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This article focuses on the Problem-Solving Cycle (PSC), a model of professional
development designed to assist teachers in supporting their students’ mathematical
reasoning. Each PSC is a series of three interrelated workshops in which teachers
share a common mathematical and pedagogical experience, organized around a rich
mathematical task. Throughout the workshops, teachers delve deeply into issues in-
volving mathematical content, pedagogy, and student thinking as they pertain to the
selected task. We analyze this professional development model in relation to the
ways it supports the development of content and pedagogical content knowledge. We
highlight the ways in which specific knowledge strands are foregrounded during
each of the three PSC workshops, while also demonstrating their interconnectedness.

The improvement of students’ opportunities to learn mathematics depends fundamen-
tally on teachers’ skill and knowledge. No curriculum or framework is self-enacting,
nostudentsself-teaching.Moreover, teachersareoftenexpected to teachmathematical
topicsandskills inwayssubstantiallydifferent fromtheways inwhich they themselves
learned that content…. Hence, if students’ learning is to improve, teachers’ profes-
sional learning opportunities are key. (Boaler & Humphreys, 2005)
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MATHEMATICS EDUCATION REFORM
AND MATHEMATICS TEACHING

The debate about what and how mathematics should be taught in American
schools continues. However, most educational leaders and researchers agree that a
balanced approach to mathematics instruction that focuses on both procedural and
conceptual fluency is critical (National Research Council [NCR], 2005). Mathe-
matics should not merely be taught as a set of procedural competencies; rather,
teachers should help students gain sufficient conceptual knowledge along with a
flexible understanding of procedures to become competent and efficient problem
solvers (NRC, 2005). Getting this balance right in the classroom is a major chal-
lenge, and lies at the heart of current reforms (National Council of Teachers of
Mathematics [NCTM], 2000).

Most educational practitioners and scholars ascribe to the core ideas of
constructivist learning theories—that “learners actively construct their own under-
standings rather than passively absorb or copy the understanding of others” (Si-
mon & Schifter, 1991, p. 310). From this perspective, the role of the mathematics
learner is to engage in activities such as exploring, justifying, proving, critiquing,
and generalizing the ideas, representations, and procedures of their solution strate-
gies (Simon & Schifter, 1991; Fosnot, 1996; Lampert, 1990). Teaching can be un-
derstood as a dynamic process of inquiry into student reasoning rather than a pro-
cess of transmitting a set of procedures (Zech, Gause-Vega, Bray, Secules, &
Goldman, 2000). The role of the mathematics teacher is to build on students’ exist-
ing mathematical knowledge (both formal and informal), as opposed to providing
them with new, disconnected pieces of information (Loucks-Horsley et al., 2003).
As portrayed in the NCTM’s Principles and Standards for School Mathematics
(NCTM, 2000), mathematics classrooms aligned with this vision for school math-
ematics:

The curriculum is mathematically rich, offering students opportunities to learn im-
portant mathematical concepts and procedures with understanding.… Students con-
fidently engage in complex tasks carefully chosen by teachers.… Teachers help stu-
dents make, refine, and explore conjectures on the basis of evidence and use a variety
of reasoning and proof techniques to confirm or disprove those conjectures.… Alone
or in groups and with access to technology, [students] work productively and reflec-
tively, with the skilled guidance of their teachers. Orally and in writing, students
communicate their ideas and results effectively. (p. 3)

This vision for school mathematics is highly ambitious. As noted in Principles
and Standards (NCTM, 2000), achieving it requires attention to multiple sources
of influence on classroom practice: “solid mathematics curricula, competent and
knowledgeable teachers who can integrate instruction with assessment, educa-
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tional policies that enhance and support learning, classrooms with ready access to
technology, and a commitment to both equity and excellence” (p. 3). Of all these
factors, arguably none is more important than the teacher. As indicated in the open-
ing quote, enhancing students’ learning opportunities depends fundamentally on
the knowledge and skills of teachers. Thus, the success of efforts to close the gap
between reform visions of mathematics teaching and learning and the practices
most common in mathematics classrooms today ultimately relies on teachers and
their ability to make substantial changes in their classroom practices. Changes of
this magnitude will require a great deal of learning on the part of teachers. This re-
alization has led educational scholars and policymakers to focus their attention on
the importance of professional development opportunities for teachers—opportu-
nities that will help them to enhance their professional knowledge and develop new
instructional practices.

This article focuses on the teacher and, more specifically, on a project that de-
veloped, enacted, and studied an approach to teacher professional development de-
signed to help teachers meet the challenges of the mathematics reform agenda. The
centerpiece of our contribution to the Supporting the Transition from Arithmetic to
Algebraic Reasoning (STAAR) project is the “Problem-Solving Cycle” (PSC), a
model of professional development that is situated in classroom practice and de-
signed to help teachers deepen their knowledge of mathematics for teaching. This
article describes the general focus and goals of the PSC workshops, details of their
enactment, and professional learning opportunities that they provide. We begin by
considering the conceptual framework for our work as part of the STAAR project,
including key ideas about both the professional knowledge that teachers need to
teach according to NCTM’s vision for school mathematics, and the processes of
teacher learning.

DEFINING THE PROFESSIONAL KNOWLEDGE
MATHEMATICS TEACHERS NEED

Principles and Standards suggests “teachers must know and understand deeply the
mathematics they are teaching and be able to draw on that knowledge with flexibil-
ity in their teaching tasks” (NCTM, 2000, p. 17). There is substantial evidence that
teachers do not typically hold this rich and connected knowledge of mathematics,
nor do they teach in ways that are consistent with the NCTM Standards (Jacobs et
al., 2006; Mewborn, 2003). Lloyd and Frykholm (2000) argued, “[Many] teachers
possess weak knowledge and narrow views of mathematics and mathematics peda-
gogy that include conceptions of mathematics as a closed set of procedures, teach-
ing as telling, and learning as the accumulation of information” (p. 576).

How can teachers shift into the roles suggested by the vision of school mathe-
matics portrayed in the NCTM Standards (e.g., NCTM, 2000)? To address this
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question, a number of researchers are engaged in specifying the professional
knowledge that mathematics teachers need. The beginning of contemporary ef-
forts to explore teachers’ professional knowledge is typically attributed to Lee
Shulman and his presidential address at the 1985 annual meeting of the American
Educational Research Association, titled “Those who understand: Knowledge
growth in teaching.” In the published version of that address, Shulman (1986) sug-
gested that “we distinguish among three categories of content knowledge: (a) sub-
ject matter content knowledge, (b) pedagogical content knowledge, and (c) curric-
ular knowledge” (p. 9). In his own theoretical and empirical work, Shulman
emphasized pedagogical content knowledge, which he characterized as “the di-
mension of subject matter knowledge for teaching…the particular form of content
knowledge that embodies the aspects of content most germane to its teachability”
(p. 9), aspects such as understanding the conceptions, preconceptions, and miscon-
ceptions that students bring with them to the learning situation, and ways of repre-
senting ideas that make them comprehensible to students.

Educational scholars have built on and extended Shulman’s seminal work on
teachers’ professional knowledge, particularly within the domains of subject mat-
ter and pedagogical content knowledge. There is increasingly widespread agree-
ment that teachers’ foundational knowledge draws on and connects knowledge
about content, teaching, and students. In the field of mathematics education, Ball,
Thames, and Phelps (2005) have attempted to identify and elucidate “knowledge
of mathematics for teaching”—the mathematical knowledge that teachers must
have in order to do the mathematical work of teaching effectively. This body of
professional knowledge includes four components: (1) common knowledge of
mathematics content, (2) specialized knowledge of mathematics content, (3)
knowledge of mathematics and students, and (4) knowledge of mathematics and
teaching (Ball, Thames, & Phelps, 2005).

Common and specialized knowledge of mathematics content are two aspects of
subject matter knowledge that are necessary for teaching mathematics (Hill &
Ball, 2004). Common content knowledge can be defined as a basic understanding
of mathematical skills, procedures, and concepts acquired by any well-educated
adult. This knowledge enables a teacher to solve mathematical problems, particu-
larly those in their designated curriculum. Teachers also draw on their common
content knowledge to recognize wrong answers and spot incorrect definitions in
textbooks (Ball, Thames, & Phelps, 2005; Hill & Ball, 2004; Hill, Ball, & Schil-
ling, 2004).

In addition to a strong base of common knowledge of mathematics content,
mathematics teachers need specialized knowledge of mathematics (Hill & Ball,
2004; Hill, Ball, & Schilling, 2004). Specialized knowledge is the kind of mathe-
matical knowledge that extends beyond the knowledge any well-educated adult
might hold. It also differs from the professional knowledge used in other mathe-
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matically intense occupations such as engineering, physics, accounting, and car-
pentry (Ball, Hill, & Bass, 2005; Ball, Thames, & Phelps, 2005). Mathematics
teachers draw on their specialized content knowledge to make connections among
and between mathematical strands; to identify misconceptions and evaluate alter-
native ideas; to give mathematical explanations and use developmentally appropri-
ate mathematical representations; and to be explicit about their mathematical lan-
guage and practices.

Shulman (1987) described pedagogical content knowledge as “the capacity of a
teacher to transform the content knowledge he or she possesses into forms that are
pedagogically powerful and yet adaptive to the variations in ability and back-
ground presented by the students” (p. 15). Like specialized content knowledge,
pedagogical content knowledge is unique to teachers and is developed over time as
teachers gain expertise in their field, with respect to both subject matter and effec-
tive pedagogical strategies (Wilson, Shulman, & Richert, 1987). For teachers to
expand their pedagogical content knowledge, they need a sufficient content-
knowledge base and classroom teaching experience.

Ball, Thames, and Phelps (2005) divided pedagogical content knowledge into
two components: (1) knowledge of content and teaching, and (2) knowledge of
content and students. The first component combines teachers’ knowledge of con-
tent with their knowledge of teaching. It includes, for example, the ability to recog-
nize instructional affordances and constraints of different representations, and to
sequence content to facilitate student learning (Ball, Thames, & Phelps, 2005).
Knowledge of mathematical content and teaching is reflected in teachers’ instruc-
tional moves before, during, and after a lesson. Teachers draw on this knowledge
when they plan for the use of pedagogical strategies and instructional materials in a
lesson. They also make use of this knowledge during classroom lessons when they
reconsider what tasks to pose, when to hold whole-class discussions or break into
small groups, and when to use informal assessment techniques. Further, teachers
invoke their knowledge of content and teaching when they critically reflect after a
lesson, and consider how to improve their instructional practices the next time they
implement a lesson with related mathematical content.

The second component of pedagogical content knowledge combines knowl-
edge of content with knowledge of students. It includes, for example, the ability to
predict how students are likely to approach specific mathematical tasks, anticipate
student errors, and interpret incomplete student ideas. Teachers draw on this
knowledge when they create lesson plans that take student thinking into account,
and in particular, the thinking that a task is likely to evoke in their own student pop-
ulation. For example, teachers design lessons while keeping in mind the miscon-
ceptions their students are likely to bring to the classroom and the representations
they are likely to use to gain access to a particular problem. Teachers also use this
knowledge when they consider how to make pedagogical moves based on student
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thinking about the content, such as how to respond to various correct or incorrect
pathways students explore, misconceptions (anticipated or unanticipated), or in-
complete thinking (Ball, Thames, & Phelps, 2005).

Although these domains of knowledge of mathematics for teaching can be sep-
arated for the purpose of analysis, they are inextricably intertwined in teachers’ in-
structional practices. Teachers routinely make decisions that draw on all aspects of
their knowledge as they engage in the numerous, complex activities of classroom
instruction. Such activities include selecting, modifying, and using mathematical
problems; selecting mathematical representations that are appropriate for a spe-
cific mathematical goal and group of students; explaining and justifying a solution
strategy; understanding and building on student conceptions; and establishing and
maintaining a discourse community that enhances students’ mathematical under-
standing and their capacity to reason mathematically (Ball, Hill, & Bass, 2005;
Ferrini-Mundy, Floden, McCrory, Burrill, & Sandow, 2005).

A SITUATIVE PERSPECTIVE ON TEACHER LEARNING

Our research team developed a model of mathematics professional develop-
ment—the PSC—to provide opportunities for teachers to enhance their profes-
sional knowledge and develop new instructional practices. Specifically, the PSC is
designed to help teachers increase their knowledge of mathematics for teaching
and improve their instructional practices through closely examining mathematics
problems, pedagogical practices, and student thinking.

The PSC model is strongly influenced by both constructivist and situative theo-
ries of learning. Situative theorists define learning as changes in participation in
socially organized activity. They consider the acquisition and use of knowledge as
aspects of an individual’s participation in social practices (Cobb, 1994; Greeno,
2003; Lave & Wenger, 1991). With respect to professional development, situative
theorists focus on the importance of creating opportunities for teachers to work to-
gether on improving their practice, and locating these learning opportunities in the
everyday practice of teaching (Ball & Cohen, 1999; Putnam & Borko, 2000).

We share with many teacher-educators the view that constructivist and situative
theories can be seen as interrelated, and that learning involves both construction
and enculturation (Cobb, 1994; Driver, Asoko, Leach, Mortimer, & Scott, 1994).
Stemming from this framework, three design principals are central to our
model—fostering active teacher participation in the learning process, using teach-
ers’ own classrooms as a powerful context for their learning, and enhancing
teacher learning by creating a supportive professional community. In a previous ar-
ticle (Borko et al., 2005), we elaborated further on these theories and described
how they formed the conceptual framework for our program of mathematics pro-
fessional development and research.
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PROFESSIONAL DEVELOPMENT TO FOSTER
KNOWLEDGE OF MATHEMATICS FOR TEACHING:

THE PROBLEM-SOLVING CYCLE

The PSC model of professional development is designed to enhance teachers’
knowledge of mathematics for teaching and improve their instructional practices.
Each PSC is a series of three interconnected professional development workshops
in which teachers share a common mathematical and pedagogical experience, or-
ganized around a rich mathematical task (see Figure 1). This common experience
provides a framework upon which teachers can build a supportive community that
encourages reflection on mathematical understandings and instructional practices.
Throughout the workshops, teachers delve into issues involving mathematical con-
tent, pedagogy, and student thinking as they pertain to the selected task. All three
workshops emphasize using artifacts of practice to situate teachers’ learning op-
portunities in the context of their everyday work.

During the first workshop of the PSC, teachers collaboratively solve a rich
mathematical problem (“the PSC problem”) and develop plans for teaching it to
their own students. The main goal of this workshop is to help teachers develop the
content knowledge necessary for planning and implementing the PSC problem,
and the majority of the time in Workshop 1 is spent by teachers doing the problem
and debriefing their solution strategies (see Table 1). Teachers also discuss ideas
about teaching the PSC problem and develop unique lesson plans that they will im-
plement prior to Workshop 2. We call the framework for this workshop “doing for
planning” to highlight the dual focus on mathematics and instructional planning.

After Workshop 1, each participant teaches the PSC problem in one of his or her
classes, and the lesson is videotaped. Subsequent workshops focus on the teachers’
experiences using the problem in their classrooms and rely heavily on video clips
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and written student work from their lessons. The emphasis is on developing teach-
ers’ pedagogical content knowledge, as they consider more about the mathemati-
cal concepts and skills entailed in the problem, in conjunction with their role in
teaching it and the student thinking that the problem generated. The major focus of
Workshop 2 is the role played by the teacher in implementing the problem. Video
clips serve as a springboard for exploring topics such as how the teachers intro-
duced the task and managed the classroom discourse. Activities in Workshop 3
center on a critical examination of students’ mathematical reasoning. In addition to
watching video clips, teachers study their students’ written work on the PSC prob-
lem and explore, for example, unexpected methods they used to solve the problem
and the ways they explained and justified their ideas.

As they participate in successive iterations of the PSC—each focusing on a
unique mathematical task and specific issues related to teaching and learn-
ing—teachers can gain new insights and continually add to their knowledge base.
In particular, teachers have the opportunity to enhance their knowledge in each of
the four domains identified by Ball, Thames, and Phelps (2005): (1) common con-
tent knowledge, (2) specialized content knowledge, (3) knowledge of content and
teaching, and (4) knowledge of content and students.

Teachers use and expand their common content knowledge and specialized
content knowledge in all three workshops as they work on the featured mathemati-
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TABLE 1
Goals, Activities, and Knowledge Foregrounded in Each Workshop

of the Problem-Solving Cycle (PSC)

Central goals Key activities
Knowledge

in the foreground

Workshop 1 Develop the content
knowledge necessary
to teach the PSC
problem effectively in
the classroom.

1. Solve the PSC
problem and debrief
solution strategies.

2. Plan to teach the PSC
problem to their
students.

1. Specialized content
knowledge.

2. Pedagogical content
knowledge.

Workshop 2 Analyze the role played
by the teacher when
implementing the PSC
problem in the
classroom.

Analyze video clips
using guiding
questions that focus on
the role of the teacher.

Pedagogical content
knowledge, especially
knowledge of content
and teaching.

Workshop 3 Analyze student thinking
in terms of the
mathematics of the
PSC problem.

Analyze video clips or
student work using
guiding questions that
focus on the students’
mathematical thinking.

Pedagogical content
knowledge, especially
knowledge of content
and students.



cal problem—sharing solution strategies, analyzing similarities and differences,
and making connections between various strategies. In Workshop 1, participants
draw on their common content knowledge as they consider the skills, procedures,
and concepts entailed in the task. They draw on and expand their specialized con-
tent knowledge as they compare different solution strategies and discuss how dif-
ferent mathematical representations (e.g., pictures, tables, graphs, and equations)
can support these different strategies. They continue to enhance their specialized
content knowledge in Workshops 2 and 3 through examining the myriad mathe-
matical strategies their students actually applied to the task, and gain a better un-
derstanding of the connections between strategies that are “naïve” and those that
are more sophisticated.

Throughout the PSC, teachers tap into and enhance their pedagogical content
knowledge—both knowledge of content and teaching, and knowledge of content
and students—by planning, analyzing, and reflecting on lessons involving the PSC
problem. Teachers use their knowledge of content and teaching during Workshop 1
when they designate mathematical learning goals for their lessons and consider ap-
propriate formats for helping their students achieve those goals. During Workshop
2, participants confront and extend their knowledge of content and teaching as they
focus on selected pedagogical moments and critically analyze the role of the
teacher in shaping the lesson and fostering student learning. In Workshop 3, the
teachers tap into this knowledge when they consider how they would modify their
planning and implementation of the featured problem based on new insights
gained throughout the PSC.

Participants use their knowledge of content and students during Workshop 1 as
they consider their students’ background knowledge and the mathematical reason-
ing they are likely to apply to the problem, and as they predict what strategies their
students might use in their solution attempts. In Workshop 2, the teachers use their
knowledge of content and students when they examine how specific teacher moves
support or constrain student thinking. In Workshop 3, teachers continue to enhance
their knowledge in this domain by examining their students’ conversations and
written work to critically analyze their thinking and generate ideas for appropriate
pedagogical strategies.

Different knowledge strands are foregrounded in the three workshops of the
PSC through the kinds of artifacts that are selected, the activities designed around
the artifacts, and the questions posed to frame those activities. As shown in Table 1,
Workshop 1 foregrounds teachers’ specialized knowledge of mathematics content
and to a lesser extent, their pedagogical content knowledge; Workshop 2 fore-
grounds knowledge of content and teaching; and Workshop 3 foregrounds knowl-
edge of content and students. However, as is true during moment-to-moment class-
room teaching, participants in the PSC model inevitably tap into (and potentially
extend) all aspects of their knowledge of mathematics for teaching as they engage
in the workshop activities. In addition, because the model is designed to be flexible
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and responsive to the needs and interests of participants, during any given iteration
of the PSC, the knowledge strands that are foregrounded and backgrounded in a
particular workshop may vary.

IMPLEMENTING THE PROBLEM-SOLVING CYCLE:
WITHIN THE STAAR PROFESSIONAL DEVELOPMENT

PROGRAM

As part of the STAAR project we worked with middle school mathematics teach-
ers for several years, developing, implementing, and refining our approach to pro-
fessional development. During the 2003–2004 academic year, we held monthly,
full-day professional development workshops with eight teachers. All were middle
school mathematics teachers, with classroom experience ranging from 1 to 27
years. They represented six different schools in three school districts within the
state. In 2004–2005, seven of the teachers continued working with us, and three
additional middle school mathematics teachers joined the program. Each new
teacher was a colleague of one of the current participants. During these two years,
we conducted three iterations of the PSC. In keeping with the goals of the STAAR
project, all three iterations centered on mathematical problems that would support
the development of algebraic reasoning for both the participating teachers and
their middle school students.

In this section of the article we elaborate the general focus and goals of each of
the three workshops that comprise the PSC. We also present a detailed picture of
the third iteration of the PSC. We chose the third PSC because it is the most refined
version of the PSCs conducted as part of the STAAR program. As such, it provides
the clearest illustration of the potential for the PSC model to develop and support
teachers’ professional knowledge. In our analyses, we point out opportunities for
teacher learning and include examples of the growth in knowledge that was evident
in some participants. These analyses draw on the variety of data that were collected
throughout the STAAR program. We begin by briefly describing the data sources
and methods of analysis.

Data Collection and Analysis

Our STAAR project team collected several types of data throughout the two years
of research and development, in order to capture the processes involved in design-
ing and carrying out the PSC model and its impact on participating teachers. We
used multiple cameras to film each professional development workshop in its en-
tirety, and we videotaped whole-group and small-group interactions. Members of
the team attended the workshops and kept detailed field notes. We collected all the
teachers’ written work completed during the workshop (including structured writ-
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ten reflections). In addition, we interviewed the facilitators after each workshop to
document their goals, intentions, and reflections.

We use vignette analysis to mine particularly “rich pockets” of data that were
representative of the third iteration of the PSC. Miles and Huberman (1994) de-
fined a vignette as “a focused description of a series of events taken to be represen-
tative, typical, or emblematic” of the data (p. 81). Others have described vignettes
as “normative depictions” or “realist tales”; that is, short descriptions intended to
reconstruct and authentically represent the events, people, and activities under
consideration (Erickson, 1986; LeCompte & Schensul, 1999; Van Maanen, 1988).
As a researcher becomes familiar with the data, vignette analysis provides a way of
analyzing by creating “characteristic stories.”

The vignette analysis for this study entailed an extensive examination of the
entire data set including videotaped records of our third iteration of the PSC, ar-
tifacts from each of the workshops, and transcribed facilitator interviews. First,
we studied the videotaped records, along with other relevant artifacts. We took
detailed notes on teachers’ participation, with respect to the different types of
knowledge, and on the ways in which discussions supported their developing
knowledge of mathematics for teaching. We used these notes to write brief de-
scriptive summaries of the three PSC workshops. Then we selected teachers to
follow throughout each workshop to identify and understand the connections be-
tween their participation in the PSC and the development of their knowledge of
mathematics for teaching.

Through this process, we identified themes related to the ways that knowledge
was developing, and we discussed the themes within our research group. The prev-
alence of these themes was then verified by returning to the original data sources.
This analytical process was helpful in choosing the aspects of each workshop to
highlight through the vignettes, and for choosing teachers from the three work-
shops whose participation was characteristic of the larger group. The vignette
analysis is written in present tense in order to help bring the reader into each work-
shop. Descriptive summaries are set off in italics. Interpretive commentary is inter-
woven using regular font.

PROBLEM-SOLVING CYCLE THREE:
“SKYSKRAPER WINDOWS”

Our third iteration of the PSC, conducted during spring 2005, centered on the
“Skyscraper Windows” problem. This problem, adapted from Fostering Algebraic
Thinking: A Guide for Teachers, Grades 6-10 (Driscoll, 1999), is a relatively so-
phisticated algebraic problem intended for middle or high school students. It en-
tails determining the cost of washing windows in a skyscraper where the cost per
window increases for successive floors of the building (see Appendix A for a
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common solution strategy with descriptive commentary). The Skyscraper Win-
dows problem reads as follows:

A building is 12 stories high and is covered entirely by windows on all four sides.
Each floor has 38 windows on it. Once a year, all the windows are washed. The cost
for washing the windows is $2.00 for each first-floor window, $2.50 for each sec-
ond-floor window, $3.00 for each third-floor window, and so on. How much will it
cost to wash the windows of this building? What if the building is 30 stories tall? n
stories tall? (paraphrased from Driscoll, 1999, p. 70)

Our entire STAAR project team participated in planning the third PSC, which
was then carried out by two members of the team. The workshop facilitators, Craig
and Kim,1 were doctoral students in mathematics education. Both had extensive
experience as secondary mathematics teachers, as well as experience conducting
previous iterations of the PSC and other professional development workshops.

A Window into Workshop 1 of PSC Three

The vignette below depicts Workshop 1 from our third iteration of the PSC. We
elected to focus the vignette largely on a small group of teachers—Laura, Penny,
and Ken—as they actively engaged in solving the task. The vignette illustrates the
three teachers’ evolving understanding of the mathematics content, including the
background knowledge that they brought to the workshop and the knowledge that
developed as they thought through and discussed the problem together, over the
course of several hours. We also highlight the role that the facilitators played in
supporting the development of teachers’ knowledge during the workshop. In addi-
tion, the importance of community is evident as the teachers worked together and
supported one another throughout the process.

Vignette 1: Developing Specialized Content Knowledge

The teachers gather in a university classroom and reconnect with their fel-
low colleagues. Their excitement is genuine and conversation centers on
mathematics as well as personal issues. Craig begins by welcoming the
teachers and setting the agenda for the day.

“In today’s workshop we are going to start our third Problem-Solving Cycle.
We have split the day into phases. During Phase 1 we are going to integrate
doing the mathematics with planning the lesson. So, when you start working
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on the problem with your small group today, we not only want you to solve
the problem but we want you to also think about the way kids might solve the
problem and how you might best generate a lesson plan to effectively imple-
ment this problem with your students.”

Laura, Penny, and Ken are seated around a small table and dive into the Sky-
scraper Windows problem. Laura and Penny immediately begin working to-
gether, while Ken elects to think about the problem independently at first.
Penny and Laura explore the problem by making a table and writing a linear
equation. Penny starts by explaining, “We have a $1.50. That would be the
zero floor or the y-intercept. And fifty cents is the slope. So the formula would
be Y = .50x + 1.50.” Laura is listening intently and tries out the formula. She
exclaims, “That is great! To go right to the equation is living in a perfect
world.”

Here we can see Penny and Laura utilizing their common knowledge of mathe-
matics content to solve the problem. That is, they have brought to the workshop
their prior knowledge that a linear equation can be derived from the y-intercept and
slope. Once Penny abstracts what these two numbers would be from the story
problem, she immediately substitutes them into the specified algorithm. Laura’s
excitement over such an equation indicates that she too has common knowledge of
how to derive a linear equation and of its potential usefulness in arriving at a solu-
tion. However, although the basic linear equation comes easily to Penny and Laura,
they do not appear to realize that it provides only the cost of washing one window
of a designated floor, rather than the cost of all the windows on each floor or the
cost of all the windows in the building, which is the solution to the problem.

Satisfied for the moment with their solution, Penny and Laura begin discuss-
ing issues currently unfolding in their classrooms, involving their students
and their substitute teachers. When Ken joins in the conversation again, the
three teachers start thinking about how to plan a lesson around the Sky-
scraper Windows problem based on how they imagine their students will at-
tempt to solve the problem.

“Sixth-graders wouldn’t do what we did. What would they do?” wonders
Laura.

Ken offers, “I think my kids would draw a picture or a table. They would
know that the windows would be the same [cost] on each floor. They could
put in the floor numbers and the cost and incrementally fill it in. What would
eighth graders do?”

Laura responds, “My advanced seventh-graders will go to an equation
like we did but my eighth-graders would not be able to… I think they may be
able to make a table. They would know that the number of windows would be
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the same each time. They would know the number of floors, and the cost each
time. I think some of them would add fifty, then add fifty more, et cetera
[identifying the recursive nature of the pattern in the table]. They would see
that they are adding fifty cents each time….Gosh, this is going to be a perfect
problem for where we are right now because we’ve been working on creating
formulas from a context. I guess if we are going to plan I need to decide if the
students could put this into a linear equation.”

This discussion of the mathematical strategies that middle school students
would be likely to use to solve the problem engages the teachers’ pedagogical con-
tent knowledge, especially their knowledge of content and students. They are able
to predict how their own sixth-, seventh-, and eighth-graders would approach the
problem and how they would move sequentially through a solution strategy (for
example, starting with a table, filling in the number of windows on each floor, de-
termining the cost of each floor, and noticing they always add 50 cents to the cost
for one window each time they move up a floor).

As the teachers think through the reasoning their students are likely to use, they
begin making plans for structuring their lessons. Interestingly, Ken’s and Laura’s
plans correspond directly to the strategies they found helpful when solving the
problem. For instance, Ken created a table to highlight patterns and to generate
ideas as he worked through the problem, and he imagined that this was the most ap-
propriate strategy for his sixth-graders. Although Laura also initially created a ta-
ble, she largely focused on finding a formula. In thinking about planning, her main
concern was about helping her eighth-graders similarly generate a formula.

It is not clear whether Ken and Laura first imagined the strategies that their stu-
dents would be likely to use, and then adopted similar strategies themselves. Or,
conversely, whether they predicted students’ strategies after they solved the prob-
lem in the manner with which they were most comfortable. Either way, their initial
thoughts about planning a lesson involving the Skyscraper Windows problem en-
ables us to see how their knowledge of content and students could lead into an ex-
tended discussion related to pedagogy. However, gaps in these teachers’ basic
mathematical understanding of the problem limited that discussion, and led them
instead to reconsider their solution.

Kim comes over to Laura, Penny, and Ken and asks, “What did you guys
come up with?”

Penny responds by giving an example using the 30th floor to show how her
formula works. She explains, “So if this is the 30th floor, I would take 30
times 50 [cents], plus 1.50. So it should be 16.50 for thirty floors.”

“So it is only sixteen bucks?” Kim asks in a surprised tone. The group
carefully considers this question.
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Then Laura responds, “So the question is about all the windows on a
given floor. But we only found the cost of one window per floor, so we will
have to multiply this by 38. So, it is the cost per window times 38.” Laura
writes on her paper, y = (.50x + 1.50)38.

Kim’s question helps raise important concerns about the accuracy of the
group’s thinking and particularly about the linear equation that they derived. The
teachers immediately recognize that there are gaps in their solution strategy, and
they dig deeper into their content-knowledge base. Although their (corrected)
equation produces the cost of a given floor, the problem requires that they deter-
mine the cost of the entire building.

Ken and Penny nod along to suggest that they follow Laura’s thinking. Laura
then suggests to Penny that they add a column to their table so that they can
list the cost per floor, which will then lead them to the cost of the total build-
ing. Ken mentions that he has such a column on his table, and while he hasn’t
completed filling it in for each floor, he did find that the cost of the first floor
would be $76.00.

“So let’s use a calculator to find the cost for the other floors using the new
formula,” suggests Laura.

While Ken returns to using his table to calculate the total cost for each
successive floor, Laura and Penny talk further about their formula. Laura
walks through her derivation of the formula and the process she would use to
find the floor costs: “So, since the first difference [between the floors] was
constant, I just knew the slope was constant. That meant that the floor is x
and the cost is y and the slope is 50 cents. We are at the zero floor, so y equals
$1.50 for this equation, which is the y intercept. But then we need to multiply
the entire thing by 38. So now you wanted to figure out the cost of the 30th

floor. Since we don’t know the answer to the 30th floor from our table, let’s
test out a floor that we do have in the table. Let’s find the cost of the 10th floor
windows to see if we are right.” Penny and Laura soon realize that their new
formula gives them the total cost per floor rather than the total cost of a
building. At the same time, they notice that they can add up the column of
floor costs to arrive at the total building cost, and are inching closer to a fi-
nal solution.

At this point, about an hour has passed since the teachers first began solv-
ing this problem and Craig and Kim decide to bring the full group back to-
gether to discuss their current progress. The facilitators guide a conversa-
tion in which the teachers share their (mostly incomplete) strategies and
discuss the Gauss method of adding long sequences of numbers. (Gauss
paired numbers in a sequence in such a way that all pairs summed to the
same value. Then he multiplied that value by the number of pairs to arrive at
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the sum of the entire sequence.) The facilitators connect the Gauss method to
the mean value times the number of values equaling the sum.

After this full-group discussion, Laura, Ken, and Penny resume their work
on the problem. Ken slowly uses the patterns in his table to find solutions for
the cost of each floor. Penny and Laura are excited about the possibility of
using a new strategy to extend their solution. They try to apply the Gauss
method in order to generate a formula for the entire building rather than just
each single floor. With additional probing and scaffolding from Kim, Laura
and Penny recognize the pattern is quadratic and are able to develop a for-
mula. Kim pulls Ken into the discussion to ensure that all three teachers un-
derstand the solution.

As the workshop draws to a close, Ken demonstrates his understanding
by sharing this formula with the whole group. Ken, Laura, and Penny’s for-
mula is based on finding the average cost per floor in order to generate the
total cost of washing the building. Other teachers share (more conventional)
formulas based on finding the average cost per window. The teachers agree
that both solution methods would work equally well to arrive at the correct
answer.

Throughout Workshop 1, Laura, Penny, and Ken work hard to engage and ex-
pand their content knowledge around this challenging problem. Although they do
consider how students might reason through the Skyscraper Windows problem,
these teachers are focused primarily on establishing a sufficient base of common
content knowledge and specialized content knowledge. The development of spe-
cialized content knowledge is evident in the ways they compare, reason, and make
connections between the various solution strategies.

A Window into Workshop 2 of PSC Three

After all participating teachers taught the Skyscraper Windows problem to their
own middle school students, they met in Workshop 2 to debrief their experiences
and to watch selected video excerpts from each other’s lessons. Members of the
STAAR project team filmed the teachers’ lessons and provided the teachers with
DVD copies. The workshop facilitators, along with the entire project team, dis-
cussed all the lessons they filmed and considered which clips would be relevant for
the teachers to watch and consider together.

The vignette below depicts an extended conversation in Workshop 2 regarding
the teachers’ implementation of the Skyscraper Windows problem. A large portion
of this workshop involved analyzing a video excerpt from Peter’s lesson, in which
Peter queried a small group of students about their solution method. The STAAR
team intended for this video clip to provide a foray into the central theme of the
workshop: teacher questioning. Viewing and discussing the excerpt pushed the
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teachers to consider more deeply how they could play an effective role in teaching
the Skyscraper Windows problem, particularly with respect to asking questions
that generate student reasoning about the specific mathematical content in the
problem. In this vignette, we highlight the expansion of Peter’s pedagogical con-
tent knowledge and note the extensive full-group analysis of key pedagogical ac-
tions and mathematical ideas that supported his learning.

Vignette 2: Developing Pedagogical Content Knowledge
(Content and Teaching)

Once the teachers have gathered around a large table in a university class-
room, Craig initiates a conversation about the implementation of the Sky-
scraper Windows problem by asking, “What things came up that you weren’t
expecting?” In response, teachers share different ways that their students
approached the problem, including drawing graphs, making tables, and us-
ing ratios. Several report running into problems with graphing, especially
selecting intervals.

Peter comments that he prepared his students for the problem by starting
with a different task that required applying similar mathematical strategies
in order to arrive at a solution. Peter’s goal was for his students to approach
the Skyscraper Windows problem with the understanding that they would be
looking for patterns, sorting out various ideas, and summarizing. However,
Peter notes that he was disappointed because he felt he pushed a particular
idea onto his students in a misguided attempt to support their learning. Spe-
cifically, he encouraged his students to identify the cost of washing windows
on a hypothetical “zero” floor, assuming that would help them find the
y-intercept and lead to a simpler derivation of the direct formula. But he
found that his good intentions backfired and actually made the problem more
difficult for some students.

Using Peter’s comment as a segue, Craig tells the group that they are go-
ing to watch a video clip from Peter’s lesson in which he works with a small
group of students involving exactly this issue. In the clip, Peter studies the so-
lution method written on Kaitlin’s paper, and he poses a number of questions
to Kaitlin and her teammates. During the interaction, Peter is focused on the
zero floor idea, whereas Kaitlin has another idea in mind. In preparation for
watching the video, the facilitators distribute a handout with two questions
to guide the teachers’ viewing and discussion. Craig reads the discussion
questions aloud: (1) How did Peter’s questions help him understand how
Kaitlin derived her expression? (2) What additional questions would you ask
Kaitlin to further understand her mathematical thinking?
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The goal of this portion of the workshop is to investigate the relationship be-
tween teacher questioning and student reasoning. In particular, the spotlight is on
considering appropriate teacher moves (specifically, teacher questioning) in rela-
tion to the mathematics of the Skyscraper Windows problem and students’ current
levels of thinking about the mathematics.

The teachers watch a video clip that shows Peter examining an equation
written on Kaitlin’s paper: n × 19 + 3 × 19. Peter immediately asks if the stu-
dents can rewrite the equation as beginning with 19n, and the students nod.
He then asks why they wrote 3 times 19, and lacking an audible response
changes his question to, “What is 3 times 19?”, to which they easily respond
“57.” Peter tries again to have Kaitlin explain how she got 3 times 19. This
time she uses her pencil to point to numbers in her table. She shows Peter, “It
was this number. So you could add 19 three times.” After a few more prods
and questions, Kaitlin rewrites her equation as 19n + 57.

From this clip, it is not entirely clear how Kaitlin arrived at her equation, and
particularly, how she determined that it should include 19 times 3, other than using
a guess-and-check approach. However, this lack of clarity regarding the student’s
mathematical reasoning is precisely the issue that the facilitators wanted the teach-
ers to consider. Although Peter asks numerous questions of Kaitlin and her peers,
ultimately, the questions do not help her to explain or clarify her thinking. Instead,
she changes her equation to represent the solution process that Peter has in mind,
specifically the idea that 57 can be thought of as a cost of the zero floor of the build-
ing or as the “base” price.

The teachers watch this short clip several times and discuss it in small
groups and then again as a full group. In their discussions, they unpack the
mathematics that Kaitlin and her peers seem to have in mind and they also
consider Peter’s questioning strategies. The teachers carefully study
Kaitlin’s gestures, and even “freeze” the video on a shot of her finger point-
ing to numbers in her chart, which represent the costs for washing each indi-
vidual floor. Eventually they began to understand Kaitlin’s mathematical
reasoning. Kaitlin knew that the cost per floor was increasing by 19 each
time she went up a floor. She tried multiplying a selected floor number by 19
to see if that would generate the cost of that particular floor. She realized,
however, that multiplying just the floor number by 19 yields the cost of the
floor three floors below her selected floor number. Therefore, she needed to
add three more 19s to the product to equal the cost of floor she intended to
calculate.

One teacher, Kristen, comes to the conclusion that Kaitlin’s strategy not
only makes mathematical sense, but is an “elegant” way to approach the
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problem: “I almost think it’s more elegant having the 3 times 19, instead of
the 57. It has more meaning. She can actually see on the chart that the cost
went up by 19, 3 times.” Other teachers nod in agreement with this state-
ment. The group then expands on Kaitlin’s idea by suggesting that she could
have graphed the points, using 19 as an interval, and then confirmed that the
cost did increase by 19 each time. Graphing would also provide an addi-
tional representation to show why her equation includes 3 times 19.

As the teachers work together to understand Kaitlin’s thinking, we can see the
intersection between their specialized content knowledge, knowledge of content
and teaching, and knowledge of content and students. Much of their discussion is
focused on what they could do to help Kaitlin and her peers get a better grasp of the
meaning behind the concept of “going up by 19, 3 times” in this context. Once the
teachers understand why Kaitlin might have decided to write her formula with 3
times 19, they agree that this would have been a prime opportunity to incorporate
graphing and related ideas into the lesson, such as how to choose meaningful inter-
vals and how to conceptualize the y-intercept.

Toward the end of their conversation, Peter becomes increasingly reflective and
relates powerful insights about some aspects of his teaching he feels could be im-
proved. He suggests that his interaction with Kaitlin limited, rather than expanded,
her thinking about the mathematics in the Skyscraper Windows problem. Peter
sees that his preoccupation with conceptualizing 57 as the cost for the zero floor
precluded him from understanding and encouraging Kaitlin’s own mathematical
reasoning.

Peter shares, “I would also say, I was trying to force her down toward that
bottom thing, now that I have looked at it.” Craig clarifies Peter’s statement
by pointing out the equation 19n + 57 which was written on the bottom of
Kaitlin’s paper.

Peter adds, “The more you guys have talked about it, the n times 19 plus 3
times 19. I kind of wish I had processed that a little bit more. Or, actually I
just kind of wish I had stopped talking for about five seconds and looked at
it.”

Kim notes, “I felt like you had the 57 in your mind…’
Peter responds, “I know I did.”
Kim continues, “…and you wanted her to go there…”
Peter agrees, “I know I did.”
Kim concludes, “…and she had this whole other idea.”

The facilitators hoped to stretch the teachers’ pedagogical content knowledge
in Workshop 2 by encouraging them to critically reflect on this “missed opportu-
nity.” Their intention was to help the teachers become cognizant of the influence
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their own ideas about how to solve a problem has on the moves they make in their
classroom. In addition, they hoped that teachers would increasingly recognize the
importance of supporting the development of students’ reasoning by working from
their current level of mathematical understanding. In the remainder of the conver-
sation around Peter’s video clip, the group continues to point out and unpack the
many complexities and subtle nuances involved in this interaction.

Several teachers in the group reassure Peter that they would have encoun-
tered the same difficulties that he did with respect to understanding Kaitlin’s
thinking in the heat of the moment. Kristen tells Peter, “But Peter, we were
the group that kept asking them to replay it, replay it, replay it…[i.e., asking
the facilitators to replay the video].” Peter nods and she continues, “So I
would not have caught that myself. And it was finally seeing the motion of
her pencil drawing that [Kristen gestures to the three groups of 19]. That
was the key.” Peter nodded and comments, “That’s true.”

Peter then suggests an alternative pedagogical approach that he now feels
wouldhavebeenpreferable to theapproachhe took.Heexplains,“Iwas think-
ing maybe I could take this and kind of erase the 19n + 57. I could almost make
Kaitlin’s approach into a lesson the next day, for the whole class. Like showing
that little part and saying, ‘Where did she come up with n × 19 + 3 × 19? Go.”
Craig responds enthusiastically to this idea and comments, “That’s a great
strategy, in my opinion, to help kids. Just like we’re doing in this workshop.
We’re trying to figure out what this person is thinking.”

This conversation clearly had a profound impact on Peter. In a reflection com-
pleted shortly after the group’s discussion of his video he wrote, “The most valuable
partof thisyear [was]watching themistakes Imade in forcingstudents towardacon-
clusiononthevideotape. Ihaveactivelymonitoredmyself since tonot repeat this.”

A Window into Workshop 3 of PSC Three

In Workshop 3, the group continued to consider their implementation of the Sky-
scraper Windows problem, this time with a focus on student thinking. To prepare
for the workshop, the facilitators, along with the research team, considered which
clips would be relevant for the teachers to watch to foster their pedagogical content
knowledge related to content and students. They selected a clip from Laura’s les-
son that shows a small group of students engaged in the problem. In the clip, one
student explains his reasoning to three of his peers, using a solution method unan-
ticipated by any of the teachers (or the facilitators). Our team selected this clip be-
cause it involved a creative use of the distributive property and demonstrated so-
phisticated reasoning about the problem. The facilitators prepared discussion
questions that focused the group’s attention primarily on the mathematical ideas
evident in the video.
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As teachers reflected on and discussed what these students seemed to be think-
ing, they gained insight into the complexities of both the mathematical concepts in-
volved in the Skyscraper Windows task and student learning of those concepts. Al-
though the students’ solution method confounded the teachers at first, as they
probed deeply into their mathematical ideas, they were able to understand and then
extend this line of reasoning. Using the videotaped students’ work as a springboard
to re-examine the task, the teachers devised and shared multiple strategies that
built off the students’ numeric calculations and represented increasingly sophisti-
cated and generalized mathematical thinking. They also reconsidered how they
would teach the Skyscraper Windows task, given their stronger understanding of
how students might approach the task.

Vignette 3: Developing Pedagogical Content Knowledge
(Content and Students)

Teachers are seated around a table in a university classroom, reminiscing
with the facilitators and one another about personal feats and accomplish-
ments from when they were in middle school. Craig formally initiates the
workshop by distributing handouts with the text of the Skyscraper Windows
problem written out and asks with a smile, “Remember this one?” The
teachers laugh as he continues, “Today we are going to watch a clip from
Laura’s classroom that focuses on a group of students solving the problem.
They were trying to find a way to figure out the total cost for an eight-floor
building.” Craig notes that Laura modified the problem slightly for her stu-
dents, using an 8-story building rather than a 12-story building. Laura ex-
plains, “I just thought 12 stories would scare them too much. They seem to
get scared over those double digits.”

Craig passes around another handout with three questions for the teach-
ers to consider as they watch the video, and reads them aloud: (1) What are
the students doing mathematically? (2) What mathematical background do
the students appear to draw on? (3) What new ideas does this clip give you
about teaching this problem? As the video begins to play, the teachers be-
come quiet and concentrate on the clip. After it is over, they move into three
small groups, eager to talk about the interactions they just watched. Craig
encourages the teachers to work out the mathematics for themselves, ac-
knowledging, “That’s certainly what I needed to do.” The small groups all
have laptop computers so they can view the clip, or selected portions, as
many times as they want. Laura distributes copies of the written work she
collected from the videotaped students.

One small group is composed of Celia, Nancy, and Peter. Celia initiates
the conversation by noting her lack of understanding of the student thinking:
“I don’t understand what the boy is talking about.”
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“I don’t understand either,” Nancy agrees.
Peter offers, “Well I now think they were thinking about the order of oper-

ations.”
“They also talked about finding patterns,” Celia adds.
“Yes, they first did computations and they recognized some patterns,”

says Peter.
“But where did the 30 come from?” wonders Nancy.

The conversation begins with the teachers thinking aloud and making concrete
observations of the students work, and provides them with a starting place to ex-
plore student thinking. This interaction highlights their struggle to apply their
mathematical content knowledge to the classroom context, and their need to obtain
a more sophisticated mathematical understanding of the problem.

Kim joins the conversation and poses several questions in an attempt to help
extend the teachers’ discussion, “So, the kids took 30 times 38. Where did
they get those numbers? Did their strategy work? Does it give them the right
answer?”

Kim’s questions help to steer the group in the intended direction. Kim picks up
on and reframes Nancy’s question about how the student came up with the number
30, and encourages a focused look at some of the specific mathematical compo-
nents of the students’ solution method. Her goal is to help the teachers make sense
of students’ computations that differ from their own solution processes. The group
then engages in some of the same calculations they imagine the students must have
done, and they discuss if and why these computations are accurate.

After a short time Peter exclaims, “It does work!” referring to the numeric
computation of 30 times 38. He then wonders, “Why does it work?” After a
short pause while the teachers think about his question, Peter generates a
hypothesis about the origin of the students’ method (see Figure 2). “I think
this works because 38 times 30 is the same as 38 times [2.00 + 2.50 + 3.00 +
3.50 + 4.00 + 4.50 + 5.00 + 5.50]. Does that make sense?”

Nancy agrees, “Yes, because if you took 38 times 2.00 you would get the
first floor and if you took 38 times [2.00 + 2.50] then you would get the price
of first and second floor. This is what the kids were doing. They were adding
the string of numbers [2.00 + 2.50 +…5.50], which equaled thirty. And then
they multiplied it by 38 to get the total for an eight-story building.”

Nancy’s comments lead Peter to abstract the strategy further by identify-
ing the underlying mathematics, “It is a form of the distributive property.
Let’s try it out for a six-story building and see if it was just a coincidence.”
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As the teachers work on calculating the price for a six-story building they
begin to notice patterns. Peter, for instance, relates this strategy to an idea
that the teachers discussed in Workshop 1. “Remember when we used the
Gaussian method to find the average of large strings of numbers? I wonder if
there is a way to come up with a formula that is simpler?”

“I think it is interesting that instead of coming up with a price per win-
dow like we did, they skipped that step and just found the total cost of the
building,” Celia adds.

This conversation indicates that Celia, Nancy, and Peter have made substantial
progress in their understanding of these students’ thinking, and are beginning to
explore a novel way to solve the problem by connecting to their prior understand-
ing of the problem and attempting to extend the students’ numeric strategy to a
symbolic direct formula.

The facilitators continue to push the small groups of teachers to work
through the students’ mathematical ideas and then to extend the ideas in or-
der to find the cost of washing a building with “n” number of floors. After the
teachers talk a while longer in small groups, the facilitators decide to hold a
whole-group discussion and help the teachers come to firmer conclusions
about the mathematics.

Ken begins by describing some of the ideas his small group generated
for a six-story building, building on the videotaped students’ thinking. Spe-
cifically, they started with the idea of adding [2.0 + 2.5 + 3.0 + 3.5 + 4 +
4.5]. Then Ken’s group noticed that they could pair these six numbers to-
gether to form three groups of 6.5. Next they saw that they could multiply 3
by 6.5 to get 19.50, the cost of washing one window per floor (See Figure
3). Craig follows up on this idea by applying the same procedure to deter-
mine the cost of washing one window per floor for an eight-story building.
Afterwards, Laura makes a suggestion that pushes the group’s thinking
even further.
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FIGURE 2 Student’s idea for the total cost of
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Laura suggests, “Let’s find the cost of all the windows on a five-story
building.”

Craig questions, “Why a five-story building?”
Laura explains, “Because it is an odd number of floors and all the others

have been even, with even pairs.”
Peter agrees to take on this challenge and comes to the front of the room

to share his groups’ ideas. He shows how his group first generated a simpli-
fied method for calculating a sum for buildings with an even number of
floors because, as Laura alluded, they were easy to pair up. Peter explains,
while drawing a table on the board, “We made a table. We started with the
even numbers and then we were able to see the patterns to figure out what the
odd numbers would look like.”

Craig and Kim help to clarify and connect Peter and Ken’s ideas. Craig
notes, “If you look at a five-story building, you would add [2 + 2.5 + 3 + 3.5
+ 4]. Using Ken’s method, you can see how 6.00 is the cost per pair. And in
this case there are 2.5 pairs.”

Kim adds, “You can see that if you play around with pairing the numbers
you can find what to multiply by. For odd numbers, you multiply by half of a
pair. Peter’s group discovered the same thing by identifying a pattern.”

Ken interjects, “But in order to find the solution we still are adding down
the column in order to figure out the total cost.”

Kristen responds, “No, we have found a formula. If you take the cost per
pair times the number of pairs, then you will get the total cost of one window
on each floor. Then you multiply by 38.”

Building on Kristen’s explanation, the teachers agree on an expression to
find the total cost of washing one window per floor: (the cost of a pair) × (the
number of pairs). They note that this product would have to be multiplied by
38 to find the cost of washing all the windows. At this point, the teachers re-
alize they need mathematical expressions for “the cost of a pair” and “the
number of pairs.” After discussions among the teachers they agree that “the
cost of a pair” is [2 + (.50n + 1.50)]. This represents the cost of one window
on the first floor ($2.00) and the cost of one window on the nth floor (.50n +
1.50). Recall that the teachers developed the linear expression (.50n + 1.50)
during Workshop 1 The teachers also agree that the “number of pairs” for
any building is n/2, where n is the number of floors. Thus the generalized ex-
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pression for the cost of washing the windows of an n story building can be
written as:  (38) � [2 + (.50n + 1.50)] � (n/2).

At this point in the workshop, the teachers have spent several hours re-
considering their conceptual understanding of the Skyscraper Windows
problem in light of the student reasoning they saw taking place in Laura’s
lesson. The facilitators, along with the teachers, remark on the depth of their
continued exploration into the algebraic concepts in one problem, even after
two previous workshops focused on the same problem. To link their ex-
panded content knowledge with pedagogical issues, Kim and Craig encour-
age the teachers to discuss how they would now teach a lesson involving this
problem. Several teachers comment that these detailed investigations into
the mathematical content of the problem, particularly through the lens of
student thinking, motivated them to modify their instructional plans and ap-
proaches to the problem.

Kristen leads off the discussion by saying, “I am thinking instruc-
tionally now. The week before I do this lesson again, I could teach the stu-
dents how to add a string of numbers using the Gaussian approach or the
pairing method. Then, they would have a strategy to use for problems like
this one. I think it is important to give them the tools they need to under-
stand problems.”

Kim capitalizes on this segue and suggests, “So what you are doing,
Kristen, is rethinking your instructional strategy within your curriculum,
right?”

Craig adds, “You just said ‘give them the tools.’ But you, the teacher, have
to have the tools.  So how did you get them?”

Kristen responds,“Well, you gave them to us. During Workshop 1 you told
us about Gauss.”

Kim challenges this response by noting, “We tried to push your mathe-
matical thinking in Workshop 1, and strategies such as averaging and the
Gauss method were mentioned. But for most of you, you were not going
there. In this workshop you studied the students’ ideas in the video. You used
their idea of adding [2.00 + 2.50 + 3.00 +…6.50]. Initially when we work
out a math problem, we might see the mathematics involved only to a certain
degree. Then we give the problem to a bunch of kids and we see a lot more
strategies we haven’t even thought about.”

Kristen shares what seems to be a common feeling among the group,
“Their thinking, obviously, was just as good as ours.”

Kim continues, “Now that we realize that it is students’ thinking that
brought us here, what do we do? Can we rethink our instructional strategies
for using this problem?”
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Ken offers, “I will be able to help kids more because I now understand
these two ways to solve the problem. I understand how one connects to the
other. So I would probably ask better questions.”

Laura adds, “Today was the first day that really solidified my under-
standing of this problem. We’ve looked at it for three days [i.e., three work-
shops] and I’m finally like, ‘Oh gosh. Now I get it.’ I think having that knowl-
edge will help me to understand where the kids are going next time I teach it,
and to understand their thinking a little bit better.”

As this conversation suggests, the teachers found the process of exploring stu-
dent thinking extremely helpful. Rather than tiring of the continued examination of
the Skyscraper Windows problem, they gained new understandings that they
planned to take back to their classrooms, particularly when they might teach this
problem or related lessons again. There was general agreement among the group
that these new understandings would assist them in future decision-making pro-
cesses, including how to prepare their students for the problem and how to capital-
ize on their students’ developing ideas.

CONCLUSION

The knowledge needed for teaching mathematics in accordance with the vision of
classrooms portrayed in Principles and Standards (NCTM, 2000) is multifaceted
and complex. The PSC professional development model is designed to provide
teachers with the opportunity to expand on their existing knowledge base through
the exploration and teaching of specific mathematical tasks in ways that are in-
tended to inform their classroom practices and impact student achievement. More
specifically, the PSC model is intended to help teachers increase all strands of their
knowledge of mathematics for teaching: (1) common content knowledge, (2) spe-
cialized content knowledge, (3) knowledge of content and teaching, and (4)
knowledge of content and students. The series of PSC workshops reflects the inter-
connected nature of these four strands of knowledge, as well as the unique aspects
of each. Our central goal in this article was to highlight the ways in which specific
strands are foregrounded during each of the three PSC workshops, while also dem-
onstrating their interconnectedness.

In Workshop 1, specialized content knowledge is foregrounded, as teachers
solve the selected mathematical task and prepare to teach the problem in their
classroom. In Workshop 1 of the third PSC conducted as part of the STAAR pro-
ject, the teachers tapped into their knowledge of linear equations as they worked on
the Skyscraper Windows problem and considered multiple ways to represent the
cost of washing the windows on each floor. They built on their pedagogical content
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knowledge as they thought through the ways in which middle school students
might solve the problem, and how to best structure the presentation of the problem.

In Workshop 2, pedagogical content knowledge is foregrounded, especially
teachers’ knowledge of content and teaching. In the third PSC conducted as part of
the STAAR project, the teachers used this knowledge to examine the questions Pe-
ter posed to Kaitlin as she solved the problem. A detailed analysis of Peter’s ques-
tioning supported the teachers’ developing knowledge about how to plan, enact,
and critically reflect on lessons, taking into account what instructional moves were
likely to be most effective within a specific mathematical domain and for specific
groups of students.

Another aspect of pedagogical content knowledge—knowledge of content and
students—is foregrounded in Workshop 3. Specifically, in the third PSC con-
ducted as part of the STAAR project, the teachers critically reflected on the way a
group of students in Laura’s class approached the Skyscraper Windows problem.
As they embarked on an extended conversation about the nature of these students’
thinking, the teachers gained an increasingly sophisticated understanding of the
mathematical constructs embedded in the problem. They also considered how they
might teach the problem differently to better support the variety of approaches stu-
dents might use when solving it.

Building teachers’ professional knowledge lies at the heart of the success of the
mathematics reform movement. When teachers effectively engage and draw from
multiple knowledge domains in the planning, implementation, and reflection
stages of their classroom teaching, they are likely to make more-informed instruc-
tional decisions and produce more-capable students. It is this complex knowledge
base that professional development programs must address. At the same time, it is
important to bear in mind that the development of knowledge is a gradual pro-
cess—one that requires a delicate balance between supporting teachers’ current
knowledge and challenging them to gain new understandings that will serve as mo-
tivation to make incremental changes to their classroom practices. The PSC holds
promise as one way to support teacher learning in all domains, challenge their
mathematical understandings, and support gradual change by situating learning in
participants’ classrooms through the use of artifacts of practice and sharing knowl-
edge within a professional community. While we cannot provide evidence that all
participants in the STAAR program engaged all aspects of their knowledge in all of
the workshops, our analyses—as presented in the three vignettes—suggest that
they had the opportunity to do so.

We consider the PSC model to be complementary to other professional devel-
opment efforts with similar goals of helping teachers match the vision for school
mathematics presented in Principles and Standards (NCTM, 2000). In fact, partic-
ipation in multiple programs with different emphases offers teachers a variety of
routes to gain professional knowledge. Derry, Wilsman, and Hackbarth described
one such program in their article (this issue). These two professional development
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programs, like most others for mathematics teachers, are still in their infancy with
respect to research data on their enactment and impact. We are deeply grateful to
the teachers who are participating in such programs, and view them as partners in
the dual effort to help us implement and improve these professional development
models while also striving to further their own knowledge base and improve their
practices.
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APPENDIX A
A Solution Strategy for the “Skyscraper Windows” Problem

To find the total cost for washing a 12-story building, one strategy is to use straight-
forward arithmetic. Multiply 38 windows by the sum of the cost of washing an in-
dividual window on floors 1 through 12.

= 38 (2.00 + 2.50 + 3.00 + 3.50 + 4.00 + 4.50 + 5.00 + 5.50 + 6.00 + 6.50 + 7.00
+ 7.50)

= $2166

Reorganizing the 12 window costs by pairing the 1st floor with the 12th floor, the
2nd floor with the 11th, etc.) allows for the beginning of a more generalizable ap-
proach.

= 38 [(2.00 + 7.50) + (2.50 + 7.00) + (3.00 + 6.50) + (3.50 + 6.00) + (4.00 +
5.50) + (4.50 + 5.00)]

= 38 [9.50 + 9.50 + 9.50 + 9.50 + 9.50 + 9.50]
= 38 [9.50] � 6
= $2166

We can use a straightforward arithmetic approach to find the total cost for washing
an n-story building. However, we need to include the cost of washing an individual
window on the last floor (i.e., floor n). The cost of floor n can be represented as
(1.50+0.50n), where 1.50 is the cost of a hypothetical “floor 0” and 0.50 is the cost
increase per floor.

= 38 [2.00 + 2.50 + 3.00 + … + (1.50 + 0.50n)]
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We can also use a pairing approach: 38 windows multiplied by the sum of a
matched pair (e.g., floor 1 and floor n), which is then multiplied by the number of
pairs in an n-story building.

= 38 [2.00 + (1.50 + 0.50n)] �

n

2

This simplifies to a quadratic expression, representing the total cost of washing the
windows of an n-story building.

= 19n [3.50 + 0.50n]
= 66.50n + 9.5n2
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