads to an adelic description of CH2(S) and the intersection pairing (1.0.2). His constructions
are closely related to an adelic resolution of the sheaf HK1,K1

on S.

5. Algebraic cycles of codimension two

Throughout this section, X is a smooth proper variety over a field F . Let η : Spec FX → X be the generic
point of X and write Kη

i for the sheaf j∗Ki(FX).
In this section, we construct the Gersten gerbe Cα for any codimension two cycle α on X, provide various

equivalent descriptions of Cα and use them to prove Theorems 5.4, 5.10. As a consequence, we obtain
Theorems 1.5 and 1.6 of the introduction.

5.1. Bloch-Quillen formula. Recall the (flasque) Gersten resolution8 [29, §7] [16, p. 276] [17] of the Zariski
sheaf Ki associated with the presheaf U 7→ Ki(U):

(5.1.1) 0 −→ Ki −→
⊕

x∈X(0)

j∗Ki(x) −→
⊕

x∈X(1)

j∗Ki−1(x) −→ · · ·
⊕

x∈X(i−1)

j∗K1(x)
δi−1−−−→

⊕
x∈X(i)

⊕ j∗K0(x);

8This resolution exists for any smooth variety over F .
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here, any point x ∈ X(m) corresponds to a subvariety of codimension m and the map j is the canonical
inclusion x ↪→ X. So Ki is quasi-isomorphic to the complex

(5.1.2) GXi =
[
Kη
i −→

⊕
x∈X(1)

j∗Ki−1(x) −→ · · ·
⊕

x∈X(i−1)

j∗K1(x)
δi−1−−−→

⊕
x∈X(i)

j∗K0(x)
]
.

By (5.1.1), there is a functorial isomorphism [29, §7, Theorem 5.19] [16, Corollary 72, p. 276]

(5.1.3)
⊕
i

CHi(X)
∼−→
⊕
i

Hi(X,Ki); (Bloch-Quillen formula)

this is an isomorphism of graded rings: D. Grayson has proved that the intersection product on CH(X) =
⊕iCHi(X) corresponds to the cup-product in cohomology [16, Theorem 77, p.278]. Thus, algebraic cycles of
codimension n give n-cocycles of the sheaf Kn on X and that two such cocycles are cohomologous exactly
when the algebraic cycles are rationally equivalent.

The final two maps in (5.1.1) arise essentially from the valuation and the tame symbol map [2, pp.351-2].
Let R be a discrete valuation ring, with fraction field L; let ord : L× → Z be the valuation and let l be
the residue field. The boundary maps from the localization sequence for SpecR are known explicitly: the
map L× = K1(L)→ K0(l) = Z is the map ord and the map K2(L)→ K1(l) = l× is the tame symbol. This
applies for any normal subvariety V (corresponds to a y ∈ X(i)) and a divisor x of V (corresponding to a
x ∈ X(i+1)).

5.2. Divisors. We recall certain well known results about divisors and line bundles for comparison with the
results below for the K2-gerbes attached to codimension two cycles.

If A is a sheaf of abelian groups on X, then Ext1X(Z, A) = H1(X,A) classifies A-torsors on X. Given an
extension E

0 −→ A −→ E
π−→ Z −→ 0

of abelian sheaves on X, the corresponding A-torsor is simply π−1(1) (a sheaf of sets). When X is a point,
then π−1(1) is a coset of π−1(0) = A, i.e., a A-torsor. The classical correspondence [20] between Weil
divisors (codimension-one algebraic cycles) D on X, Cartier divisors, line bundles LD, and torsors OD over
O∗X = Gm = K1 comes from the Gersten sequence (5.1.1) for K1 (see also [17, 2.2]):

(5.2.1) 0 −→ O∗X −→ F×X
d−→

⊕
x∈X(1)

j∗Z→ 0,

where FX is the constant sheaf of rational functions on X and the sum is over all irreducible effective divisors
on X, using that K0(L) ∼= Z and K1(L) = L× for any field L. As a Weil divisor D = Σx∈X1 nxx is a formal
combination with integer coefficients of subvarieties of codimension one of X, it determines a map of sheaves

ψ : Z −→
⊕

x∈X(1)

j∗Z;

ψ(1) is the section with components nx. The O∗X -torsor OD attached to D is given as the subset

(5.2.2) d−1(ψ(1)) ⊂ F×X .

A Čech description of OD relative to an Zariski open cover {Ui} of X is as follows. Pick a rational function

fi on Ui with pole of order nx along x for all x ∈ U (1)
i (so x is a irreducible subvariety of codimension one of

Ui); we view fi ∈ F×X . On Ui ∩ Uj , one has fi = gijfj for unique gij ∈ O∗X(Ui ∩ Uj); the collection {gij} is a

Čech one-cocycle with values in O∗X representing OD.
For any D, LD is trivial on the complement of the support of D.

Remark 5.1. For each open U of X, one has the Picard category TorsU (O∗) of O∗-torsors on U . These
combine to the Picard stack Tors(O∗) of O∗-torsors on X. The Gersten sequence incarnates this Picard
stack [11, 1.10]. �
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5.3. The Gersten gerbe of a codimension two cycle. We next show that every cycle α of codimension
two on X determines a gerbe Cα with band K2. The Gersten complex (5.1.1) enables us to give a geometric
description of Cα; see Remark 5.5 below.

The cycle α provides a natural map

(5.3.1)

Z

0 K2 Kη
2

⊕
x∈X(1)

j∗K1(x)
⊕

x∈X(2)

j∗K0(x) 0

φ

µ ν δ

and an exact sequence (by pullback)

(5.3.2) 0 −→ K2 −→ Kη
2

ν−→ T
δ−→ Z −→ 0.

This two-extension of Z by K2 gives a class in Ext2(Z,K2) = H2(X,K2). Writing α =
∑
x nx[x] as a sum

over x ∈ X(2) (irreducible codimension two subvarieties), then the x-component of φ(1) corresponds to nx
under the canonical isomorphism K0(x) ∼= Z. The maps δ and ν are essentially given by the valuation (or
ord) and tame symbol maps; see §5.1.

Definition 5.2. The gerbe Cα (associated with the cycle α) is obtained by applying the results of §2.3 to
(5.3.1), (5.3.2); thus it is an example of the gerbe Lβ of §2.3, where β = φ and L is the Picard stack associated
to the complex [Kη

2 →
⊕

x∈X(1)

j∗K1(x)].

Remark 5.3. Corollary 2.4 provides two descriptions of Lβ . It should be emphasized that both descriptions
are useful. One of them, which we make explicit below, is crucial for the comparison with the Heisenberg
gerbe (Theorem 5.10); the other succinct description is given in Remark 5.5.

(i) For any open set U of X, the category Cα(U) has objects u ∈
⊕

x∈X(1)

j∗K1(x) with δu = φ(1) and

morphisms from u to u′ are elements a ∈ Kη
2 with ν(a) = u′ − u.

(ii) Any Hom-set HomCα(u, u′) is a K2(U)-torsor.
(iii) The category Cα(U) can be described geometrically in terms of the ord and tame maps. For instance,

let X be a surface. Write the zero-cycle α as a finite sum
∑
i∈I nixi of points xi of X. We assume

ni 6= 0 and write V for the complement of the support of α. Any non-zero rational function f on
a curve C defines an object of Cα(U) if f is invertible on C ∩ U ∩ V and satisfies ordxif = ni for
each xi ∈ U (assuming, for simplicity, that xi is a smooth point of C). A general object of Cα(U) is
a finite collection u = {Cj , fj} of curves Cj and non-zero rational functions fj on Cj such that fj
is invertible on Cj ∩ U ∩ V and

∑
ordxifj = ni (an index j occurs in the sum if xi ∈ Cj) for each

xi ∈ U . A morphism from u to u′ is an element a ∈ Kη
2 whose tame symbol is u′ − u. �

Theorem 5.4. (i) Cα is a gerbe on X with band K2.
(ii) Under (5.1.3), the class of Cα ∈ H2(X,K2) corresponds to α ∈ CH2(X).
(iii) Cα is equivalent to Cα′ (as gerbes) if and only if the cycles α and α′ are rationally equivalent.

Proof. (i) The Gersten sequence (5.3.1) is an example of a four-term complex, discussed in §2.3. As the stack
Cα is a special case of the gerbe Lβ constructed in §2.3, (i) is obvious.

In more detail: We first observe that (5.3.2) provides a quasi-isomorphism between K2 (sheaf) and the
complex (concentrated in degree zero and one)

(5.3.3) η : K2 → [Kη
2

ν−→ Ker(δ)].

Now, suppose U is disjoint from the support of α. On such an open set U , the map φ is zero. This means
that the objects u of the category Cα(U) are elements of Ker(δ). The gerbe Cα, when restricted to U , is

equivalent to the Picard stack of K2-torsors [1, Expose XVIII, 1.4.15]: in the complex [Kη
2

ν−→ Ker(δ)], one
has Coker(ν) = 0 and Ker(ν) = K2|U . Since for any abelian sheaf G, the category Tors(G) is the trivial
G-gerbe, Cα is the trivial gerbe with band K2 on the complement of the support of α.
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Now, consider an arbitrary open set V of X. By the exactness of (5.3.2), there is an open covering {Ui}
of V and sections ui ∈ T (Ui) with ti = φ(1). Fix i and let U be an open set contained in Ui. Then the
category Cα(U) is non-empty. The category D with objects d ∈ Ker(δ) ⊂ T (U) and morphisms HomD(d, d′) =
elements a ∈ Kη

2 with ν(a) = d′ − d. The category D is clearly equivalent to the category of K2(U)-torsors.
The functor which sends d to d+ ui is easily seen to be an equivalence of categories between D and Cα(U).
Thus Cα is a gerbe with band K2.

(ii) The Bloch-Quillen formula (5.1.3) arises from the canonical map

d2 : Z2(X)→ H2(X,K2)

of Lemma 2.3 attached to the four-term complex (5.3.1). As Cα is a gerbe of the form Lβ , (ii) follows from
Lemma 2.3.

(iii) This is a simple consequence of the Bloch-Quillen formula (5.1.3). �

Remark 5.5. (i) Split the sequence (5.3.1) into

0 −→ K2 −→ Kη
2 −→ Kη

2 /K2 −→ 0

and

0 −→ Kη
2 /K2 −→

⊕
x∈X(1)

j∗K1(x) −→
⊕

x∈X(2)

j∗K0(x) −→ 0.

Since the Gersten resolution is by flasque sheaves, one has H1(X,Kη
2 /K2)

∼−→ H2(X,K2). As Cartier
divisors are elements of H0(X,Kη

1 /K1), we view elements of H1(X,Kη
2 /K2) as Cartier cycles of codimension

two. The map Z1(X) → H1(X,Kη
2 /K2) attaches to any cycle its Cartier cycle. Lemma 2.4 provides the

following succinct description of Cα:
it is the gerbe of liftings (to a Kη

2 -torsor) of the (Kη
2 /K2)-torsor determined by α.

(iii) The proof of Theorem 5.4 provides a canonical trivialization9 ηα of the gerbe Cα on the complement
of the support of α.

(iv) The pushforward of Cα along K2 → Ω2 produces a Ω2-gerbe which manifests the cycle class of α in de
Rham cohomology H2(X,Ω2). If α is homologically equivalent to zero, then this latter gerbe is trivial, i.e., it
is the Picard stack of Ω2-torsors. �

Remark 5.6. It may be instructive to compare the Gm-torsor OD attached to a divisor D of X and the
K2-gerbe Cα attached to a codimension-two cycle. Let U be any open set of X. This goes, roughly speaking,
as follows.

• OD: The set of divisors on U rationally equivalent to zero is exactly the image of d over U in (5.2.1).
So, the set OD(U) is non-empty if D = 0 in CH1(U). The sections of OD over U are given by
rational functions f on U whose divisor is D|U . In other words, the sections are rational equivalences
between the divisor D and the empty divisor. The set OD(U) is a torsor over Gm(U).

• Cα: We observe that the image of δ in (5.3.1) consists of codimension-two cycles rationally equivalent
to zero. So Cα is non-empty if α = 0 in CH2(U). Each rational equivalence between α and the
empty codimension-two cycle gives an object of Cα(U). The sheaf of morphisms between two objects
is a K2-torsor. �

The Bloch-Quillen formula (5.1.3) states that equivalence classes of K2-gerbes are in bijection with
codimension-two cycles (modulo rational equivalence) on X. We have seen that a codimension-two cycle
determines a K2-gerbe (an actual gerbe, not just one up to equivalence). It is natural to ask whether the
converse holds: (see Proposition 5.8 in this regard)

Question 5.7. Does a K2-gerbe on X determine an actual codimension-two cycle?

Consider the K2-gerbe GD,D′ attached to a pair of divisors D,D′ on X. If GD,D′ determines an actual
codimension-two cycle, then any pair D,D′ of divisors determines a canonical codimension-two cycle on X.
This implies that there is a canonical intersection of Weil divisors and this last statement is known to be
false. So the answer to Question 5.7 is negative in general.

9This uses (5.3.3).
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5.4. Gerbes and cohomology with support. Let F be an abelian sheaf on a site C. Recall that (see e.g.
[26, §5.1]) H1(F ) is the set of isomorphism classes of auto-equivalences of the trivial gerbe Tors(F ) with
band F ; more generally, given gerbes G and G′ with band F , then the set HomC(G,G′) (assumed non-empty)
of maps of gerbes is a torsor for H1(F ).

Recall also that, for any sheaf F on a scheme V , the cohomology H∗Z(V, F ) with support in a a closed
subscheme Z of V fits into an exact sequence [2, §5]

(5.4.1) · · · −→ Hi
Z(V, F ) −→ Hi(V, F ) −→ Hi(V − Z,F ) −→ Hi+1

Z (V, F ) −→ · · · ;

the exactness of

H1(V, F ) −→ H1(V − Z,F ) −→ H2
Z(V, F ) −→ H2(V, F ) −→ H2(V − Z,F )

leads to an interpretation of the group H2
Z(V, F ): it classifies isomorphism classes of pairs (G, φ) consisting of

a gerbe G with band F on V and a trivialization φ of G on V − Z, i.e., φ is an equivalence of G|V−Z with
Tors(F |V−Z).

5.5. Geometric interpretation of some results of Bloch. Bloch [2] has proved that:

(i) [2, Proposition 5.3] Any codimension-two cycle α on X has a canonical cycle class [α] ∈ H2
Z(X,K2);

here Z is the support of α.
(ii) [2, Theorem 5.11] If D is a smooth divisor of X, then Pic(D) = H1(D,K1) is a direct summand of

H2
D(X,K2).

For (1), we note that, by Remark 5.5, the gerbe Cα has a trivialization ηα on X − Z. By the above
interpretation of H2 with support, the pair (Cα, ηα) defines an element of H2

Z(X,K2); this is the canonical
class [α].

For (2), recall that Bloch constructed maps a : Pic(D)→ H2
D(X,K2) and b : H2

D(X,K2)→ Pic(D) with
b ◦ a the identity on Pic(D). We can interpret the map a as follows. Note that any divisor E of D is a
codimension-two cycle α on X. The K2-gerbe Cα on X has a canonical trivialization ηα on X−E (and so also
on the smaller X −D). The association E 7→ (Cα, ηα) gives the homomorphism a : Pic(D)→ H2

D(X,K2).
These results of Bloch provide a partial answer to Question 5.7 summarized in the following

Proposition 5.8. Let G be a K2-gerbe on X and let β ∈ CH2(X) correspond to G in the Bloch-Quillen
formula (5.1.3). Let φ be a trivialization of G on the complement X −D of a smooth divisor D of X. Then,
β can be represented by a divisor of D (unique up to rational equivalence on D).

Note that the data of φ is crucial: the map Pic(D)→ CH2(X) is not injective in general [3, (iii), p. 269].

Proposition 5.9. Let i : D → X and j : U = X −D → X be the inclusion maps. We have the following
short exact sequence of Picard 2-stacks

Tors(i∗KD1 ) −→ Gerbes(KX2 ) −→ Gerbes(j∗KU2 ).

Proof. Analyzing the Gersten sequence (5.1.1), (5.1.2) for K2 on X and U , we get the short exact sequence:

0 −→ i∗G
D
1 −→ GX2 −→ j∗G

U
2 −→ 0.

This gives a short exact sequence of Picard 2-stacks, then use (2.3.3). Note that Tors(i∗KD1 ) is considered
as a Picard 2-stack with no nontrivial 2-morphisms. �

The global long exact cohomology sequence arising from the exact sequence in the proposition gives part
of the localization sequence for higher Chow groups

· · · −→ CH1(D, 1) −→ CH2(X, 1) −→ CH2(X −D, 1) −→ Pic(D) −→ CH2(X) −→ CH2(X −D) −→ 0.

This uses the fact that CH1(D, 0) = Pic(D), that CH1(D, 1) = H0(D,O∗) and CH1(D, j) is zero for j > 1
[3, (viii), p. 269].
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5.6. The two gerbes associated with an intersection of divisors. For a codimension-two cycle of X
presented as the intersection of divisors, we know that the K2-gerbes in Theorem 5.4 (Gersten gerbe) and in
§4.4 (using Theorem 1.4) (Heisenberg gerbe) are equivalent (as their class in H2(X,K2) corresponds to the
class of the codimension-two cycle in CH2(X) via (5.1.3)). We now construct an actual equivalence between
them.

Theorem 5.10. Suppose that the codimension-two cycle α is the intersection D.D′ of divisors D and D′ on
X. There is a natural equivalence10

Θ : Cα → GD,D′
of K2-gerbes on X.

Proof. By Theorem 1.4 and Theorem 5.4, the classes of the gerbes GD,D′ and Cα in H2(X,K2) both correspond
to the class of α in CH2(X). This shows that they are equivalent.

Let us exhibit an actual equivalence. We will construct a functor ΘU : Cα(U) → GD,D′(U), compatible
with restriction maps V ⊂ U ⊂ X.

Consider an object r ∈ Cα(U). We want to attach to r a H-torsor ΘU (r) on U in a functorial manner.
Each ΘU (r) is a H-torsor which lifts the K1 ×K1-torsor OD ×OD′ on U . We will describe ΘU (r) by means
of Čech cocycles. Fix an open covering {Ui} of U and write Cn(A) for Čech n-cochains with values in the
sheaf A with respect to this covering.

Step 1. Let a = {ai,j} and b = {bi,j} with a, b ∈ C1(O∗) be Čech 1-cocycles for OD and OD′ . Pick
h = {hi,j} ∈ C1(H) of the form

hi,j = (ai,j , bi,j , ci,j) ∈ H(Ui ∩ Uj).

We need ci,j ∈ K2(Ui ∩ Uj) such that h is a Čech 1-cocycle (for ΘU (r), the putative H-torsor). Since a, b are

Čech cocycles, the Čech boundary ∂h is of the form

∂h = {(1, 1, yi,j,k)}

with y = {yi,j,k} ∈ C2(K2) a Čech 2-cocycle. This cocycle y represents the gerbe GD,D′ on U .

Step 2. Recall that Cα is the associated stack of the prestack U 7→ Cα(U) where the category Cα(U) has
objects u ∈ ⊕x∈X1j∗K1(x) with δu = φ(1) and morphisms from u to v are elements a ∈ Kη

2 with ν(a) = v−u.
Since the category Cα(U) is non-empty, the class of the gerbe Cα (restricted to U) in H2(U,K2) is zero. Since
Cα and GD,D′ are equivalent, so the class of GD,D′ in H2(U,K2) is also zero.

Step 3. Consider the case r is given by a pair (C, g) where C is a divisor on X and g is a rational function
on C. The condition δ(r) = φ(1) says α ∩ U is the intersection of U with the zero locus of g. Assume
g ∈ OC(C ∩U). Given any lifting g̃ ∈ OX(U) with divisor C ′ on U , we can write α∩U as the intersection of
the divisors C ∩U and the (principal) divisor C ′ in U . By the results in §4.4, there is a K2-gerbe GC∩U,C′ on
U . As C ′ is principal, its class in H1(U,K1) is zero; so the class of GC∩U,C′ in H2(U,K2) is zero.

Step 4. Let z = {zi,j,k} ∈ C2(K2) be a Čech 2-cocycle for GC∩U,C′ ;
So z = ∂w is the boundary of a Čech cochain w = {wi,j} ∈ C1(K2). Note that y − z = ∂v for a 1-cochain

v since GC∩U,C′ and GD,D′ are equivalent as gerbes on U : both are trivial on U !

The Čech cochain h′ = {h′i,j} ∈ C1(H) with

h′i,j = (ai,j , bi,j , ci,j)(1, 1,−wi,j)(1, 1,−vi,j)

is a Čech cocycle and represents the required H-torsor ΘU (r) on U .

Step 5. The same argument with simple modifications works for a general object of Cα. It is easy to check
that ΘU is a functor, compatible with restriction maps V ⊂ U ⊂ X, and that the induced morphism of gerbes
is an equivalence. �

10By §5.4. the set of such equivalences is a torsor over H1(X,K2) = CH2(X, 1) [31, §2.1].
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5.7. Higher gerbes attached to smooth Parshin chains. By Gersten’s conjecture, the localization
sequence [29, §7 Proposition 3.2] breaks up into short exact sequences

0 −→ Ki(V ) −→ Ki(V − Y ) −→ Ki−1(Y ) −→ 0, (i > 0)

for any smooth variety V over F and a closed smooth subvariety Y of V . Let j : D → X be a smooth closed
subvariety of codimension one of X; write ι : X −D → X for the open complement of D. Any divisor α of D
is a codimension-two cycle on X; one has a map Pic(D)→ CH2(X) [3, (iii), p. 269]. This gives the exact
sequence (for i > 0)

0 −→ Ki −→ Fi −→ j∗KDi−1 −→ 0

of sheaves on X where Fi = ι∗KUi is the sheaf associated with the presheaf U 7→ Ki(U −D). We write KDi
and KUi for the usual K-theory sheaves on D and U since the notation Ki is already reserved for the sheaf on
X. The boundary map

H1(D,KD1 ) = H1(X, j∗KD1 ) −→ H2(X,K2)

is the map CH1(D)→ CH2(X). For any divisor α of D, the KD1 -torsor Oα determines a unique j∗KD1 -torsor
Lα on X. The K2-gerbe Cα (viewing α as a codimension two cycle on X) is the lifting gerbe of the j∗KD1 -torsor
Lα (obstructions to lifting to a F2-torsor).

This generalizes to higher codimensions (and pursued in forthcoming work):

• (codimension three) If β is a codimension-two cycle of D, then the gerbe Cβ on D determines a
unique gerbe Lβ on X (with band j∗KD2 ). The obstructions to lifting Lβ to a F3-gerbe is a 2-gerbe
Gβ with band K3 on X. This gives an example of a higher gerbe invariant of a codimension three
cycle on X. Gerbes with band K3(FX)/K3 provide the codimension-three analog of Cartier divisors
H0(X,K1(FX)/K1).

• (Parshin chains) Recall that a chain of subvarieties

X0 ↪→ X1 ↪→ X2 ↪→ X3 ↪→ · · · ↪→ Xn = X

where each Xi is a divisor of Xi+1 gives rise to a Parshin chain on X. We will call a Parshin chain
smooth if all the subvarieties Xi are smooth. Iterating the previous construction provides a higher
gerbe on Xn = X with band Kj attached to Xn−j (a codimension j cycle of Xn).
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