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Æ	����������� 1  State the definition of a topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10 points)

Proof of (ii). By the assumption, for every x ∈ K, there is an open set Ux such that x ∈ Ux ⊂

K. This implies that K =
⋃

x∈K Ux, that is, K is the union of open sets {Ux : x ∈ K} and

hence is open. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5 points)� 2  If W is open in Z, since h : Y → Z is continuous, it follows that h−1(W ) is open in Y . (10

points)

Since f : X → Y is continuous, it follows that f−1(h−1(W )) is open in X . Noting that

(h ◦ f)−1(W ) = f−1(h−1(W )), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4 points)

we obtain that (h ◦ f)−1(W ) is open in X , so h ◦ f is continuous. . . . . . . . . . . . . . . . (1 point)� 3  Set T :=
⋃

α∈Λ
Kα. If T is not connected, then there is a separation T = C ∪D, (∅ 6= C ⊂ T ,

∅ 6= D ⊂ T , C and D are open in T , and C ∩ D = ∅) . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5 points)

Since Kβ is connected, Kβ is contained in either C or D. . . . . . . . . . . . . . . . . . . . . . . . . (5 points)

Without loss of generality, suppose that Kβ ⊂ C. For every α ∈ Λ, since Kα is connected

and Kα ∩ Kβ 6= ∅, it follows that Kα ⊂ C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5 points)

This implies that T =
⋃

α∈Λ
Kα ⊂ C, contradicting the fact that D should be nonempty. . (5

points)� 4  For every y ∈ Y , y 6= x, so there are neighborhoods Uy of x and Vy of y such that Uy ∩Vy = ∅.

(5 points)

Since Y ⊂
⋃

y∈Y Vy and Y is compact, there is a finite set {y1, y2, . . . , yn} such that Y ⊂
⋃n

i=1
Vyi

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10 points)

Take U :=
⋂n

i=1
Uyi

. Then U is a neighborhood of x and U ∩ V = ∅. . . . . . . . . . . . . (5 points)� 5  (i) By the definition of metric, x ∈ B(x, 1) for every x ∈ X . If x ∈ B(y, r) ∩ B(z, t) where

y, z ∈ X and r, t > 0, then d(x, y) < r and d(x, z) < t. Take δ := min{r− d(x, y), t− d(x, z)}.

Then δ > 0 and x ∈ B(x, δ) ⊂ B(y, r) ∩ B(z, t). This verifies (i). . . . . . . . . . . . . . . . .(10 points)

(ii) If xn → x, then for any ε > 0, since B(x, ε) is a neighborhood of x, there is N such

that when n > N , xn ∈ B(x, ε), that is, d(xn, x) < ε. (5 points)

Conversely, let U be a neighborhood of x, that is, U is open and x ∈ U . So B(x, r) ⊂ U

for some r > 0. By the assumption, there is N such that when n > N , d(xn, x) < r, so

xn ∈ B(x, r) ⊂ U . This shows that xn → x. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5 points)

(iii) If x ∈ K̄, then for any n, there is xn ∈ B(x, 1/n) ∩ K 6= ∅. For every neighborhood

U of x, there is r > 0 such that B(x, r) ⊂ U . Since 1/n → 0, there is N such that when

n > N , xn ∈ B(x, 1/n) ⊂ B(x, r) ⊂ U . Therefore, xn → x. . . . . . . . . . . . . . . . . . . . . . . (5 points)

Conversely, if there is a sequence {xn} ⊂ K such that xn → x, then for every neighborhood

U of x, there is N such that xN ∈ U and hence xN ∈ K ∩U 6= ∅. This implies that x ∈ K̄.(5

points)


