2005－2006 年度第二学期拓扑学评分细则（试卷三）

第1题 State the definition of a topology．
（10 points）
Proof of（ii）．By the assumption，for every $x \in K$ ，there is an open set U_{x} such that $x \in U_{x} \subset$ K ．This implies that $K=\bigcup_{x \in K} U_{x}$ ，that is，K is the union of open sets $\left\{U_{x}: x \in K\right\}$ and hence is open．
．（5 points）
第2题 If W is open in Z ，since $h: Y \rightarrow Z$ is continuous，it follows that $h^{-1}(W)$ is open in Y ． points）
Since $f: X \rightarrow Y$ is continuous，it follows that $f^{-1}\left(h^{-1}(W)\right)$ is open in X ．Noting that $(h \circ f)^{-1}(W)=f^{-1}\left(h^{-1}(W)\right)$ ， ．（4 points） we obtain that $(h \circ f)^{-1}(W)$ is open in X ，so $h \circ f$ is continuous．
（1 point）
第 3 题 Set $T:=\bigcup_{\alpha \in \Lambda} K_{\alpha}$ ．If T is not connected，then there is a separation $T=C \cup D,(\emptyset \neq C \subset T$ ， $\emptyset \neq D \subset T, C$ and D are open in T ，and $C \cap D=\emptyset)$
Since K_{β} is connected，K_{β} is contained in either C or D ． ．（5 points） Without loss of generality，suppose that $K_{\beta} \subset C$ ．For every $\alpha \in \Lambda$ ，since K_{α} is connected and $K_{\alpha} \cap K_{\beta} \neq \emptyset$ ，it follows that $K_{\alpha} \subset C$ ．
（5 points）
This implies that $T=\bigcup_{\alpha \in \Lambda} K_{\alpha} \subset C$ ，contradicting the fact that D should be nonempty．．（5 points）
第4 题 For every $y \in Y, y \neq x$ ，so there are neighborhoods U_{y} of x and V_{y} of y such that $U_{y} \cap V_{y}=\emptyset$ ． （5 points）
Since $Y \subset \bigcup_{y \in Y} V_{y}$ and Y is compact，there is a finite set $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ such that $Y \subset$ $\bigcup_{i=1}^{n} V_{y_{i}}$
（10 points）
Take $U:=\bigcap_{i=1}^{n} U_{y_{i}}$ ．Then U is a neighborhood of x and $U \cap V=\emptyset$.
．．（5 points）
第5题（i）By the definition of metric，$x \in B(x, 1)$ for every $x \in X$ ．If $x \in B(y, r) \cap B(z, t)$ where $y, z \in X$ and $r, t>0$ ，then $d(x, y)<r$ and $d(x, z)<t$ ．Take $\delta:=\min \{r-d(x, y), t-d(x, z)\}$ ． Then $\delta>0$ and $x \in B(x, \delta) \subset B(y, r) \cap B(z, t)$ ．This verifies（i）． \qquad
（ii）If $x_{n} \rightarrow x$ ，then for any $\varepsilon>0$ ，since $B(x, \varepsilon)$ is a neighborhood of x ，there is N such that when $n>N, x_{n} \in B(x, \varepsilon)$ ，that is，$d\left(x_{n}, x\right)<\varepsilon$ ．（5 points）
Conversely，let U be a neighborhood of x ，that is，U is open and $x \in U$ ．So $B(x, r) \subset U$ for some $r>0$ ．By the assumption，there is N such that when $n>N, d\left(x_{n}, x\right)<r$ ，so $x_{n} \in B(x, r) \subset U$ ．This shows that $x_{n} \rightarrow x$ ． \qquad （5 points）
（iii）If $x \in \bar{K}$ ，then for any n ，there is $x_{n} \in B(x, 1 / n) \cap K \neq \emptyset$ ．For every neighborhood U of x ，there is $r>0$ such that $B(x, r) \subset U$ ．Since $1 / n \rightarrow 0$ ，there is N such that when $n>N, x_{n} \in B(x, 1 / n) \subset B(x, r) \subset U$ ．Therefore，$x_{n} \rightarrow x$ ． （5 points） Conversely，if there is a sequence $\left\{x_{n}\right\} \subset K$ such that $x_{n} \rightarrow x$ ，then for every neighborhood U of x ，there is N such that $x_{N} \in U$ and hence $x_{N} \in K \cap U \neq \emptyset$ ．This implies that $x \in \bar{K} .(5$ points）

