2005-2006 年度第二学期拓扑学评分细则(试卷三) definition of a topology

第1题	State the definition of a topology
	Proof of (ii). By the assumption, for every $x \in K$, there is an open set U_x such that $x \in U_x \subset$
	K. This implies that $K = \bigcup_{x \in K} U_x$, that is, K is the union of open sets $\{U_x : x \in K\}$ and
	hence is open
第2题	If W is open in Z, since $h: Y \to Z$ is continuous, it follows that $h^{-1}(W)$ is open in Y. (10)
	points)
	Since $f: X \to Y$ is continuous, it follows that $f^{-1}(h^{-1}(W))$ is open in X. Noting that
	$(h \circ f)^{-1}(W) = f^{-1}(h^{-1}(W)),$ (4 points)
	we obtain that $(h \circ f)^{-1}(W)$ is open in X, so $h \circ f$ is continuous
第3题	Set $T := \bigcup_{\alpha \in \Lambda} K_{\alpha}$. If T is not connected, then there is a separation $T = C \cup D$, $(\emptyset \neq C \subset T)$,
	$\emptyset \neq D \subset T, C$ and D are open in T, and $C \cap D = \emptyset$)
	Since K_{β} is connected, K_{β} is contained in either C or D
	Without loss of generality, suppose that $K_{\beta} \subset C$. For every $\alpha \in \Lambda$, since K_{α} is connected
	and $K_{\alpha} \cap K_{\beta} \neq \emptyset$, it follows that $K_{\alpha} \subset C$. (5 points)
	This implies that $T = \bigcup_{\alpha \in \Lambda} K_{\alpha} \subset C$, contradicting the fact that D should be nonempty. (5)
	points)
第4题	For every $y \in Y$, $y \neq x$, so there are neighborhoods U_y of x and V_y of y such that $U_y \cap V_y = \emptyset$.
	(5 points)
	Since $Y \subset \bigcup_{y \in Y} V_y$ and Y is compact, there is a finite set $\{y_1, y_2, \ldots, y_n\}$ such that $Y \subset$
	$\bigcup_{i=1}^{n} V_{y_i} \dots \dots$
	Take $U := \bigcap_{i=1}^{n} U_{y_i}$. Then U is a neighborhood of x and $U \cap V = \emptyset$
第5题	(i) By the definition of metric, $x \in B(x, 1)$ for every $x \in X$. If $x \in B(y, r) \cap B(z, t)$ where
	$y,z \in X \text{ and } r,t > 0 \text{, then } d(x,y) < r \text{ and } d(x,z) < t. \text{ Take } \delta := \min\{r - d(x,y), t - d(x,z)\}.$
	Then $\delta > 0$ and $x \in B(x, \delta) \subset B(y, r) \cap B(z, t)$. This verifies (i)(10 points)
	(ii) If $x_n \to x$, then for any $\varepsilon > 0$, since $B(x, \varepsilon)$ is a neighborhood of x, there is N such
	that when $n > N$, $x_n \in B(x, \varepsilon)$, that is, $d(x_n, x) < \varepsilon$. (5 points)
	Conversely, let U be a neighborhood of x, that is, U is open and $x \in U$. So $B(x,r) \subset U$
	for some $r > 0$. By the assumption, there is N such that when $n > N$, $d(x_n, x) < r$, so
	$x_n \in B(x,r) \subset U$. This shows that $x_n \to x$
	(iii) If $x \in \overline{K}$, then for any n , there is $x_n \in B(x, 1/n) \cap K \neq \emptyset$. For every neighborhood
	U of x, there is $r > 0$ such that $B(x,r) \subset U$. Since $1/n \to 0$, there is N such that when
	$n > N, x_n \in B(x, 1/n) \subset B(x, r) \subset U$. Therefore, $x_n \to x$
	Conversely, if there is a sequence $\{x_n\} \subset K$ such that $x_n \to x$, then for every neighborhood
	U of x, there is N such that $x_N \in U$ and hence $x_N \in K \cap U \neq \emptyset$. This implies that $x \in \overline{K}$.(5)
	points)